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Abstract

Background: Little is known about migration patterns and seasonal distribution away from coastal summer feeding
habitats of many pelagic baleen whales. Recently, large-scale passive acoustic monitoring networks have become
available to explore migration patterns and identify critical habitats of these species. North Atlantic minke whales
(Balaenoptera acutorostrata) perform seasonal migrations between high latitude summer feeding and low latitude
winter breeding grounds. While the distribution and abundance of the species has been studied across their summer
range, data on migration and winter habitat are virtually missing. Acoustic recordings, from 16 different sites from
across the North Atlantic, were analyzed to examine the seasonal and geographic variation in minke whale pulse train
occurrence, infer information about migration routes and timing, and to identify possible winter habitats.

Results: Acoustic detections show that minke whales leave their winter grounds south of 30° N from March through
early April. On their southward migration in autumn, minke whales leave waters north of 40° N from mid-October
through early November. In the western North Atlantic spring migrants appear to track the warmer waters of the Gulf
Stream along the continental shelf, while whales travel farther offshore in autumn. Abundant detections were
found off the southeastern US and the Caribbean during winter. Minke whale pulse trains showed evidence of
geographic variation, with longer pulse trains recorded south of 40° N. Very few pulse trains were recorded during
summer in any of the datasets.

Conclusion: This study highlights the feasibility of using acoustic monitoring networks to explore migration patterns of
pelagic marine mammals. Results confirm the presence of minke whales off the southeastern US and the Caribbean
during winter months. The absence of pulse train detections during summer suggests either that minke whales switch
their vocal behaviour at this time of year, are absent from available recording sites or that variation in signal structure
influenced automated detection. Alternatively, if pulse trains are produced in a reproductive context by males, these
data may indicate their absence from the selected recording sites. Evidence of geographic variation in pulse train
duration suggests different behavioural functions or use of these calls at different latitudes.
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Background
Animal migration is a common phenomenon and has
evolved at multiple times and in a variety of species [1].
Typically, migration develops as an adaptation to take
advantage of seasonal peaks in resource abundance, es-
cape inter- and intra-specific competition, or avoid preda-
tors and parasites [2]. Most baleen whale species perform
to-and-fro migrations [3] between productive high latitude
summer feeding and low latitude winter breeding grounds
[4,5] and have been shown to cover very large distances,
including the longest documented migration distance by
any mammal [6]. The driving forces for these long-range
migrations to often unproductive breeding grounds are
still debated and a number of explanations have been sug-
gested, including increased calf survival and avoidance of
killer whale (Orcinus orca) predation [7]. However, there
is also increasing evidence that partial (a fraction of the
population stays on the feeding grounds) or differential
(differences in migratory behaviour between different age
classes or sexes) migration [3,8] might be more the norm
than the exception in baleen whales. For example, several
long-term passive acoustic monitoring (PAM) studies
show the extended year-round presence of baleen whales
on higher-latitude feeding grounds [9-12]. Nonetheless, at
least parts of most populations of baleen whales seasonally
migrate between summer feeding and winter breeding
grounds [13-17].
Due to the high mobility of individuals, short surface

times and the dependence on daylight and favorable
weather conditions, it is generally difficult to visually
survey for marine mammals. These limitations are inten-
sified during migration, when their locations and move-
ments are generally less predictable. Thus, baleen whale
migration routes in the North Atlantic Ocean are still
poorly understood for most species. In addition, while
summer and winter destinations are fairly well de-
scribed for the more coastally distributed species such
as humpback (Megaptera novaeangliae) and right whales
(Eubalaena glacialis) [18,19], little is known about the
winter distribution of most other baleen whale species in
the North Atlantic. For blue (Balaenoptera musculus) and
fin whales (Balaenoptera physalus) there are some passive
acoustic data indicating low latitude winter distributions
[20,21], while more recent recordings also suggest year-
round presence in higher latitudes [9,11]. Apart from
these observations most knowledge on migration routes
still originates from historical whaling records [22,23].
Such lack of data is not limited to baleen whales, but

extends to other long-distance migrants that spend
much of their lives in open ocean regions, such as sea tur-
tles and pelagic seabirds [24,25]. Given current ocean-scale
impacts of climate change and an increase in offshore,
anthropogenic activities [26-28], a better understanding of
migration timing and the location and extent of migration
corridors of highly mobile marine mammals and other top
predators is crucial for effective marine conservation ef-
forts, which are currently concentrated in coastal habitats
[24,29,30]. New methods such as statistical modeling, elec-
tronic tracking, as well as PAM are emerging as promising
tools to gather such fundamental information on marine
mammal movement and seasonal habitats [30-33].
Although North Atlantic minke whales (Balaenoptera

acutorostrata) are well studied on their summer foraging
grounds [34-38], large knowledge gaps exist concerning
their distribution and abundance for much of the rest of
the year. As far as it is known, their range extends from
Baffin Bay to the Caribbean in the western North Atlantic
and from the Barents Sea to the African continental shelf
in the eastern North Atlantic [39,40]. Similar to the life
cycle of other baleen whales, there is evidence of large-
scale seasonal migrations between summer feeding in
higher latitudes and winter breeding grounds in lower lati-
tudes [39,41], but winter habitats have not been identified
for this species. North Atlantic minke whales are currently
listed as a species of least concern under the IUCN Red
List [40], but are still commercially hunted in significant
numbers in the North Atlantic. Based on limited data
from feeding grounds, the International Whaling Com-
mission (IWC) partitions North Atlantic minke whales
into four discrete management areas: the Canadian East
coast stock, the West Greenland stock, the Central stock
(Iceland) and the Northeastern stock (Norway) [42]. How-
ever, there is increasing evidence for the possible existence
of two breeding populations in the North Atlantic, but
lack of genetic structure suggests extensive movements
across and mixed assemblages at summer feeding grounds
[43-45]. To confirm these data, it is important to establish
the location of and obtain genetic samples from minke
whale winter breeding grounds. This could have import-
ant impacts for the conservation of the species, because
potential differences in genetic variability between breed-
ing populations, for which the proportional representation
in summer feeding and hunting grounds is unknown, may
lead to overexploitation of small populations [43].
A general lack of winter sightings in coastal waters of

the North Atlantic, reports of a few scattered sightings
[39,46] and recent aerial surveys [47] observing minke
whales east of the North American continental shelf-
break, suggest an offshore distribution at that time of
year. Recent satellite tracking data from Iceland show
that individuals that feed in Icelandic waters during
summer migrate south in the middle of the North Atlan-
tic [48], corroborating passive acoustic detections at the
Mid-Atlantic ridge [49] and offshore array data from the
Integrated Undersea Sound Surveillance System (IUSS-
SOSUS) that showed higher counts of individual singers
in lower latitudes during winter [50]. Compared to the
acoustic signals of other baleen whale species, until
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recently, minke whale sounds in the North Atlantic have
not been studied extensively. While [51] described series
of clicks in the 5–6 kHz range and [52] attributed low-
frequency downsweeps (118–80 Hz) to the species, the
best described sounds associated with North Atlantic
minke whales are low-frequency pulse trains with vari-
able interpulse interval (IPI) structure and peak frequen-
cies from 55–150 Hz (Figure 1) [50,53-55]. A recent
long-term study of these pulse trains at Stellwagen Bank,
USA demonstrated the feasibility of PAM to explore sea-
sonal, diel and spatial occurrence patterns of this species
[55]. With its obvious advantages in sampling remote
areas over extended time periods regardless of weather
conditions [31,56,57], PAM provides an effective tool for
identifying the location and expanse of migratory corri-
dors, especially when acoustic recorders are deployed in
large spatial networks. In addition, PAM data can pro-
vide valuable information about the timing of migration
periods and thus complement visual observations or
satellite tracking data. Furthermore, in remote offshore
areas PAM may be useful in delineating seasonally
important habitats that are difficult to survey using other
methods [58]. The main aims of this study were to
explore the geographic and seasonal variation in minke
whale pulse train occurrence across multiple sites in the
North Atlantic Ocean in order to better understand
minke whale seasonal and spatial movement patterns.
Data from locations ranging from Nova Scotia to the
Caribbean in the western North Atlantic were analyzed
in detail, in order to describe migration timing and a
possible migration corridor along the North American
continental shelf. Data from Florida and the Caribbean
were used to explore the suggested winter distribution
of this species in waters off the southeastern US. Finally,
geographic variation in minke whale pulse train struc-
ture was examined in order to investigate possible vari-
ation in minke whale acoustic behavior across regions.
Figure 1 Spectrograms for slow-down pulse train (sd3) (a) from Stellw
for overview map). Spectrogram parameters: fast Fourier transform (FFT): siz
and 64 ms. Y-axis starts at 0.03 kHz to remove low-frequency noise. Spectrogr
Results
Ambient noise analysis and estimated maximum
detection ranges
Ambient noise levels within the 89.1–355 Hz frequency
bands varied spatially and temporally (Table 1). Overall,
lowest median noise levels (93.09 dB re 1 μPa) were
measured for Jacksonville (site 8, Figure 2) and differed
from the highest median levels (105.08 dB re 1 μPa)
measured at Stellwagen Bank (site 4, Figure 2) by 12 dB.
Ambient noise levels for recording sites at Stellwagen
Bank and New York (site 5, Figure 2) were similar in all
seasons. For both sites noise levels were higher during
winter and spring, as compared to data from summer
and autumn months. Based on these ambient noise level
measurements, estimated detection ranges for minke whale
pulse trains were compared between sites and seasons.
While median detection ranges for sources at Stellwagen
Bank and New York are between 7.6 and 17.2 km, median
detection ranges for the Jacksonville site are about 10 km
greater, ranging between 20.4 and 29.4 km (Table 1,
Figure 3).

Seasonal and spatial variation of pulse train occurrence
A total of 3858 days of recordings were analyzed and
9411 minke whale pulse trains were detected during this
analysis. The number of detections varied by geographic
location and season. No pulse trains were detected in
datasets from Davis Strait, the Azores, the Strait of
Gibraltar or Savannah (sites A, C-F; Figure 2).
While most detections were made along the US east

coast, where most the recording effort was located, one
pulse train was detected on the recorder deployed off
Southwest Iceland (site B; Figure 2) on October 21st
2007, and 48 detections were made at the Saba Island
site in the Caribbean during winter and spring (February
to April; site 10; Figure 2). The seasonal distributions of
minke whale pulse trains for sites with at least five
agen Bank (site 4) and (b) from Jacksonville 2 (site 8) (see Figure 2
e = 512 points, overlap = 75%, sample rate = 2000 Hz, resolution = 3.9 Hz
ams made with Seewave [59].



Table 1 Median, 25th and 75th percentile ambient noise levels (NL) measured as RMS pressure over ΔT = 600 s and
over one-third octave bands 20–25 (89.1–355 Hz) for locations at Stellwagen Bank (site 4; SBNMS), New York (site 5; NY)
and Jacksonville 2 (site 8, JAX) (see Figure 2 for overview map), across four seasons; and estimated maximum
communication ranges based on a BELLHOP propagation model and the ambient noise levels above

Location (site) Winter Spring Summer Autumn

NL (RMS) SBNMS (4) 105.08 (103.08, 107.31) 102.96 (100.50, 104.81) 99.74 (97.80, 103.42) 99.38 (97.01, 101.53)

(dB re 1 μPa [89.1–355 Hz]) NY (5) 104.10 (102.99, 106.08) 103.19 (100.55, 105.52) 96.07 (94.13, 98.83) 100.10 (98.30, 102.04)

JAX (8) 93.12 (90.00, 95.28) – – 93.09 (90.58, 99.89)

Range (km) SBNMS (4) 7.62 (5.26, 11.25) 9.74 (7.01, 12.56) 10.81 (7.68, 14.58) 11.40 (9.02, 14.12)

NY (5) 9.45 (6.69, 13.61) 12.49 (7.30, 20.55) 17.18 (12.86, 20.95) 12.95 (10.43, 16.42)

JAX (8) 20.40 (15.55, 25.55) – – 29.47 (11.18, 40.16)
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detections (sites 1–8 & 10; Figure 2) are summarized in
Figure 4. During the 2.5 months of summer (June to
August) recordings in the Gulf of St. Lawrence (site 1;
Figure 2) only five pulse trains were detected. Recording
sites in Nova Scotia (sites 2 & 3; Figure 2) and Stellwagen
Bank (site 4; Figure 2) all showed a peak in detections in
autumn and early winter (early September to December).
These sites had no detections in winter (late December to
March), and only a few detections in spring and summer
Figure 2 Overview map of all North Atlantic recording sites available
Triangles show recording sites at the Mid-Atlantic ridge analyzed by [49] for r
filled symbols indicate the detection of minke whale pulse trains at this site. Wit
and results are shown in Figure 4. Sites A and C-F, had no detections. Site A =D
Gibraltar West, F = Savannah. Site 1 = Gulf of St. Lawrence, 2 = Roseway Basin, 3
7–9 = Jacksonville 1–3, 10 = Saba Bank. Site I-VI = NW, NE, CW, CE, SW, SE hydro
downloaded from Natural Earth. Free vector and raster map data @ naturalearth
(April to August). In contrast, at the New York recording
site (site 5; Figure 2) a peak of detections occurred in
spring (mid-March to mid-May). While there was no
summer data available for this site, only a few detections
occurred here in autumn and none in winter. In Onslow
Bay (site 6; Figure 2) most of the detections occurred dur-
ing winter and spring (December to early April). No pulse
trains were recorded from late April to early August and
there was a gap in recording effort from late August to
for this project. Circles indicate recording sites analyzed in this study.
eference. Transparent symbols show sites without detections, while white
h the exception of site 9, numbered sites 1–10 had more than 5 detections
avis Strait, B = SW Iceland, C = Azores, D = Cape Espartel East, E = Strait of
= Emerald Basin, 4 = Stellwagen Bank, 5 = New York, 6 =Onslow Bay,
phones deployed at the Mid-Atlantic ridge. Map made with data
data.com. Map projection: Mercator.



Figure 3 Cumulative distribution of estimated detection ranges at sites 4, 5 and 8 (Stellwagen Bank (SBNMS), New York (NY),
Jacksonville 2 (JAX); see Figure 2 for overview map). Estimates are derived from ambient noise analyses of a subset of data (see Additional file 2:
Table S1) and propagation modeling using the BELLHOP model, as implemented in ESME at the different locations and for all four seasons [60].

Risch et al. Movement Ecology 2014, 2:24 Page 5 of 17
http://www.movementecologyjournal.com/content/2/1/24
November. All recording sites in Jacksonville (sites 7–9;
Figure 2) had detections during winter. While recordings
for site 8 were only available from September to October
and December to January, site 7 had gaps in recording in
February and August (Figure 4).
Exploring the spatial distribution of pulse train occur-

rence at the New York and Jacksonville recording sites
(sites 5, 7–9; Figure 2) revealed that at both recording
locations the overwhelming majority of pulse trains were
detected on the easternmost recording sites, which were
located farthest from the coast and closest to the edge of
the shelf break (Figure 5).

Geographic variation
Duration measurements were positively correlated with
SNR for data from Jacksonville (R2 = 0.2094, p = 0.006)
but not for Onslow Bay (R2 = 0.1274, p = 0.073) or Stell-
wagen Bank (R2 = 0.0164, p = 0.298) (Additional file 1:
Figure S1). The comparison of duration and number of
pulses for pulse train type sd3 (Figure 1) revealed significant
differences between pulse trains recorded at Stellwagen
Bank as compared to both Onslow Bay and Jacksonville
(sites 4, 6, 8; Figure 6). The null hypothesis that the
duration and number of pulses is equal across the
three different sites was rejected (Kruskal-Wallis test:
(a) pulse duration: Χ2 = 93.3, df = 2, p <0.001; (b) pulse
number: Χ2 = 90.1, df = 2, p <0.001). Comparisons between
Stellwagen Bank and Onslow Bay, and Stellwagen Bank
and Jacksonville, showed significant differences in both
pulse duration, as well as the number of pulses per pulse
train (p <0.001). No significant differences were found
between pulse trains recorded in Onslow Bay compared
to Jacksonville (p = 1). In general, pulse trains recorded
at Onslow Bay (mean ± sd: 75.9 ± 13.5 s; 186.9 ± 37.3)
and Jacksonville (76.5 ± 10.1 s; 191.3 ± 34.5) were longer
and had more pulses per pulse train as compared to
pulse trains recorded at Stellwagen Bank (39.9 ± 6.5 s;
85.4 ± 13.6).

Discussion
Comparison of ambient noise levels and detection range
estimation
Ambient noise levels varied between sites and seasons,
with the southernmost recording site experiencing low-
est median noise levels during the selected analysis
periods (Table 1) and with lower median noise levels in
winter as compared to summer and autumn measure-
ments. This spatial gradient of decreasing ambient noise
levels from north to south along the US East coast
matches a recent in-depth analysis of noise levels from



Figure 4 Minke whale pulse train detections per day for all sites with more than 5 detections. Data are presented for one fictional,
continuous year to show seasonality by site. True recording years are indicated in lower left corner on each panel. Missing data indicated by grey
horizontal bars. Panel numbers correspond to numbered sites in overview map (see Figure 2). Note the different y-axes scales for each panel.
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Figure 5 Maps illustrating the spatial distribution of all minke whale pulse trains detected at recorders located at sites (a) New York
(site 5) and (b) Jacksonville (sites 7–9) (see Figure 2 for overview map).
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ten different sites along the western North Atlantic coast
[61]. Estimated detection ranges based on these mea-
sured background noise levels differed accordingly. For
example, detection ranges of about 20–30 km, estimated
for Jacksonville (site 8, Figure 2), are about 10–20 km
greater than estimates for Stellwagen Bank, and detection
ranges between seasons differed by 5–10 km (Figure 3).
These spatio-temporal differences in ambient noise levels
have important implications for behavioural and physio-
logical responses to noise, as well as potential communica-
tion ranges for minke whales in their different seasonal
habitats [62-65]. In addition, this preliminary analysis



Figure 6 Box-and-Whisker plot of (a) pulse train duration (s) and (b) number of pulses per pulse train at three different geographic
locations: Stellwagen Bank (site 4), Onslow Bay (site 6), Jacksonville 2 (site 8) (see Figure 2. for overview map). Lower and upper bounds
of boxes represent lower and upper quartiles, respectively. Solid lines represent medians and non-filled circles are means. Whiskers represent
furthest data points within 1.5 × interquartile range (IQR). Filled dots are outliers.
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highlights that increased ambient noise levels will affect
signal-to-noise ratio (SNR) and thus influence detection
probability and range in different habitats. Such differ-
ences will likely not dramatically change large-scale pat-
terns of seasonal occurrence, which were the focus of this
study. However, together with site-specific propagation
characteristics, they need to be taken into account when
absolute numbers of detections are compared on smaller
spatial and temporal scales or used to infer absolute or
relative abundance of animals [66,67].

North Atlantic minke whale migration and winter habitats
along the US continental shelf
Minke whale pulse trains were recorded at 11 sites
throughout the North Atlantic. It is currently unknown
what proportion of the population produces pulse trains
and whether there are differences between sexes and/or
age-classes in pulse train production. Although it is unclear
what proportion of the population is represented by this
analysis, a recent study at Stellwagen Bank showed general
agreement of visual sighting rates and frequency of acous-
tic detections [55]. Thus, the minimum assumption is that
an increase in acoustic detections represents an increase in
vocally active individuals rather than a change in behaviour
of the population. However, as mentioned above, propaga-
tion characteristics and ambient noise levels need to be
considered as well, especially in the absence of visual
sightings.
The results from this study show seasonal variability

in minke whale pulse train occurrence along the North
American continental shelf consistent with seasonal
migratory movement between northern and southern
latitudes in summer and winter, respectively. A gradual
decrease of detections at sites north of 40° N in late
autumn, and an increase in recorded pulse trains in
waters between 20° and 30° N during winter and north
of 35° N during spring, clearly indicate movement be-
tween high-latitude summer feeding grounds and low-
latitude winter habitats (Figures 2 and 4). The timing of
these movements agree with recent satellite tagging
data from Iceland demonstrating the departure of indi-
vidual minke whales from Icelandic waters from late
September to late October [48]. In addition, winter
presence in tropical waters and arrival in and departure
from these regions closely matched pulse train distribu-
tion recorded at the Mid-Atlantic ridge in an earlier
study [49] (Figure 7), indicating that minke whales are
spread out at low latitudes ranging from the US contin-
ental shelf to the Mid-Atlantic ridge during winter. Re-
sults from the current study also add further support
for the suggested location of a minke whale winter
breeding ground offshore the Southeastern US and the



Figure 7 Minke whale pulse train detections expressed as proportion of hours with detections/month at the Mid-Atlantic ridge. Panels
show different recording sites as labeled in Figure 2. Figure adapted from [49]. Reprinted and adapted with permission of the author.
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Caribbean [41,54]. Recent winter sightings from aerial
surveys in the South Atlantic Bight included sightings
of mother-calf pairs off North Carolina and Florida.
These sightings were corroborated by long-term sight-
ing and stranding records of calves, which occurred
primarily during winter and spring in this region [47].
Together, these data confirm the presence of minke
whales offshore the Southeastern US shelf break and
emphasize the importance of this region as a potential
breeding and calving ground for this species. The
general seasonal pattern of migration that was observed
along the US North Atlantic shelf break can be ob-
served at the Mid-Atlantic ridge as well, with highest
detection rates on the southernmost locations (Figures 2
and 7) during winter. Interestingly, no pulse trains were
recorded on the northeastern most hydrophone, located
at Latitude 32° N. This suggests that minke whales in the
western North Atlantic may pass this location further to
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the west and begin to spread out towards the Caribbean
in the west and the Mid-Atlantic ridge to the east, once
they have reached lower latitudes.
Acoustic array data from New York (site 5; Figure 2)

and Jacksonville (sites 7 & 8; Figure 2) demonstrate that
minke whales preferentially migrate in the deeper waters
to the east of the continental shelf break (Figure 5). A
similar spatial distribution has been found at Stellwagen
Bank [55]. Although better sound propagation character-
istics in deeper waters could be partly responsible for
these observed patterns in detections [68], the general
scarcity of winter sightings and results from recent aerial
surveys sighting minke whales exclusively offshore of
the continental shelf break [47] indicate that differences
in seasonal acoustic detections reflect actual animal
distribution.
One of the most surprising results of this study was

the relative scarcity of detections in the New York (site 5;
Figure 2) autumn data compared to a peak in detections
during spring in this region. This seasonality is contrary to
the one found at Stellwagen Bank (site 4; Figure 2), located
about 200 miles further to the north (Figure 4). Yet, simi-
lar to seasonal patterns off New York, a peak in late winter
and springtime detections compared to less detections
during early winter months was observed in Onslow Bay,
North Carolina (site 6; Figure 2) (Figure 4). Combined,
these data suggest that minke whales are distributed closer
to the shelf break edge during their northbound migration
in spring than during their southbound migration in au-
tumn. However, high numbers of detections in data from
Jacksonville (sites 7 & 8; Figure 2) and several detections
at the inshore Saba Island site (site 10; Figure 2) indicate
that whales are moving closer inshore again during winter
months (Figure 4). Similar observations of a clockwise
movement, with minke whales entering southern winter
grounds from the northeast and moving in a westerly
direction towards the US shelf break, have also been
described from IUSS-SOSUS acoustic array data [50]. A
possible explanation for these clockwise movements in
western North Atlantic wintering grounds is that dur-
ing spring minke whales are following the northward
currents of the Gulf stream, while during autumn, after
leaving seasonal feeding habitats north of 40° N, they
follow a more directed southerly route, thereby reach-
ing warmer waters more quickly and avoiding swim-
ming against the Gulf Stream that may have surface
currents velocities of up to 2.6 m/s [69] (Figure 8). A
northward migration following the Gulf Stream and the
shelf break could also explain the absence of minke
whale pulse train detections and visual observations at
Stellwagen Bank (site 4; Figure 2) [70] and at recording
sites in Nova Scotia (sites 2 & 3; Figure 2) (Figure 4)
during spring, since minke whales may be moving
along the shelf break and not spread out into coastal
feeding habitats, such as the Gulf of St. Lawrence [71],
until they reach higher latitudes.
It has been well documented that minke whale

presence is related to prey distribution in their summer
foraging grounds, where they feed primarily on pelagic
shoaling fish such as sand lance (Ammodytes sp.) and
herring (Clupea harengus) [34,38,71,73]. However, it has
also been shown that baleen whales may pause migration
and feed on the way to or from their summer habitats
[16,74]. Following the Gulf Stream (Figure 8) might also
be related to prey availability on their migratory pathway
and could have energetic advantages for western North
Atlantic minke whales that exploit the main current
direction. Similarly, acoustic presence of minke whales
off Nova Scotia (sites 2 & 3; Figure 2) and at Stellwagen
Bank (site 4; Figure 2) during autumn migration (Figure 4;
Figure 2) may be related to prey availability. Although low
site fidelity [36] and swimming speeds [75] indicate that
both of these areas are part of the migration route, whales
might take advantage of herring spawning activity peaking
from late August to mid-October in this region [76], while
en route to lower latitudes.
The potential relationship between minke whale migra-

tion and the Gulf Stream may have important implications
in a changing climate. In 2011 warm waters originating in
the Gulf Stream were observed much closer to the shelf
break south of New England than in previous years [77].
Such shifts in temperature may affect primary productiv-
ity, can result in major shifts of fish populations [78,79],
and ultimately impact the distribution and abundance
of top predators. For example, changes in sea surface
temperature (SST) during an El Niño event in the
Southern Ocean have been related to reduced calving
rates in Southern right whales (Eubalaena australis),
likely due to reduced prey availability [80]. If minke
whales are indeed following the warmer surface waters
of the Gulf Stream, a change of its location may poten-
tially shift their migration path and change their over-
lap with other species, including important prey, as
well as anthropogenic activities.

Absence of pulse trains from summer feeding grounds
and the eastern North Atlantic
Very few to no minke whale pulse train detections were
recorded during summer in any of the datasets (Figure 4).
In traditional summer feeding habitats, such as the
Mingan Islands in the Gulf of St. Lawrence [71], only five
acoustic detections were made during two months of
recording (Figure 4) despite a regular presence of minke
whales in the area (Risch D, pers. obs.). In Davis Strait,
no detections were made and in Southwest Iceland only
one pulse train was detected in the month of October
(Figure 2). The absence of acoustic detections from
these areas could be related to a switch in behaviour at



Figure 8 Maps of Sea Surface Temperature (SST) data for 2012, averaged by season (a) spring (March-May) and (b) autumn (September-
November). Black dots represent recording sites 2–9 as analyzed in this study (see overview map in Figure 2) and dotted lines show hypothetical
migration pathways based on frequencies of acoustic detections at different recording sites. For sea surface temperature (SST) raster generation,
daily, 1 km resolution, level 4 GHRSST data were downloaded and aggregated into monthly climatological SST rasters using the Marine
Geospatial Ecology Tools (MGET) [72]. Monthly SST rasters were then averaged to create seasonal climatological SST rasters. Data available
at: http://podaac.jpl.nasa.gov/dataset/JPL_OUROCEAN-L4UHfnd-GLOB-G1SST.
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this time of year and reduced or changed vocalization
activity during summer when whales are primarily feeding.
For example, in humpback whales, only males produce
songs in a reproductive context [81], which, although
more prolific on summer feeding grounds than previously
thought, shows a strong seasonality, with reduced occur-
rence during summer when whales are actively feeding
[82]. During summer, humpback whale vocal presence on
higher latitude feeding grounds is better represented by
‘social sounds’ , which are produced by males and females
[83,84]. Similar seasonal patterns have been found for fin
whale song on high latitude feeding grounds [9]. There-
fore, more data on the behavioural function of the full
vocal repertoire of minke whales, which in the North
Atlantic may include low-frequency downsweeps and
other sounds [51,52], is needed to evaluate whether a
switch in behaviour may be responsible for the absence of
pulse train detections in these areas.
An alternative explanation for the absence of pulse

trains in higher latitudes is that the proportion of the
population producing pulse trains is not adequately
captured in those areas. In the Mingan Islands, Gulf of
St. Lawrence (site 1; Figure 2) the sex ratio appears to be
heavily skewed towards females [85]. In Davis Strait, to
the west of Greenland (site A; Figure 2), sexual segrega-
tion results in a higher proportion of females as com-
pared to regions east of Greenland and females are also
found in higher latitudes than males [86]. In humpback
whales and, both blue and fin whales, only males pro-
duce songs that are thought to serve in a reproductive
context [87,88]. Although it is currently unknown
whether minke whale pulse trains are sex-specific also,
the absence of pulse train detections in two different
areas with a high proportion of females suggests that
they may be.
An absence of minke whale pulse trains from record-

ing sites in the Strait of Gibraltar in the Eastern North
Atlantic (sites D + E; Figure 2) may represent an actual
absence of minke whales at these sites. Although minke
whales have been observed to enter the Mediterranean
Sea [89], sightings are generally few, and it is unclear
whether minke whales have a year-round presence or
enter the Mediterranean Sea seasonally [39]. However,
only three months of winter recordings were available
for these sites (Table 2) and for final conclusions,
recordings at other times of year need to be explored,
since migrating whales might have been missed by the
restricted sampling duration.
Very little is known about minke whale migration in

the middle and eastern North Atlantic, but it has been
suggested here too, that migration takes place in open,
offshore waters [39,46] and recent satellite tracking data
are in support of this idea [48]. The absence of minke
whale pulse trains from recording sites located in the
Azores, where minke whales are occasionally sighted
during spring and early summer [16], is thus surprising.
However, most minke whales may be passing the archi-
pelago too far offshore to be acoustically detected. In
contrast, from November to June, minke whale pulse
trains were frequently recorded at recorders deployed to
the east and west of the Mid-Atlantic ridge [49] (Figure 7),
indicating that minke whale breeding grounds extend
eastwards from the Caribbean to at least the Mid-Atlantic
ridge.
Finally, the absence of minke whale pulse trains from

recording sites in the eastern North Atlantic may be in

http://podaac.jpl.nasa.gov/dataset/JPL_OUROCEAN-L4UHfnd-GLOB-G1SST


Table 2 Summary of recording sites, geographic locations, depth, available recording days, duty cycle (recording period/
time period), sample rate and recorder type

Site Location Depth (m) Recording period (n days) Duty cycle (min) Sample rate (kHz) Recorder
type

Davis Strait (A) 67.24/-58.8 350 10/23/06–10/05/07 (348) Cont. 2 HARU1

SW Iceland (B) 58.0/-26.0 800 05/16/07–07/25/08 (437) Cont. 2 HARU1

Gulf of St. Lawrence (1) 50.25/-64.22 25 06/23/10–09/13/10 (83) Cont. 2 MARU2

Roseway Basin (2) 42.97/-65.06 145 07/02/04–08/17/05 (412) Cont. 2 HARU1

Emerald Basin (3) 43.34/-63.16 153 07/02/04–10/13/05 (469) Cont. 2 HARU1

Stellwagen Bank (4) 42.45/-70.31 71 12/18/08–03/19/10 (457) Cont. 2 MARU2

New York (5) 40.05/-71.82 90 02/29–05/15/08; 08/29–03/05/09 (266) Cont. 2 MARU2

Azores (C) 38.54/-29.04 190 04/10–09/17/10; 09/29/10–5/19/11(424) 1.5/30 50 EAR3

Cape Espartel East (D) 35.87/-6.20 340 10/28/08–01/30/09 (95) 5/10 2 EAR3

Strait of Gibraltar West (E) 36.03/-5.42 100 10/28/08–01/30/09 (95) 5/10 2 EAR3

Onslow Bay (6) 33.68/-76.48 335 04/24–08/09/09; 11/08/09–04/20/10 (271) 5/10 200 HARP4

Savannah (F) 31.83/-80.70 17 11/18/09–03/16/10 (119) Cont. 2 MARU2

Jacksonville 1 (7) 30.27/-80.06 91 02/22–07/30/10; 08/26/10–01/25/11 (312) 5/10 200 HARP4

Jacksonville 2 (8) 30.28/-80.06 305 09/13–10/08/09; 12/03/09–01/07/10 (62) Cont. 2 MARU2

Jacksonville 3 (9) 30.34/-81.21 17 11/19/09–06/04/10 (197) Cont. 2 MARU2

Saba Bank (10) 17.51/-63.19 30 10/27/11–04/28/12 (185) 30/120 16 MARU2

Sites at which no minke whale pulse train detections were made are in italics. See the following references for details about recorder electronics and sensitivities:
(1) HARU phones: [90]; (2) Marine Autonomous Recording Unit (MARU): [91]; (3) Ecological Acoustic Recorder (EAR): [92]; (4) High-frequency Acoustic Recording
Package (HARP) [93].

Risch et al. Movement Ecology 2014, 2:24 Page 12 of 17
http://www.movementecologyjournal.com/content/2/1/24
part related to geographic differences in vocalizations
that could not be resolved by the automated detector
used in this study. For example, while [53] found mainly
speed-up pulse trains in data from the Caribbean, data
from Stellwagen Bank showed a predominance of slow-
down pulse trains [55]. Although the automated pulse
train detector used here was built on data originating
from Stellwagen Bank, North Carolina and Jacksonville,
most pulse trains used for training were of the slow-down
type. There are differences in the frequency distribution
between these two types [53], thus a concentration on
slow-down pulse trains from the western North Atlantic
for detector development might have influenced detector
performance at other sites, especially those that are
geographically more distant.

Geographic variation in signal structure
Although a thorough comparison of the full vocal reper-
toire was beyond the scope of this study, preliminary data
from Onslow Bay, North Carolina suggest that the main
minke whale call categories found at Stellwagen Bank [55]
are present at southern recording sites also [94]. A com-
parison of pulse train type sd3 recorded at Stellwagen
Bank, North Carolina and Jacksonville (Figure 1) shows
evidence for geographic variability in signal structure with
pulse trains being about 30 seconds longer and containing
about 100 more pulses on southern recording sites as
compared to recording sites in higher latitudes (Figure 6).
Although pulse train duration measurements for the Jack-
sonville site were correlated with SNR (Additional file 1:
Figure S1), and are thus a minimum estimate, these results
corroborate pulse train measurements from the Caribbean
which were similar in length and number of pulses to
pulse trains from North Carolina and Jacksonville [53]. As
mentioned above, the majority of pulse trains found in the
Caribbean were of the speed-up type as opposed to a ma-
jority of slow-down types in northern sites. The reasons
for this difference are unclear but individual differences in
call type production could be partly responsible [75]. A
more in depth comparison of minke whale vocal reper-
toire and call type occurrence may help to elucidate more
differences and similarities between sites and shed light on
the behavioural function of these sounds. Although it is
unclear whether the significant increase in signal duration
is true for all types of pulse trains, none of the pulse trains
from Stellwagen Bank measured during an earlier study
[55] lasted as long as some of the pulse trains recorded on
southern recording sites in this study.
Testosterone mediated male singing behaviour, in-

creased signal duration and complexity are well docu-
mented in a range of vertebrates [95-97]. The increased
duration of minke whale pulse trains on potential winter
breeding grounds, the general scarcity of these signals
on feeding grounds and their increased occurrence dur-
ing autumn migration, when testosterone levels in adult
males are rising [98], are all strong indicators for a
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reproductive function of these sounds. As argued above,
there is also some evidence indicating that females are
not producing these sounds. However, more data from
breeding grounds, higher latitude feeding grounds with
an even distribution of sexes or acoustic tag recordings
from individuals of known sex are necessary to conclu-
sively answer the question of sex-specificity and behav-
ioural context of minke whale pulse trains.

Conclusion
This study confirms the seasonal migration of North
Atlantic minke whales offshore the eastern US contin-
ental shelf in spring and autumn and their winter pres-
ence in southeastern US and Caribbean waters. The
identification of a potential breeding ground offshore of
the southeastern US may enable more directed genetic
sampling of this species in order to help elucidate popula-
tion structure [43], with potentially important implications
for current management of this species in the North
Atlantic Ocean. Another important result of this study is
the scarcity of pulse train detections north of 50° N during
summer, when minke whales are abundant in coastal feed-
ing habitats. These results either indicate a switch of vocal
behaviour at this time of year, or, if signals are sex-specific,
illustrates the sexual segregation of North Atlanic minke
whales on their feeding grounds as described in earlier
studies [86].
These results emphasize the feasibility of using passive

acoustic monitoring (PAM) networks for investigating
the spatial and seasonal distribution of pelagic baleen
whale species that are difficult to survey by visual methods
alone. However, in order to interpret these detection re-
sults beyond presence/absence of species and in the con-
text of animal population density, there is a clear need for
extended baseline data collection. Currently missing data
include vocalization rates based on group size, in different
behavioural contexts, by sex and age class, as well as data
collected at different seasonal and spatial scales [99].
These data are extremely scarce for most marine mammal
species. Yet, recent developments in technologies such as
digital recording tags [88,100-102], as well as analysis
techniques for localization and tracking of individual ani-
mals using passive acoustic data [103-105] may help to
close some of these current data gaps in the future.

Methods
Acoustic data collection
Long-term acoustic data for this project were collected
across multiple years and at 16 different sites throughout
the North Atlantic Ocean using a variety of different
recording packages (Figure 2, Table 2). Data availability
and temporal consistency was limited by the goals of the
various long-term monitoring projects, with differing
analysis targets, which contributed data to this large-
scale meta-analysis [11,55,58,106-109]. However, the
main objective of this project was to explore large-scale
migration and characterize the seasonal occurrence of
minke whale pulse trains at different sites throughout
the North Atlantic. Thus, recording periods were se-
lected to maximize the overall spatial coverage and the
seasonal coverage within each site, rather than to keep
annual consistency. Table 2 summarizes recording loca-
tions, available recording days, recording schedules,
sample rates and equipment types used. Most recording
effort was concentrated along the United States (US)
east coast and used four types of bottom-mounted re-
corders deployed in depths ranging from 17 to 800 meters
(Figure 2). While most recorders sampled continuously at
2 kHz, some recordings were scheduled to record every
1.5 to 30 minutes and sampling rates ranged up to
200 kHz for some recorders (Table 2). All data were
downsampled to 2 kHz before automatic detection and
further data processing.

Data analysis
Automatic detection
North Atlantic minke whales are known to produce up
to seven types of low-frequency pulse trains, which can
be assigned to three major categories (slow-down, con-
stant and speed-up pulse train), based on varying inter-
pulse interval structure (IPI) [53,55]. An automated
detector was developed to examine selected recordings
for the presence of these pulse trains. The automatic de-
tection consisted of a multi-stage process based on spec-
trogram intensity binarization, energy projection, feature
extraction and classification [110]. While the detection
stage was designed for general pulse train detection, a
Rippledown Rule (RIDOR) learner [111] was trained to
identify minke whale pulse trains, taking into account,
but not distinguishing among, the different types of
pulse trains. A total of 18 basic features were extracted
from each detected event and passed to the RIDOR for
classification (see details in [110]). The overall false
negative rate (FNR) of the detector was assessed in an
earlier study and was found to be 27% (647 out of 2428
true positive (TP) detections), with 181 false positive
(FP) detections in 120 hours (or 29,847 signal slices) of
evaluated data [55]. Experienced data analysts (GD &
DR) manually verified all detected pulse trains using the
MATLAB (Mathworks, Natick, MA) based custom soft-
ware program SEDNA [112]. All false positive detections
were removed from each analyzed dataset.

Ambient noise levels and estimated maximum detection
ranges
Since variations in ambient noise levels (NL) by site and
season can have a profound impact on the detection prob-
ability of acoustic signals [67], an exploratory ambient
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noise analysis was conducted for three recording sites
(sites 4, 5, 8: Stellwagen Bank, New York, Jacksonville 2;
Figure 2), for which equipment calibration information
was available. LTSpec, a custom-written MATLAB script
[113], was used to aggregate and compute long-term spec-
trograms and extract absolute root-mean-square (RMS)
received levels over a frequency band encompassing six
third-octave bands (center frequencies at 100, 125, 160,
200, 250, and 315 Hz). This frequency band was chosen
to include most energy content of minke whale pulse
trains, which is concentrated between 50 and 300 Hz
(Figure 1) [53,55]. Site-specific and seasonal week-long
data (Additional file 2: Table S1) were aggregated over
a time period of ΔT = 600 s. Spectrograms were created
using a sampling rate of 2000 Hz, a FFT size of 2048,
and a Hanning window function, resulting in a fre-
quency resolution of 0.98 Hz. Ambient noise levels
(NL) were used to estimate maximum detection ranges
of minke whale pulse trains. Assuming source and
receiver depths of 20 m, an average source level of
165.4 dB [75] and pulse length of 0.1 s, signal propaga-
tion was modeled for an omni-directional source of
120 Hz over 8 horizontal radii and for all four seasons,
using a BELLHOP acoustic simulation model imple-
mented in ESME [60], and environmental databases
provided by the Oceanographic and Atmospheric Master
Library (OAML) (available at http://esme.bu.edu/). The
maximum propagation radius was selected and compared
to all measured ambient noise levels. The maximum de-
tection range was then estimated as the point at which
SNR (RL-NL) equals zero and ranges for different sites
and seasons were compared using empirical cumulative
distribution functions, calculated with function ecdf of the
R v. 3.1 stats package (available at www.R-project.org).

Geographic variation in acoustic features
A subset of non-overlapping detections of high signal-to-
noise ratio [SNR >10 dB] from three sites (n = 68, 26, 35 for
sites 4, 6, 8: Stellwagen Bank, Onslow Bay, Jacksonville 2;
Figure 2) were selected to measure and compare slow-
down pulse train type sd3 as defined by [55]. This type
of pulse train is characterized by a bimodal distribution
in IPI, peaking at 0.4 and 0.7 s (Figure 1) [55]. It was
selected for this geographic comparison, since it was
one of the most frequently occurring and easily distin-
guishable pulse train types in all datasets [55]. Acoustic
data for this analysis were bandpass filtered from 30 to
800 Hz to remove environmental noise and signals
from other species. Spectrograms (FFT size: 512 points,
96.9% overlap, Hanning window, time resolution: 8 ms,
frequency resolution: 4 Hz) were created and analyzed
using Avisoft-SASLab Pro 5.1 (Avisoft Bioacoustics).
The automatic parameter measurement tool was used
to measure pulse train duration and identify the total
number of pulses per pulse train using an amplitude
threshold of −30 to −55 dB sound pressure level (SPL)
relative to the maximum SPL in the sound file. The
threshold was manually adjusted to ensure the detec-
tion of most pulses within a pulse train. Given that the
data were not normally distributed (Saphiro-Wilk test),
the hypothesis that mean pulse duration and number of
pulses differed between sites was tested using a Kruskal-
Wallis test. Wilcoxon rank-sum tests with Bonferroni
corrections for multiple testing were used for post-hoc
comparisons between pairs of sites. All statistical ana-
lyses were conducted using R v. 3.1. In order to select
high quality signals for this analysis and test whether
SNR affected the duration measurements, SNR of the
whole signal was measured within a selection box in-
cluding the signal and time periods just before and after
a pulse train, using the MATLAB based sound analysis
tool Osprey [114].

Seasonal and spatial variation
One recorder per site and deployment period was
selected in order to examine seasonal patterns of minke
whale pulse train occurrence. Since preliminary data
from migration and winter habitats suggest an offshore
distribution of minke whales [47,55], at sites where mul-
tiple recorders were available, preference was given to
the recorders deployed farthest from shore. All data
from sites with at least five detections were binned and
plotted by day. In addition, the seasonal and geographic
patterns of pulse train occurrence along the US east
coast continental shelf, where most recording effort was
concentrated, were compared to seasonal minke whale
pulse train occurrence from the Mid-Atlantic ridge [49].
In order to simplify the description of seasonal patterns of
pulse train occurrence the four seasons will be defined as
follows for the remainder of the paper: winter = December
to February, spring =March to May, summer = June to
August and autumn = September to November.
For the New York recording site (site 5; Figure 2), data

from nine recorders, stretching from west to east across
the continental shelf, were available for analysis. For
Jacksonville, data from four recording units, deployed
from west to east, were available (sites 7–9; Figure 2).
For these two geographic sites, the total number of de-
tections was evaluated for all available recording units in
order to characterize the spatial distribution of minke
whale pulse train detections as a function of distance
from shore and shelf break.

Additional files

Additional file 1: Figure S1. Scatterplots and regression lines (CI = 95%)
of Signal-to-Noise Ratio (SNR) in dB against pulse train duration and number
of pulses/pulse train, comparing data from Stellwagen Bank (SBNMS),
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Massachusetts (site 4); Onslow Bay, North Carolina (site 6); and Jacksonville,
Florida (site 8).

Additional file 2: Table S1. Overview of weeks analyzed for ambient
noise analysis.
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