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Statistical Analysis of Marine Mammal 
Stranding Events: Executive Summary 

Navy operations, training, and testing at seamost notably active sonarcan potentially harm 
marine mammals and lead to stranding events. However, it is difficult to determine whether a 
stranding was caused by Navy sonar (or any other human activity) or was a natural event. The Navy 
is thus often challenged by non-governmental organizations and federal agencies on the issue of 
active sonar harming marine mammals.  

Previous analysis of stranding events 
Following a stranding event, researchers often examine time-space correlations between Navy sonar 
use and the stranding in the area of interest. However, there is no universally agreed-upon 
methodology for conducting such studies. The goal of this project is to develop a statistically rigorous 
approach for inferring correlations (or lack thereof) between strandings and sonar that respects the 
inherent limitations and uncertainties of the available data.  

Previous analyses have been limited by two statistical shortfalls: 

• Shortfall #1: Sole reliance on the null stranding rate. The observed null stranding rate
(estimated by dividing the number of observed strandings on days without sonar by the total
number of days without sonar) is typically used as the de facto average null stranding rate.
However, if we assume that stranding events are distributed according to an underlying
Poisson random process, the observed number of strandings represents only a single sample
in a statistical distribution, the true average of which may be any number that lies within a
range of numbers (called the confidence interval).

• Shortfall #2: Ignoring the probability of a false negative (Type II) error. Inferences are
drawn on the basis of adjudicating only Type I (i.e., false positive) errors; however, doing so
is insufficient because we must simultaneously minimize the probability of making Type II
(i.e., false negative) errors. That is, we must also minimize the probability of erroneously
accepting the null hypothesis (i.e., that strandings are uncorrelated with sonar) when it is
actually false. Unfortunately, this test of power (as it is called) is seldom, if ever, performed.

In developing a more rigorous approach, including mitigating these statistical shortfalls, we have 
both refined existing methodology and developed a battery of new statistical tests. 

A more rigorous method 
We have developed a method that effectively administers both Type I and Type II tests 
simultaneously. Rather than rejecting the null hypothesis based on a single means test of significance 
(or P-value), the decision to reject the null hypothesis follows only if the number of observed 
coincident strandings is greater than the minimum number required to simultaneously satisfy both 
Type I and Type II tests. This approach imposes a more stringent set of conditions that must be 
satisfied to reject the null hypothesis and is therefore a statistically stronger test to apply. Because it 
is stronger, we can generally expect fewer stranding events to be statistically correlated (i.e., 
coincident) with sonar than are found through existing methods that test for only Test I errors.  
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New tool for analysis #1: the Accept/Reject Criteria Chart 

We developed a chart (Figure 1) that identifies the statistical inference entailed by given numbers of 
expected coincident strandings (under the null hypothesis) and observed coincident strandings.  

Figure 1.  Accept/Reject Criteria Chart 

Source: CNA. 

The chart maps each pair of values (expected and observed) to one of three inferential results: 

1. Reject the null hypothesis. The statistics pass both Type I and Type II error tests, so a statistical 
correlation exists. (The red area in Figure 1.)

2. Cannot reject the null hypothesis. Because the P-value exceeds the desired minimum, no
statistical correlation exists. (The green area in Figure 1.)

3. Provisionally reject the null hypothesis. The statistics pass the Type I test but not the Type II
test; the determination of significance therefore lacks sufficient statistical power. (The yellow 
area in Figure 1).

Because this chart can be precomputed to accommodate a large set of possible real-world scenarios, 
stakeholders can use it to identifyat a glancescenarios in which the statistical evidence to reject 
or not reject the null hypothesis is strong enough to warrant drawing an immediate inference. 
Stakeholders can then distinguish these scenarios from others that require additional analysis 
(specifically, those in the “provisionally reject the null hypothesis” class). 
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New tool for analysis #2: the Stranding Correlation Analysis Playbook 
The underlying data contain several sources of uncertainty, including the following: 

1. Whether a given stranding event is coincident with sonar.
2. The actual stranding date (which may be different from the observed stranding date).
3. The possibility that a given area of operations may include other unreported strandings.
4. The presence of non-Navy sonar.

To mitigate these sources of uncertainty, we developed a set of Monte Carlo simulations. Our report 
also introduces, describes, and provides illustrative use cases for 10 statistical tests and analysis 
tools, most of which we developed specifically for this study.  

However, the proper application of these tests requires a threshold level of knowledge regarding 
mathematical and statistical modeling methods. Therefore, some stakeholders may not immediately 
recognize which tests are best suited for a given scenario or whether a given test is necessary (or 
even applicable). To mitigate this challenge, we developed the Stranding Correlation Analysis 
Playbook (SCAP) as the main result of this study (Figure 2). 

Figure 2.  Stranding Correlation Analysis Playbook 

Source: CNA. 

The SCAP is a flowchart that analysts, stakeholders, and decision-makers can use to navigate the 
myriad options of the inferential process at various levels of granularity and specificitya process 
that culminates in a decision to “Reject” or “Cannot Reject” the null hypothesis.  
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The SCAP flowchart weaves together five increasingly refined inferential pathways through the 
battery of statistical tests and analysis tools described in this report.  

• The first and shortest pathway (highlighted in gray at the top of Figure 2) denotes the current
method (Test 1), which typically consists of administering only a single test for significance.

• The second pathway (highlighted in the green box) adds two tests to strengthen the veracity
of whatever final inference is drawn, and it simultaneously accounts for both Type I (false
positive) and Type II (false negative) errors, as described earlier. This is the pathway we
recommend, at a minimum, as an immediate and rigorous refinement of the current
method.

For additional confirmation or to administer more stringent tests that better account for 
uncertainties in the data, other optional pathways are illustrated in Figure 2 and are described in the 
report. 



Navy operations, training, and testing at seamost notably active sonarcan potentially harm
marine mammals and lead to stranding events under certain circumstances. However, strandings
also occur because of natural reasons, so when strandings occur, it is difficult to determine whether
the event was caused by Navy sonars (or any other human activity) or was a routine natural event.
The Navy is thus often challenged by non-governmental organizations (NGOs) and federal
agencies on the issue of active sonars harming marine mammals.
This project seeks to build a framework for analyzing future stranding events to determine whether
evidence suggests they are statistically correlated with Navy sonar.
Following stranding events, studies are often performed that seek to examine time-space
correlations between Navy sonar use and whale strandings in the particular area of interest. These
studies are subject to many mathematical pitfalls, including limited observations, possible
observational bias, and a great deal of uncertainty in the data supporting them.
To address this issue, the Navy, CNA analysts, and National Oceanic and Atmospheric
Administration (NOAA) scientists agreed on the need to develop a rigorous, standard methodology
for these types of studies, given how important they are in regulatory decision-making and their
implications for the Navy being able to train at sea.
This study represents the first step toward developing this methodology.
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The fundamental goal of the study was not to determine whether marine mammal stranding events
and sonar are causally connected. No statistics-based method by itself could definitively answer
such an open research challenge. Rather, the goal was to develop an approach for determining
whether a given set of strandings (bounded in space and time) are correlated with sonar use.
Correlation represents a far weaker relationship that does not immediately imply causation,
although it is often erroneously assumed to do so (if only for expediency) and equally rarely
acknowledged.
Saliently, statistics-based correlative methods are inherently limited because of the nature and
paucity of data related to stranding events. When available, the data often consist of only three or
four pieces of basic information, such as the following: (1) the time stranding events were observed
(not necessarily when they occurred), (2) their location, (3) the state of decay of an animal when it
was found (which is reported only rarely), and (4) the presence or absence of sonar (within some set
of space-time coordinates that overlap with strandings).
At a basic level, the data consist of two strings of time-stamped binary-valued elements. In the first
string, each date is assigned a one if a stranding was observed and a zero if not; in the second
string, each date is assigned a one if sonar was active and a zero if not. The analytical goal is to
determine whether these two binary-valued strings are correlated beyond mere chance.

6



Moreover, virtually all past sonar-stranding correlation analyses have used a single statistical test—
the null stranding rate—to determine whether the number of observed strandings coincident with
sonar exceeds the expected number of coincident strandings (as estimated by the null stranding
rate). Although this approach is prima facie valid, it is also deficient in two ways:
• The null stranding rate is based on a single number—the number of observed strandings

that took place on days when sonar was not active; as a result, the observed number of null
strandings is the de facto proxy for the unknown true mean of a random process.

• The inference itself is based solely on comparing the observed number of coincident
strandings to what is expected using the proxy-based null stranding rate. A correlation
between strandings and sonar is inferred if these two numbers are significantly different, as
determined by the magnitude of the resulting P-value (defined on a later slide). But,
statistical inferences cannot credibly be drawn on the basis of significance alone; they also
require a test of power, which determines whether the data actually warrant making any
inferences at all. If the power is too low, a correlation between two random processes cannot
be inferred to exist, even if the P-value suggests that it does.

Later slides show how to mitigate both of these limitations and how these mitigations can be used
to develop more powerful methods to test for correlations.
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For this project, we refined existing methodology and developed a battery of new statistical tests
that can be used to mutually confirm independent inferences. We also developed methods that
take into account uncertainties in the underlying data, including the following:

1. The ambiguous definition of a coincident stranding (typically, a stranding is labeled
“coincident” if it occurs within six days and 60 nmi of the last sonar use)

2. The uncertainty of the actual stranding date, which must be extrapolated from when the
stranding was observed

3. The possibility that a given area of operations may include other unreported strandings
4. The presence of other non-US sonar (along with the more general ambiguity of specifying

the requisite set of sonar events that may be correlated with strandings)
As the main result of the study, we developed a draft Stranding Correlation Analysis Playbook
(SCAP), which is a visual flowchart for drawing inferences at varying levels of granularity and
specificity. SCAP users may trace multiple pathways through the logic, depending on individual
preferences and requirements. We provide the SCAP at the end of the slide deck, but we first
introduce a suite of statistical tests and Monte Carlo simulations (MCS) as necessary context.
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Our overall recommendation is to use both P-Value and power tests to reject the null hypothesis
(i.e., that stranding events are not correlated with sonar), and not just significance alone, as is
current practice.
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This slide presents the outline of the slide deck.
Because the subject matter is inherently technical, the slides have been designed with two 
organizing principles in mind: (1) those parts of the narrative that may otherwise come across as 
excessively technical by certain readers are introduced by a nontechnical summary, and (2) the 
exposition of the most technically detailed slides relies more on simple visualizations of concepts 
that can be understood quickly and intuitively, rather than on traditional bullet-ridden, text-based 
explanations (which are mostly relegated to the supporting notes section of those slides).

The unannotated slide deck is included at the end of this document to allow the sponsor 
to use these slides in discussions with regulators and others, and to allow better readability 
when zooming in to see some of the mathematical detail.
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When we began studying the correlation between naval sonar operations and whale strandings
several years ago in studies performed for OPNAV, the Navy encouraged us to share our past work
on sonar use and strandings with the academic research community. This slide shows the two
academic journal articles we published [16,18].
Consider, for example, our analysis of Mediterranean beaked whale mass strandings, described in
the article shown on the left. In addition to a bootstrap analysis, we performed a standard test of
proportions on the difference in stranding rates between the times sonar activity was occurring and
was not occurring. By dividing the Mediterranean into five regions, we obtained 23,725 (13 years x
365 days/year x 5 regions) region-days from 1992 to 2004. For the sonar periods, we observed five
beaked whale mass strandings during the 822 region-days of sonar activity. For the non-sonar
periods, we observed nine beaked whale mass strandings during the 22,903 region-days of non-
sonar activity. Thus, we found a much greater stranding rate during the sonar periods (5 / 822 > 9 /
22,903). The pie charts on the right show this difference graphically: the fraction of beaked whale
mass strandings that occurred during sonar periods was much greater than would be expected
based on the fraction of time that sonar activity was occurring.
How significant is this difference in beaked whale mass stranding rates? A statistical test of
proportions shows it to be significant at the 0.999 level, meaning there is less than a 1 in 1,000
chance that random (sampling) variability would have yielded a difference this big if there were no
actual difference in the beaked whale mass stranding rates between the sonar and non-sonar
periods.
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Scientific study of anthropogenic links to marine mammal strandings, particularly those potentially
related to military active sonar, began in earnest following the stranding of beaked whales in Greece in
May 1996. This stranding was coincident with the testing of low- and mid-frequency acoustic sources by
the North Atlantic Treaty Organization (NATO) SACLANT ASW Research Center. Since that time, many
research papers have been published on this subject.
This slide summarizes the various mathematical and statistical approaches of past research that sought
to correlate military sonar and strandings. Overall, we found that few studies incorporated rigorous
correlation analyses—probably because of the lack of robust data on strandings and on sonar use.
Several studies searched for conditions that seemed common to mass stranding events: deep water near
shore [22, 29], surface ducting acoustic propagation conditions [29], wind direction and shoreline
orientation [22, 28], seasonality [24], proximity to a naval base [26], and presence of fringing reefs [22].
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Virtually all studies have documented instances of time-space coincidence between sonar use and
strandings, and some have documented injuries that could be consistent with acoustic trauma. These
studies have made a compelling case for a sonar-stranding link, but few have performed objective
statistical analyses that account for strandings that occur in the absence of sonar and for sonar use that
results in no coincident strandings. Our 2005 examination of beaked whale strandings in the
Mediterranean (published in 2009) [16] and our subsequent study for southern California in 2008 [17]
were among the first to do this. More recently, Simonis et al. used our methods to examine the level of
event correlation between active sonar use and strandings in the Mariana Islands [27].
In our literature search, we found the following studies that purportedly used a probabilistic approach:
• Frantzis, 2003 [1]: Frantzis examined the May 1996 Greece stranding event but somewhat

arbitrarily selected a time period going back 16.5 years (6,026 days) before the stranding event, a
period in which there were no beaked whale mass strandings in the Mediterranean. Frantzis
noted that the sonar use occurred over a four-day period, so the odds of the stranding occurring
by random chance during these four days was 4/6026, or less than 0.07 percent.

• D’Amico et al., 2009 [11]: D’Amico compiled a list of 126 beaked whale mass strandings from the
1870s to 2004, noting that the large majority of these occurred after mid-frequency military
active sonars appeared in the 1950s. Given the incompleteness of the available data and the
likely observational bias, D’Amico noted that no definitive quantitative statements concerning
the level of sonar-stranding correlation could be made.

• Quiros et al., 2019 [25]: Like D’Amico, they compiled historical strandings from various open
sources, noting that beaked whale mass strandings were very rare in the days before the advent
of mid-frequency military sonars in the 1960s.
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(Continued …)
• Parsons et al., 2017 [23]: They noted many instances of sonar-stranding coincidence and

referenced our 2005 Mediterranean paper. However, in their discussion of correlation, they
simply counted instances of coincidence. They also claimed that many more strandings occur
without being observed, implying that they occur during sonar periods. However, if this claim is
true, then there should also be many more unobserved strandings during non-sonar periods.
They make a similar case in referencing the CNA Mediterranean paper, stating that the lack of
good data on sonar use means there could very well have been more coincident strandings;
however there could also have been many more non-stranding sonar events too.

• Foord et al., 2019 [19]: Although they performed statistical analyses to search for seasonal
patterns of strandings in Australia, they did not attempt to correlate strandings with military
sonar or any other any particular cause.
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Nine basic questions motivated and shaped this study, as shown on the slide.
To date, all statistical analyses of possible correlations between sonar use and whale strandings
have been grounded on datasets in the form of a time-series of sonar activity and stranding events.
These datasets are not always easy to acquire. Once such a dataset is created for an operating area
of interest, the formal problem is to determine whether the number of strandings that are
coincident with sonar is large enough compared to what is expected by chance to warrant inferring
that strandings are correlated with sonar. However, the process of answering this problem is rife
with ambiguities and uncertainties, as the long list of questions on this slide suggests (questions to
which there are no immediately obvious answers).
We address each of these questions in this briefing, but the overarching goal of this study was to
address the question highlighted in red. Specifically, we sought to develop a methodological
framework to help inform regulatory rulemaking by explicitly accounting for and communicating
the uncertainties and ambiguities inherent in all statistics-based analysis efforts to correlate sonar
with strandings.
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This slide illustrates how visual explanations may be used to convey ideas easily and intuitively that otherwise might
be difficult to understand with a purely text-based pedagogy.
The underlying statistical problem is to compare two time-series of binary values: one consists of stranding data (in
which each date is assigned a one if a stranding was observed and a zero if not), and the other consists of sonar
data (in which each date is assigned a one if sonar was active and a zero if not). Specifically, the problem is to
determine whether these two time-series are correlated beyond mere chance.
The basic parameters that must be extracted for the analysis are as follows: (1) DMax = total number of days in the
original dataset, (2) NSonar = total number of sonar days, and (3) NS,Obs = total number of observed strandings.
The null stranding rate, 0, is defined by dividing the number of stranding events
observed on days when sonar was not active, NNullS(x), by the number of such days, DNo Sonar(x). The parameter x is
typically assigned the value of six days and represents the maximum number of days that can have passed since the
last sonar day for a stranding to be considered coincident with sonar.
The expected coincident stranding rate, CS, is defined by dividing the number of coincident stranding events,
NCoinS(x), by the number of effective sonar days, Dsonar Effec(x). The effective sonar days include days when sonar was
active along with all days that were within x days of the last sonar day.
The problem is to decide which of two alternative hypotheses is correct: the null hypothesis, H0, which is that0 =
CS, or the alternative hypothesis, HA, which asserts that 0 < CS.
The slides that follow discuss a variety of available statistical tests and how they and other methods (including MCS)
can be used to account for underlying uncertainties in the data, such as the arbitrariness of assuming x = 6 (why
not x = 3, or 8, or any other number?).
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Slides 13 and 14 give a nontechnical walkthrough of the five deep-dive slides that follow (slides 14
to 19). Collectively, these seven slides lie at the heart of this study.
We briefly summarize the approach used in past CNA studies (and by other researchers outside
CNA) to either accept or reject the null hypothesis, and then we discuss two critical issues that limit
the general veracity of these statistical inferences.
The first issue is that the null stranding rate, NNullS(x) / DNo Sonar(x), is not just an approximate proxy
for the true average null stranding rate—it is the de facto null stranding rate.

But, assuming the null hypothesis, stranding events are distributed according to a random
underlying Poisson process.
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Assuming that stranding events are Poisson distributed, then the observed number of strandings
represents only a single sample in a statistical distribution.
Imagine there are an infinite number of worlds governed by, and consistent with, Poisson-
distributed strandings. In our world, we observe and record some specific number of strandings, NS;
in other words, it is our sole measurement and the only number we have. But our doppelgangers
residing in other worlds observe a range of stranding numbers, some of which equal ours, some of
which are smaller, and some of which are larger. This is the nature of probability, which lies at the
core of all statistical analysis. In short, inferences cannot be drawn on the basis of a single
observation of a set of randomly occurring events because random processes intrinsically entail
multiple alternative probabilistic outcomes.
The immediate ramification is that it is insufficient to reject the null hypothesis on the basis of
finding the P-value to be less than a critical threshold if that P-value is estimated using the observed
number of strandings as a single-valued proxy for the true mean of a random processwhich is what
stranding analyses typically all do. Details appear on slides 15 and 16, but the salient nontechnical
takeaway is that the observed number of strandings, NS, is itself drawn from a random process for
which the true mean lies somewhere between a lower bound, NS,Lower, and upper bound, NS,Upper:
NS,Lower  NS  NS,Upper.
The second issue limiting the veracity of statistical inferences is that stranding analyses typically
mitigate only Type I (i.e., false positive) errors by estimating P-values, as discussed. However, by
itself, this step is insufficient because we must simultaneously minimize the probability of making
Type II (i.e., false negative) errors. That is, we must also minimize the probability of erroneously
accepting the null hypothesis when it is actually false. Unfortunately, this test of power is seldom, if
ever, made. As later slides show, this additional test effectively strengthens the criteria required to
reject the null hypothesis.
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Slides 15-20 provide a deep-dive explanation of why the existing methodology is simultaneously
correct and limited.
The method consists entirely of applying a single-mean test that estimates the P-value, or
significance, of observing a given number of coincident strandings compared to the number that is
expected (assuming that strandings and sonar are uncorrelated). A zoomed-in version of the
equation at the top of the slide is given in Appendix A.
The point estimate for the Poisson mean is equal to the number of stranding events observed on
days when sonar was not active, NNullS, divided by the number of such days, DNo Sonar. And the P-
value is the probability that at least the same number of coincident strandings as actually observed
will result by applying the null stranding rate (= the Poisson mean, as just defined) to days with
sonar. If the P-value is small (i.e., less than 0.05, meaning that, intuitively, it is extremely unlikely that
the null stranding rate yields the observed number of coincident strandings), the conventional
wisdom is that this finding provides sufficient statistical evidence to reject the null hypothesis that
the null stranding rate is equal to the coincident stranding rate.
But several issues with this approach limit its veracity, anchored on the fact that what ought to be a
statistical comparison between two meansmean #1 = null stranding rate, and mean #2 =
coincident stranding rateinstead consists of equating mean #1 with the single observed value of
null strandings, equating mean #2 with the number of observed coincident strandings, and
comparing their respective Poisson statistics. The problem with this approach is that the only
information we have to go on is a single observation of null and coincident strandings—in other
words, the true means remain unknown.
The equations at the bottom of the slide use the 2 (i.e., “Chi-Squared”) goodness-of-fit test for the
Poisson distribution to estimate the lower, Lower, and upper, Upper, confidence limits of the true
mean[9].
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Given that the value of the true null stranding rate, True, lies somewhere within a confidence
internal, Lower  True  Upper (as explained on the previous slide), the single-mean test may be
strengthened by averaging the P-value over all possible null stranding rates between Lower and
Upper. The factor () that appears in the equation highlighted in gray (in the upper right side of the
slide) represents the distribution of means around the “best guess” central value, 0  Dsonar Effec 
(NNullS/DNo Sonar). For example, () may be uniformly distributed (although it represents a maximally
conservative hypothesis because it is unlikely to be the case) or, more likely, normally distributed.
Both hypotheses are considered in the bottom half of the slide. In either case, positing a range of
possible null stranding rates effectively raises the bar on how much statistical evidence is required
to reject the null hypothesis.
For some scenarios, this statistical refinement may not matter in a practical sense. For example, if
both the existing (single-means) and strengthened (average-over-means-in-confidence-interval) P-
value estimates are less than the critical threshold (or if both are greater), the final inference would
remain the same—accept or reject the null hypothesis, respectively.
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However, for other scenarios, significant differences can arise, as illustrated by the figures on the
bottom of the slide. The three plots show the P-value versus the number of observed coincident
strandings for a notional dataset that contains 18,725 no sonar days, 500 effective sonar days (i.e.,
the total number of sonar days “padded” with days, x = 6 days), andfrom left to right10, 15,
and 20 null strandings (i.e., strandings that occur on days without sonar), respectively. In each
graph, the three curvesfrom bottom to top denote the P-value as estimated using the single-
mean Poisson test (Poisson), the average P-value using () = normal distribution, and the average
P-value using () = uniform distribution, respectively.
The general case is illustrated by the portion of the second plot that is highlighted in red: if the
observed number of coincident strandings is eight (or greater), the single-mean Poisson P-value
falls below the critical value of 0.05, suggesting that the null hypothesis may be rejected. However,
both P-values averaged over all possible null stranding rates within the confidence interval exceed
the critical value and do not warrant rejection.
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The second issue (limiting the veracity of statistical inferences) is that stranding analyses typically
mitigate only so-called Type I (false positive) errors by estimating P-values. However, by itself, this
approach is insufficient because we must simultaneously minimize the probability of making a Type
II (false negative) error. That is, we must also minimize the probability of erroneously accepting the
null hypothesis when it is actually false. Unfortunately, this test of power is seldom, if ever,
performed. This slide illustrates graphically how these two types of statistical test errors are related.
A hypothesis test, T, consists of declaring two complementary assertions about the value of a
specific parameter of interest and then testing to see which of the two hypotheses is best
supported by the available data.
For example, if the goal is to determine whether the mean values of two probability distributions 1
and 0 are different, a typical choice for the first hypothesis is to assume that they are the same: 1
= 0 (which defines the null hypothesis, H0). The alternative hypothesis (HA) is then 1 0. And the
obvious statistics to use in this case are the sample means, <x1> and <x0>, which must be derived
from the data.

T is effectively a parametrized filter used to adjudicate what it means for <x1> and <x0> to be
statistically close enough to warrant rejecting the null hypothesis (in favor of accepting HA). The
standard practice is to use the parameter [0,1] to define acceptance and rejection regions for
H0. Specifically, 1 is the probability that the <x1> and <x0> fall within the acceptance region of
H0, and is the probability that the means fall outside the acceptance region. A Type I error occurs
when the null hypothesis, H0, is correct but is rejected. For this reason, the critical value that is
chosen to be equal to c is typically small, such as c = 0.05 or c = 0.01.
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(Continued …)
Now , assume that the H0 is false and consider the distribution of sample means under the HA: 1 0.
Because the H0 is false, a credible test T must reject it. But, as the slide illustrates, this “correct decision”
will be made with the probability that  = 1, where [0,1] is the Type II (false negative) error rate
and  is the statistical power. A Type II error occurs when the null hypothesis is false but is erroneously
accepted. Thus, the critical value of  is typically chosen to be large, such as c = 0.80, 0.85, or 0.9 (or
even higher).
The salient points are as follows:
• Statistical power is always a function of the “effect size,” where=1 0. Consequently,

the desired critical value, c, effectively determines whether the hypothesis test, T, is capable of
statistically resolving the difference between the two means.

• The veracity of T‘s decision to accept (or reject) the null hypothesis depends on the degree to
which two criteria are both simultaneously satisfied: ≤cand≤c

Stated another way, although false positives are unlikely to occur with P-values of ≤ cmaking it
prima facie tempting to reject the null hypothesis (as is typically done in conventional stranding
analyses)the probability distributions describing the null and alternative distributions cannot be
statistically discerned as being different unless the power is also sufficiently large.
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is “correct”; P-Values are not probability estimates for what the true values may be. Similar, P-Values greater than
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lack of statistical evidence to reject the null hypothesis: large P-Values do not prove the null hypothesis!
Reference: N. Altman and M. Krzywinski, “P values and the search for significance,” Nature, Vol. 14, 2017,
https://www.nature.com/articles/nmeth.4120.



Summarizing the previous slide, the probability distributions describing the null and alternative
hypotheses are statistically discernably different if and only if both the Type I and Type II error tests
are satisfied.
Formally, the estimate for power, , proceeds identically to how the P-value, , is estimated, except
that where the null stranding rate, 0, is used in the latter, the observed coincident stranding rate,
CS, is used in the former. Unfortunately, because of the nature of Poisson processes, the power to
reject the null hypothesis (at the P-value estimated using the observed number of null strandings)
will always be less than any critical (or desired) value greater than 0.63; in particular, if c = 0.8, as is
typically assumed, then the Type II test will always fail. This is the case even if we average over all
possible coincident strandings within the confidence interval (to mitigate using the single
observation of null strandings as a proxy for an unknown true mean, as discussed earlier).

The next slide shows how both tests may be administered simultaneously.
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This slide summarizes a three-step procedure to effectively administer both Type I and Type II tests
simultaneously. The statistical inferenceeither to reject or accept the null hypothesisis drawn
not by directly estimating the P-value (and power, which, as shown on the last slide, cannot exceed
0.63 at a given P-value) but rather by comparing the minimal number of coincident strandings
required to satisfy both tests to the observed number of coincident strandings.
An important caveat is that the observed number of coincident strandings is unclear because
coincident is ambiguously defined. A given stranding (that occurs on, say, day = DStranding) is typically
labeled “coincident with sonar” if DStranding  Dsonar,Last  6, where Dsonar,Last is the last day sonar was
used prior to the stranding. But, the true stranding date must be used here, which is not always the
observed date recorded in the dataset. Also, we emphasize that the six-day cutoff for associating a
stranding with sonar is arbitrary. It could just as easily be seven or eight days. In later slides, we
discuss how to mitigate ambiguities of this type and other uncertainties in the data.

The takeaway is that a better method could supplant the existing approach of rejecting the null
hypothesis. Rather than rejecting the null hypothesis on the basis of a single-mean-derived P-value,
analysts could instead estimate the minimal number of coincident strandings that must be
observed to simultaneously satisfy both Type I and Type II tests. The null hypothesis would then be
rejected if the observed number of coincident strandings is greater than the required number.
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The next three slides leverage the aforementioned refinement of existing stranding analysis (that
recommends administering both Type I and Type II tests simultaneously) to create a lookup table
that can be used to draw at-a-glance statistical inferences.
Given a dataset of interest, the only calculation that needs to be made is to estimate the expected 
number of coincident strandings, NCoinS,Exp:

where NNullS = the number of null strandings that occur on days without sonar, DNo Sonar = the number
of days when sonar was not active, and Dsonar Effec = the number of effective sonar days (i.e., all days
when sonar was active along with all days that were withinx days of the last sonar day, where x is
conventionally equal to six days).
Once the value of NCoinS,Exp is estimated, the user has to locate, roughly, the row (or space between
rows) in which the value most closely resides and then the element in the column that corresponds
to the number of observed coincident strandings. This element assumes one of four forms:
• A number highlighted in black, which means that the resulting P-value > c and thus that the

null hypothesis cannot be rejected.
• A red number, which means that the resulting P-value  c and thus that the null hypothesis

can be rejected but only if the Type I test is satisfied.
• A red symbol, ■, which means that the resulting P-value is close to zero but that the power 

< c; thus, the null hypothesis can be rejected but only if the Type I test is satisfied.
• A red check mark, √, which means the single null hypothesis can be rejected using the

strictest criteria: both Type I and Type II tests must be satisfied.
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This slide shows an expanded view of the lookup table introduced on the preceding slide.
Finer resolution tables may be generated in a few seconds using the Mathematica source code
developed for this study (see Appendix H).

The next slide shows an even simpler purely graphical chart based on this lookup table.
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The Poisson mean "Accept/Reject Criteria Chart" pulls together all of the methodological
refinements discussed so far and displays them graphically.
The only calculation the user needs to make is to estimate the expected number of coincident
strandings, NCoinS,Exp, as explained on slide 19. Once this value is found, the color on the part of the
chart that corresponds to where the vertical line (anchored on x = NCoinS,Exp) intersects the horizontal
line (y = observed number of coincident strandings) determines the statistical inference:
• Green means that the null hypothesis cannot be rejected.
• Orange means that the null hypothesis can be provisionally rejected (on the basis of the

significance, or Type I test, alone), with the caveat that such an inference lacks sufficient
statistical power.

• Red means that the null hypothesis may be rejected (after passing both Type I and Type II
error tests).
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This slide provides a brief, nontechnical overview of two additional statistical tests that are
introduced on the next slide. Because all statistical analyses are inevitably accompanied (and are
often plagued) by methodological and interpretative caveats (e.g., approximation, assumptions,
incomplete or ambiguous data, small sample sizes) [1], it is standard practice to apply more than
one test whenever possible. Although different statistical tests typically yield similar results, any
disagreements among properly administered tests may indicate potential inconsistencies, errors, or
erroneous interpretations of the underlying data. A battery of tests may therefore be necessary to
mutually confirm the consistency and veracity of the final inference.
There are far too many statistical tests available to even enumerate, much less describe and apply
for this study. The texts by Fagerland [5] and Mathews [8] provide cogent pedagogical discussions.
For illustrative purposes, we use two well-known tests: Fisher’s exact test (FET) and the exact
binomial test (EBT). Details appear on the following slide.
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This slide gives the details of the EBT and FET. They are both exact in the sense that both
significance, , and power, , can be calculated exactly, without resorting to approximations.
The binomial test is based on noting that the conditional distribution of x given x + y = k follows a
binomial distribution [7]. Specifically (and using single-letter notional variables for simplicity), we
are testing the null hypothesis , 0 = A, in comparison with the alternative hypothesis, 0 < A,
where 0 = x0 / n0 and A = xA / nA are the Poisson rates, x0 and xA are the number of null strandings
(on non-sonar days) and coincident strandings (or the count under the alternative hypothesis), and
n0 and nA are the number of null (non-sonar) and alternative (sonar) days. Then x0 and xA are
Poisson distributed with means 1 = n1  1 and 2 = n2 2, respectively. The P-value is then given
by the binomial probability:

where 𝑎
𝑏 = a! /[b! (a  b)], and a! = a  (a-1)  …  2  1.

In the expression for power (=Binomial), Poisson(x,)=x  e-x!

The equations (for significance and power) of FET are given in the lower half of the slide. The only
assumption made to derive them is that the binary data are all independent [6].
Based on the 2-by-2 contingency table that appears at bottom left, the test consists of calculating
the probability of obtaining the expected results assuming the null hypothesis is true, using all
possible 2-by-2 tables that could have been observed for combinations of matrix elements. The
sum of rows and columnsknown as “marginal” totalsare both fixed by the observed data.
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This slide summarizes key sources of uncertainty. However, we emphasize that whatever the degree to
which these uncertainties (individually or collectively) may curtail the veracity of stranding analysis, they
only compound the limitations inherent in all statistics-based methods. (Uncertainties marked with  are
discussed in detail on later slides.) Sources of uncertainty include the following:
• Paucity of reliable sonar data prior to 2006 and the variable quality of data contained in the

(ostensibly more complete) Sonar Positional Reporting System (SPORTS) system1

• Possibly ambiguous or inconsistent criteria used to measure sonar days in datasets
• The possible existence of unreported strandings
• Lack of an unambiguous definition of coincident strandings (the rule-of-thumb is that a stranding

is coincident with sonar if it occurs within six days and 60 nmi of the last sonar use, but these
numbers are largely arbitrary)

• The confounding effects of other factors that are typically unaccounted for in sonar-stranding
time-series datasets, such as seasonality, seismic events, and the presence of fringing reefs.
Simpson’s paradox is particularly relevant here, if only as a heuristic reminder that statistics alone
cannot tell the whole story. Simpson’s paradox refers to a phenomenon whereby a correlation
between two variables in a statistical population appears, disappears, or even “reverses if the
population is divided into subpopulations .”2 We can use batting averages as an example. A given
player might have a higher batting average than another player each year for three years in a row.
Yet, the other player might have a higher average for the three years as a whole. The reason is
that the number of “at bats” changes from year to year, so this variable must be taken into
account.
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1 J. Mintz, R. Filadelfo, and L. Bell, “Analysis of mid-frequency active (MFA) sonar use in Navy exercises using 
SPORTS,” CNA, Research Memorandum, D0017310.A4, Jan 2008.
2 “Simpson’s Paradox,” Stanford Encyclopedia of Philosophy, 24 March 2021, 
https://plato.Stanford.edu/entries/paradox-Simpson.



Another source of uncertainty (albeit one that is arguably more of a technical limitation), is that past
analyses typically assume, but do not explicitly test for, Poisson statistics. Although Poisson statistics are
commonly used to describe count data generated by measuring the number of discrete events (such as
the number of strandings) over a period of time, strictly speaking they are to be used only if a certain set
of assumptions hold. Specifically, the process that generates the events must be homogenous in time
(i.e., is memoryless), and the times between events must be independent and exponentially distributed.1
A simple test to see whether the underlying process is consistent with Poisson statistics is to estimate
the values of the mean, , and variance, 2. For a Poisson process, it is easy to show that 2 = .
However, both underdispersion (wherein the observed variance, 2 < , is significantly smaller than the
expected variance) and overdispersion (when 2 >) are possible in count data. In either case, the count
data are inconsistent with Poisson statistics, and analysis requires alternative statistics. The negative
binomial distribution is the most common model used to mitigate overdispersed data,2 while the
Conway-Maxwell Poisson (CMP)3 and generalized Poisson (GP)4 distributions may be used to model
both underdispersed and overdispersed data.
Because the stranding times in most of the real-world datasets used as case studies for the methods
explored in this study are approximately exponentially distributed (as expected for a Poisson process),
we did not pursue the analysis of alternative statistics tests. This being said, both underdispersed and
overdispersed count data are certain to arise in future scenarios, for which a more comprehensive
analysis will be needed.
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1 Sheldon M. Ross, Introduction to Probability Models, 13th Edition, Academic Press, 2023.
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3 Fraser Daly and R. E. Gaunt, “The Conway-Maxwell-Poisson distribution: distributional theory and approximation,” 
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4 Paulo C. Hubert, M. Lauretto, and J. Stern, “FBST for Generalized Poisson Distribution,” AIP Conference 
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This slide takes a deeper look at the possible ramifications of one of the uncertainties described
briefly on the preceding slide. Specifically, the specter of existing but unreported strandings.
If an unreported stranding was coincident with sonar, that can only strengthen the statistical
evidence for correlation. But, what if there was an unreported non-coincident stranding?
Mathematically, if additional null strandings exist, their presence would effectively increase the
expected number of coincident strandings, which in turn would increase the minimal number of
coincident strandings that would have to be observed to satisfy Type I and Type II tests (as
discussed earlier).
Assume that for a given scenario, we have determined there is sufficient statistical evidence to
reject the null hypothesis. Absent knowing whether any unobserved strandings occurred, we can
still ask, How robust is the evidence used to reject the null hypothesis? That is, would we still reject
the null hypothesis had an additional null stranding been included? What about an additional two
null strandings?

The statistical evidence used to support rejecting the null hypothesis is strengthened if it remains 
robust to additional hypothetical null strandings.
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Two immediate uncertainties associated with strandings are as follows: (1) not knowing when the
actual stranding occurred, considering that we typically know only when a given stranding was
observed (or reported), and (2) the imprecise (and, hence, ambiguous) manner in which coincidence
is defined. This slide illustrates schematically how these two classes of uncertainty may be
parameterized. Later slides will show how this formalism may be used to refine estimates of
significance and statistical power.

Standard practice is to call a stranding a “coincident stranding” if two conditions are met: (1) no
more than six days have elapsed since the last day sonar was used prior to the stranding, and (2)
the distance between where that last sonar was used and where the stranding occurred was no
more than 60 nmi. Four variables are in play:

1. The time delay, x, between the last sonar day and the stranding, which is nominally set to
six days but may, in principle, assume a range of other reasonable values.

2. The time delay between the actual versus observed (or reported) stranding dates, x. If
necropsy data are available (which is not typical), we may assume that x will obviously
depend on the state of decay of the stranded mammal (see Appendix F).

3. The functional form of a stranding decay function that (loosely speaking) represents the
probability that a stranding observed on day ts,0 actually occurred on day ts,A.

4. The functional form of a sonar discount function that (loosely speaking) represents the
probability that a stranding on day ts,A is a coincident stranding, given that the last sonar day
occurred on day ts,L. The slide also shows a few possible functional forms for these latter two
functions.
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This slide is designed to motivate a statistical method (introduced on the following two slides) that
directly accommodates uncertainties associated with actual versus observed stranding dates and
ambiguity in tagging a given stranding as “coincident with sonar.”
The fractional coincident stranding (FCS), Cf(t0), of a stranding observed at time t0 uses the
formalism introduced on the previous slide to generalize the conventional binary-valued
interpretation of coincidence (i.e., as either coincident with sonar or not) to include fractional
values. The idea is to elicit a sense of how strongly these two classes of uncertainties may influence
statistical analyses.
The matrix contains FCS values for an illustrative scenario in which x and x both equal six days.
The columns and rows denote different functional forms that may be used to represent the
stranding decay and sonar discount functions, respectively. Individual entries are color coded
according to the legend that appears at the top left of the matrix.
The takeaway is that there is a wide spectrum of FCS values, ranging from values that are close to
one (which is the only possible value for strandings identified as coincident using conventional
methods) to those that are close to zero. Of course, we do not know which, if any, of the possible
functional forms most closely match reality, nor do we know which values for x and x are best to
use. But this is the salient point. Absent such knowledge, the range of FCS values deduced from a
set of plausible functional forms and parameter values gives a measure of uncertainty we expect to
find in our statistical inferences (as drawn under specific assumptions). The tighter the range of FCS
values, the more robust we expect our inferences to be (at least with respect to this particular class
of uncertainties).
The next two slides introduce a MCS approach that leverages these ideas to explicitly account for
date uncertainties and coincident definition ambiguities.
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This slide introduces the first of several MCS we developed for this study. The general idea was to
average the inferential results of a battery of statistical tests (e.g., the single-mean Poisson test, FET, and
EBT) over a large sample of datasets that were randomized over various classes of uncertainty.
The pseudocode for the first MCS appears on the left of the slide. Runs are initialized with the original
dataset, DOriginal, as depicted graphically at the top of the slide. The user selects values for x and x,
along with the functional forms for the stranding decay and sonar discount functions. The parameters
that define the stranding decay function may be based on the state of decay of stranded animals if
necropsy data are available (see Appendix F). The simulation loops through NSamples, where for each
sample, an actual stranding date (as fixed in DOriginal) is randomly determined using the stranding decay
function and is labeled as “coincident” with sonar or “not coincident” probabilistically, according to the
sonar discount function. A battery of statistical tests is applied to each randomized dataset sample, the
results of which are averaged over all samples after the run is complete and then archived.
Multiple types of outputs are available. This slide shows a graphical output in which histograms are used
to display the distributions of results: (a) frequency of the number of observed coincident strandings, (b)
frequency of the required number of coincident strandings (to satisfy Type I and Type II tests; see slides
18 to 22), (c) frequency of the P-value and power of the single-mean Poisson test, and (d) frequency of
the P-value and power of FET (a histogram of the results of applying the EBT is optional).
A set of relevant summary statistics appears along the top of each histogram. Key statistics are
highlighted in red at the top of each histogram: (a) fraction of runs in which the observed number of
coincident strandings is at least as great as the required number, (b) fraction of runs in which the
required number of coincident strandings is less than or equal to the observed number, (c) average
power when   c for the single-mean Poisson test, and (d) average power when   c for the FET.
Additional details and code fragments appear in Appendix I.
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This slide shows an optional text-based summary of MCS runs.
The top row summarizes key features of the original dataset: the number of Monte Carlo samples, total number of
days, actual (NSonar/Actual) and effective (Nsonar/Effective) number of days with sonar (the latter is a function of the
maximum sonar decay range (Max), and total number of observed strandings (NS,Obs).
The first row (labeled “NCS”) contains the average value for the maximum number of observed coincident strandings
(NCS,Obs)Max, the average value of the required minimum number of coincident strandings to simultaneously satisfy
both Type I and Type II tests (NCS,Req)Min, the probability that the required number of coincident strandings to satisfy
both Type I and Type II tests is less than or equal to the maximum observed number (Prob[NCS,Req (NCS,Obs)Max]), and
the probability that the observed number of coincident strandings is less than or equal to the minimum required
number to satisfy both Type I and Type II tests (Prob[NCS,Obs  (NCS,Req)Min]).
The second row, labeled “1-Poisson,” contains the results of applying the single-mean Poisson test : the average
value of , the probability that   c, the average power when   c, and the strength of runs when   c

(strength is defined in Appendix C).
The third and fourth rows, labeled “binomial” and “Fisher,” summarize the results of applying the EBT and FET,
respectively. Columns one to three are the same as for the single-mean Poisson test, but the last column, labeled
“Prob[ c AND   c],” gives the probability that both Type I and Type II tests are satisfied for each of the two
tests.
The area marked with “(a)” shows the field that contains the P-value that is estimated in most studies, and the area
marked with “(b)” shows arguably the strongest test statistics that represent the probability that both Type I and
Type II tests will be simultaneously satisfied.
Additional details about specific elements are given in Appendix C.

.
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This slide takes a deeper look at how MCS may be used to mitigate another type of uncertainty: the
ambiguous or inconsistent criteria that are often used to include or exclude sonar days from a
given dataset. In order to properly prepare a dataset, the analyst must include all known sonar
activity that could, in principle, be correlated with observed strandings. It is this requirement that
the 60 nmi and six day space and time windows are designed to (loosely) capture. But, what if
additional sonar days are left out of the dataset (and, thus, are unaccounted for)? What if non-US
sonar was active near the same operating area?
One possible approach to mitigating the uncertainty introduced by having to estimate answers to
such questions is to use a MCS (or, more precisely, a modified form of the MCS introduced on the
previous two slides) to test how robust baseline “reject null hypothesis” inferences are to additional
unaccounted for sonar days.
Heuristically, as the number of sonar days increases, the likelihood of observing a given number of
expected coincident strandings (as defined by the null stranding rate, which remains fixed because
we are probing only the effect of adding days during which sonar is active, not when it is inactive)
also increases, which in turn decreases the statistical evidence sufficient to reject the null
hypothesis. A rejection is robust if it remains unchanged when a certain test number of sonar days
are randomly inserted into the original dataset prior to applying the battery of statistical tests.
Appendix E identifies and discusses additional (subtler) issues that would take too long to discuss
in the main narrative but that may help refine the way that null and coincident stranding rates are
defined in future studies.
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We next discuss two additional tests that may be used to determine the likelihood of observing a
given number of coincident strandings (as expected from the null stranding rate). These are not
statistical tests per se (that is, they do not directly support rejecting the null hypothesis); rather,
they are simple MCS that estimate the probability that a random sample of a given number of total
strandings includes (at least) the same number of coincident strandings as were actually observed.
This approach is motivated by the recent study by Simonis et al., in which just such a comparison is
made to illustrate (in their Mariana Islands, Western Pacific scenario) the “small probability of any
stranding events occurring within the [coincidence] window” [27].
For Test A, we follow Simonis et al. and modify MCS 1 as described on slide 30 according to the
lines highlighted in bold text in the pseudocode that appears on the bottom left of the slide above.
The key change involves stripping the original dataset, DOriginal, of all strandings and then running
MCS 1 on the stripped dataset (that retains only the fixed set of sonar days but is otherwise empty)
to which the total number of strandings (of any kind, as they appear in DOriginal) are assigned
random dates.
The output consists of a comparison of histograms (illustrated on the lower right of the slide). The
histogram on the lefthighlighted in aquashows the distribution of coincident strandings as
determined using MCS 1 (wherein randomization is introduced strictly by applying the stranding
decay and sonar discount functions to an otherwise fixed Doriginal). The histogram on the
righthighlighted in goldshows the distribution of coincident strandings as determined using
the modified form of MCS 1 (namely, MCS 2a).
The next slide shows the complete form of the output that includes overlays of statistics that help
quantify what (at first inspection) is a purely qualitative comparison between two distributions.
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This slide shows a screenshot of the complete output of MCS 2a that includes both histograms and
overlays of summary statistics.
The dotted red line depicts the minimum number of coincident strandings, as determined by MCS
1 (= CSFull/Min). The region highlighted in light red in the right histogram represents the total area of
the distribution from MCS 2a for which the number of coincident strandings is greater than or
equal to CSFull/Min. Heuristicallyand in the sense used by Simonis et al. [27]the smaller the
fraction of samples that yield at least as many coincident strandings as MCS 1, the less likely that
the number of coincident strandings that were actually observed arose purely because of chance.
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This slide highlights the two metrics that MCS 2a uses to quantify the difference between the two
histograms: the Pearson correlation1 and chi-squared2 metrics.
As indicated on the slide, there is nothing sacrosanct about using these two particular metrics. 
Other metrics are possible.3 These two were chosen for illustrative purposes and because they 
share the virtue of being symmetric in the two histograms.
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Slide 37 indicated that we developed two additional statistical tests (beyond the ones introduced in
earlier parts of the slide deck) to determine the probability of observing a given number of
coincident strandings (compared to the number we expected to observe from the null stranding
rate).
This slide introduces the second of these two tests: Test B = Monte Carlo Algorithm #2b (MCS 2b).
Unlike Test A, which modifies the main MCS 1 by randomly distributing a fixed number of total
strandings (as observed in the original dataset, Doriginal), MCS/2b sample over the space of datasets
that include a range of possible stranding numbers consistent with the estimated distribution of
null stranding rates as determined by MCS 1.
Specifically, after Doriginal is stripped of all strandings (as is done in MCS 2a), MCS/2b proceeds
through two loops. The firstouter loopsteps through the set of coincident strandings (i.e., CS =
0, 1,…, CSMax) as determined by MCS 1. This meta-data must be imported from MCS 1 prior to
running MCS 2b. A representative distribution appears in the bottom right of the slide. The
secondouter loopsteps through each day in succession (i.e., day = 1, …, DMax) and associates a
stranding with a given day if a pseudo-randomly generated number between 0 and 1 is less than or
equal to the null stranding rate, as determined for the value of CS in the outer loop (it is assumed
that the total number of strandings remains fixed, so the number of null strandings is always the
total number minus the pseudo value of CS).
Notional results are presented on the next slide.
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This slide shows the histograms for three illustrative runs of MCS 2b. The original (notional) dataset
that is stripped of all strandings appears on top. The values of x and x are both set at six days. The
three runs show that for a fixed number of total strandings (= 7), the probability of observing at
least the number of coincident strandings as estimated by MCS 1 gets smaller and smaller as the
number of observed coincident strandings (i.e., those appearing in Doriginal) increasesfrom one in
(a) to three in (b) and six in (c).
To emphasize, neither Test A nor Test B is meant to replace bona fide statistical tests (such as the 
single-mean Poisson test, FET, or EBT discussed earlier). Rather, as used by Simonis et al. [27], they 
may be used to lend additional credence to the results of formal tests.
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The first three datasets listed in the table at the top of this slide, for the Mediterranean Sea, contain
only mass strandings (no singles). The last two (Southern California (SOCAL) and the Mariana
Islands) are primarily single strandings, with only a few mass strandings in the SOCAL dataset. We
note the following regarding our data sources :
• We obtained sonar use information and stranding observations for the three Mediterranean

datasets from the open literature as described in [16].
• We compiled sonar use information for the SOCAL dataset from the Navy’s Employment

Schedule Database (EMPSKED, now called WebSked) [12], various fleet internet and SIPRNet
sites, exercise after-action reports, and scheduling data provided by the Southern California
Offshore Range (SCORE) operations center. We compiled SOCAL stranding data from hard
copy stranding reports maintained by NOAA’s West Coast Stranding Network office.

• We obtained sonar use data for the Mariana Islands dataset from [27], from various Navy
exercise reports and scheduling documents, and from the Navy’s SPORTS database. We
obtained stranding data for the Mariana dataset from [27], supplemented with an open-
source literature search.

The SOCAL dataset contained information on the decay state of the stranded mammal at time of
discovery, noted as one of five categories: 1 for alive, 2 for fresh dead, 3 for moderate
decomposition, 4 for advanced decomposition, and 5 for skeletal remains. Such information is
useful to help mitigate the uncertainties associated with not knowing the true date of the stranding
(recall that stranding databases give the date the stranded mammal was reported to be on the
beach, which might not be the day it actually arrived there). The information on decay status will
allow us to treat the true stranding date as a random variable with a probability distribution
appropriate for each of the decay states given above.
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(Continued …)
Each of these datasets (or some similar version of them) has been used in past studies:
• The three Mediterranean basin datasets are subsets of the data used in the first quantitative study of the

correlation between military sonar and marine mammal strandings, described in [17]. That study was initiated
following the well-publicized mass strandings of beaked whales in Greece immediately following the nearby
testing of low- and mid-frequency acoustic sources by a NATO ASW research lab. Based on sparse data, that
study concluded that the stranding rate during sonar use periods was significantly higher (at the 0.95
significance level) than the stranding rate when sonar is not present.

• The SOCAL dataset, which included the decay status of the observed animals, was used in the study
described in [16]. That study found no significant difference in stranding rates between sonar and non-sonar
periods.

• The Mariana dataset is an update to the data that was used in the study described in [27], which showed a
significantly higher (at the 0.95 level) stranding during sonar periods compared to non-sonar periods. We
updated the data from [27] with one additional stranding, and we used the Navy’s SPORTS database to
compile much more complete information on military sonar use.

We also located two additional datasets:
• Stranding data for Hawaii and the Mariana Islands, which contains single strandings over roughly 100 years,

and includes approximate location information. This dataset was compiled by NOAA’s West Coast Stranding
Network office and provided to us by our study sponsor.

• We were also provided data from the NOAA National Stranding Database, consisting of single and mass
stranding events for the Pacific.

45



Slides 42-50 show examples of how the methodology introduced thus far can be applied to real-
world datasets. (The practical steps required to run the Mathematica software developed for this
study are summarized in Appendix I.)
The first case study uses data from the western Mediterranean to illustrate how existing methods
are unable, on their own, to mitigate the inherent uncertainties in the data. The time-series
displayed at the top of the slide shows a total of five strandings, two of which are ostensibly
identified as coincident with sonar. Results of the conventional analysis are summarized at the
bottom left of the slide, where the null stranding rate is calculated to be 0.00069 strandings per
day, and the expected number of coincident strandings is estimated to be 0.28. Consulting the
Poisson Mean Lookup Table (see slide 20), we find that the P-value lies somewhere between 0.018
and 0.037, leading us to conclude that the null hypothesis can be rejected (because even the upper
value is less than c = 0.05).
But is this really the case?
The next slide shows that if basic underlying uncertainties in the data are taken into account (by
applying the methods described earlier), rejection is no longer warranted.
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This slide extends the conventional analysis of the western Mediterranean datasetwhich, as the
previous slide shows, prima facie rejects the null hypothesis by taking into account the uncertainty
in the observed versus actual stranding dates. The stranding decay function is defined as a simple
linear ramp, with a maximum value of one at zero days (i.e., the highest probability is that
strandings occur on the same day as they are reported) and a minimum value of zero at six days
(i.e., x = 6). As mentioned earlier, the exact form of this function is unknown.1 What matters is that
it provides a plausible and realistic way to account for an inherent uncertainty regarding when
strandings actually occurred. Even more saliently, the specific results summarized here do not
appreciably change when using other functional forms (including using a uniform distribution
rather than a linearly decreasing one), provided that x > 1; in other words, there is a nonzero
probability that reported stranding dates are unequal to actual (albeit unknown) earlier dates.
The histogram on the lower left of the slide shows the statistical distribution of the number of
coincident strandings as determined by running MCS 1 for 1,000 samples. The probability that the
number of coincident strandings is equal to one or zero is about 61 percent; in other words, it is not
unequivocally equal to two, as the conventional approach assumes. This finding significantly
changes the inferential calculus because a smaller number of coincident strandings decreases the
strength of the statistical evidence required to reject the null hypothesis. The area highlighted in
red in the matrix summarizing the output statistics run bears quantitative witness to this: the
single-mean Poisson test, FET, and BET all yield P-values much larger than c = 0.05.
In other words, accounting for just the uncertainty in the observed versus actual stranding dates
(remember, myriad other uncertainties are left unaccounted for by conventional methods; see slide
25), we conclude that rejecting the null hypothesis is not warranted!
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The second case study uses data from the central Mediterranean to show how exploring
uncertainties in the data can strengthen (or lend more credence to) an otherwise ambiguous
inference (drawn using existing methods). Here, the time-series is displayed at the top left of the
slide. When augmented by a x = 6 day window, the time-series nominally shows a total of six
strandings, three of which are identified as coincident with sonar.
The conventional analysis is summarized as follows: the null stranding rate is estimated to be about
0.00071 strandings/day, the number of expected coincident strandings is  0.37, and (after
consulting the Poisson mean Accept/Reject Criteria Chart on slide 24) the P-value lies somewhere
between  = 0.03 (reject null hypothesis) and  = 0.06 (accept null hypothesis). So, at first cut, this
result is ambiguous because the statistical evidence appears insufficient to either reject or accept
the null hypothesis.
The next two slides show how this ambiguity may be partly ameliorated by additional analysis that 
explicitly accounts for uncertainties.
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This slide extends the conventional analysis of the central Mediterranean dataset by taking into
account (1) the uncertainty associated with assigning an actual stranding date to the observed
stranding date and (2) the uncertainty associated with identifying a given stranding as coincident
with sonar.
The sonar discount and stranding decay functions are defined as indicated at the top left of the
slide, using x = x= 6 days.
The result of running MCS 1 (using 1,000 samples) shows that the average number of coincident
strandings is about 2.3, which is (as expected) less than the three coincident strandings that appear
in the original dataset, but which does not account for the likelihood that some or all strandings
actually occurred a few days prior to when they were reported.
This smaller-than-nominally-observed number of coincident strandings suggests that the
supporting evidence to reject the null hypothesis is even less than what led to the already
ambiguous result on the last slide. This is born out in two ways: (a) the average number of
coincident strandings (accounting for uncertainty) is significantly less than the required minimum
number of coincident strandings required to satisfy both the Type I and Type II tests (as highlighted
in purple), and (b) all three statistical tests (single-mean Poisson test, BET, and FET) yield  > c.
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This slide illustrates how some of the methods introduced earlier may be used to gather additional
evidence to strengthen the inference to not reject the null hypothesis.
The two histograms at the bottom of the slide show the output of MCS 2a and MCS 2b,
respectively (see slides 32 to 36). In each case, the probability of observing at least the number of
coincident strandings as expected from the null stranding rate (i.e., two, as determined using the
original dataset, but without accounting for any uncertainties) is only 12.6 percent for MCS 2a and
0.8 percent for MCS 2b.
Although this additional analysis does not substantively change the original inference (which was
ambiguous at best, but which also provided insufficient evidence to reject the null hypothesis), the
takeaway is that it strengthens the veracity of concluding that the statistics do not warrant
rejection.
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This slide summarizes the battery of statistical tests and analysis tools introduced thus far. Readers
are encouraged to view this list as an assembly of parts making up the SCAP that immediately
follows.
Apart from the sheer number of tests that appear on this list, the most salient point is thatas of
this writing (February 2025 )the vast majority of extant stranding studies use only some
combination of the two tests that are highlighted in gray. The other tests collectively refine this
basic approach by providing tools that explicitly account for uncertainties.
Of course, it is not immediately clear which tests are the most suitable for a given scenario or
whether a given test is necessary (or even applicable). The SCAP, introduced on the next slide,
organizes these tests into a flowchart that analysts and other stakeholders can use to navigate the
inferential processthat culminates in either a decision to reject the null hypothesis or the finding
that the null hypothesis cannot be rejected.
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This slide presents a draft version of the SCAP. The design goal is twofold: (1) to weave together
what otherwise would be a disorganized list of stand-alone statistical tests and simulation tools and
(2) to provide multiple inferential pathways that stakeholders can choose to take, depending on
individual preferences and requirements.
Because each of the next five slides isolates and describes the specifics of potential pathways, we
limit our discussion of the complete SCAP, as it appears here, to its essential elements.
The presumption is that an analyst (or other stakeholder) will start with a dataset that contains
sonar and strandings data. Note that the SCAP does not address any uncertainties that may be
introduced during the preparation of this dataset (see Appendix E).
All pathways start by compiling a list of basic statistics that must be extracted from this dataset (as
illustrated in the gray box at the top left of the slide). Of course, other statistics may need to be
extracted later, depending on which pathways are followed.
The following slides outline five increasingly refined inferential pathways that may be followed
while navigating the SCAP.
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This slide highlights the first of five possible SCAP pathways that stakeholders may follow.
Test 1, which appears immediately to the left of the gray box, constitutes SCAP’s de facto first step and
refers to the single-mean Poisson test that lies at the heart of almost all stranding studies. Recall that the
single-mean Poisson test adjudicates only significance (i.e., it tests only whether the P-value is less than
some critical value, c) and not power. If the test fails (meaning if the answer to the question, “Is the P-
value less than or equal to c?” is no), we infer that the null hypothesis cannot be credibly ignored given
the existing statistical evidence. In particular, no additional tests or criteria are required, and the
remaining parts of the SCAP can effectively be ignored.
The SCAP starts offering benefits if Test 1 is passed, or if the answer to the above question is yes. If
Stakeholder A wishes to merely adhere to roughly the same level of rigor that characterizes most
existing methods (which this first inferential pathway nominally entails), the null hypothesis may be
rejected at this point, and the analysis will end.
However, Stakeholder B may wish to more rigorously interrogate and analyze the data, choosing not to
automatically reject the null hypothesis solely on the basis of passing a statistical significance test whose
power is unaccounted for. How confident are we that the rejection is robust with regard to uncertainties
in the data? Does a lack of achieving a threshold confidence justify reversing our original inference
(based on significance alone)? Would our decision change if additional tests are applied? Might other
criteria be used to support making (or changing) an interim inference?
The following slides outline four increasingly interconnected pathways designed to provide answers to
these questions.
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The second pathway adds two additional tests that may be applied to the data to strengthen the
veracity of whatever final inference is drawn.
If the answer to the single-mean Poisson test (i.e., “is the P-value Poisson  c?”) is yes, then Test 2
asks the same question but uses a P-value that is estimated by averaging over all null coincident
rates that fall within a given confidence interval of the observed null stranding rate (see slides 16 to
17).
If the answer to this more robust version of the original question is no (i.e., it is determined that
Poisson,Ave > c), then it may be inferred that statistical evidence is lacking to reject the null
hypothesis, and the analysis will end.
On the other hand, is the answer is yes (i.e., that Poisson,Ave  c), then an additional test, Test 3, may
be applied. In this case, the question is whether the observed number of coincident strandings,
NCoinS,Obs, is at least as large as the minimal number that is required to satisfy both significance (or
Type I errors) and power (or Type II errors), NCoinS,Req, as described on slides 18 to 21.
If NCoinS,Obs < NCoinS,Req, then the null hypothesis cannot be rejected, despite the fact that Poisson  c

(as per the original affirmative answer to the question posed by Test 1).
The null hypothesis may be rejected by following the inferential flows in Pathway #2 if and only if it
is determined that NCoinS,Obs < NCoinS,Req.

Pathway #2 is arguably the simplest (and certainly the most straightforward and intuitively sensible)
way to refine and strengthen the veracity of existing tests.
If a stakeholder wishes for additional confirmation or to administer yet more stringent tests that
better account for uncertainties in the data, an immediate option is to follow Pathway #3, described
on the next slide.
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The option to follow (or keep following) the third pathway opens up if the answer to Test 3 (as
described on the preceding slide) is yes and if the stakeholder wishes to obtain additional
confirmation that the statistical evidence warrants rejecting the null hypothesis. We remind the
reader that a given stakeholder must decide which inferential pathway to follow. On this slide, we
have effectively entered Pathway #3 with the presumption that the outcomes of all prior testsas
encountered on Pathway #1 (Test 1) and Pathway #2 (Tests 2 and 3)have been yes.
If no additional confirmation is needed, Pathway #3 terminates by rejecting the null hypothesis. If
additional confirmation is desired, the option is to run a MCS (either MCS 2a, MCS 2b, or both; see
slides 35 to 39) to determine the likelihood that a set of random bootstrapped strandings yields
the same number of coincident strandings as are actually observed. If the probability that these two
are equal is less than some minimum threshold, PThreshold (the value of which is left to the
stakeholder’s discretion), then the statistical evidence has already accruedand by itself was
already deemed sufficient to reject in Pathway #2and is only strengthened. Thus, a positive
outcome of Tests 9A and 9B warrants rejecting the null hypothesis and terminating the analysis.
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Pathway #4 is similar to Pathway #3, but it is predicated on a stakeholder wishing to apply more
stringent statistical tests. If the stakeholder does not wish to do so, the pathway leads to the same
conclusion as at the end of Pathway #3 (i.e., reject the null hypothesis). If the stakeholder does wish
to do so, the option is to apply both FET and the EBT (see slide 26 and Appendix A).
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Pathway #5 includes all elements of the complete SCAP. It builds on Pathway #4 by adding an
optional three battery of tests of robustness:

1. Test-6 may be used to determine whether the statistical evidence to reject the null
hypothesis is robust with respect to unobserved non-coincident strandings (see slide ).

2. Test-7 may be used to determine whether the evidence is robust with respect to the
uncertainty between actual and observed stranding dates and the ambiguity of how
“coincident strandings” are defined (see slide ).

3. Test-8 may be used to determine whether the evidence is robust with respect to the
ambiguous criteria used to define the set of sonar days (see slide ).

Passing some or all of these tests (which tests to apply is, as always, at the stakeholder’s discretion)
warrants a final rejection of the null hypothesis. If all tests fail, the null hypothesis cannot be
rejected on the grounds of excessive uncertainties inherent in the original dataset.
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This study concludes with four general recommendations. The first is the easiest to implement but
also the least far-reaching because it requires only that a more stringent threshold value of
significance be applied to existing methodology (which is assumed to otherwise remain the same).
This top-level recommendation is made in view of the myriad potential sources of ambiguities and
uncertainties inherent in the analysis of sonar-stranding correlations.
The second recommendation is key because it both refines existing methodology (by adding an
estimate of power to significance) and modifies the way in which statistical inferences are drawn.
Specifically, rather than comparing P-values to some arbitrary threshold, the observed number of
coincident strandings is compared to the number of coincident stranding required to satisfy
both significance and power. As long as what constitutes a coincident stranding is unambiguously
defined and properly derived from the data, this method is both more intuitive and unequivocal
because it respects, and simultaneously minimizes, both Type I (false positive) and Type II (false
negative) errors.
The third recommendation is to use any (or all) of the MCS introduced throughout the discussion
to determine the degree to which significance and power tests alone are robust to underlying
uncertainties in the data.
The final recommendation is overarching. It is to follow the general guidelines in the SCAP. Recall,
that Pathway 1 effectively reproduces the existing methodology, whereas Pathways 2 to 5 include
an increasingly refined battery of tests and simulations.
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Short discussions of open issues and potential avenues for future exploration and development have been sprinkled
throughout the main narrative.
One obvious follow-on effort is to automate the deployment of the SCAP. In its current form (as described on slides
48 to 53), SCAP is a simple at-a-glance flowchart designed to help stakeholders understand and navigate (an often
technically cumbersome) inferential process. Although stakeholders may choose to follow different pathways, as
determined by their own requirements and individual predilections, the actual analysis (which runs the gamut from
calculating the statistics of 2-by-2 contingency tables to setting up, running, and interpreting the output of multiple
Monte Carlo simulations) is implied but otherwise not embedded within the SCAP itself. Because all of the elements
of SCAP have already been developed for this study (albeit, many in draft form for illustrative purposes only), the
text-based flowchart may easily be transformed into a fully interactive stand-alone decision-aid.
Appendix E describes a framework for estimating null stranding rates not from time-series data (as is traditionally
done but is riddled with potential bias-generating ambiguities) but by using the combined space plus time data
describing the full scenario. Although doing so (beyond outlining one such approach that may be taken) is beyond
the scope of this study, it is a natural follow-on research effort that may significantly push the envelope for future
sonar-stranding analysis.
Stranding analyses may also be enhanced by developing a stand-alone reconstruction toolkit and embedding it
within SCAP. By reconstruction, we mean the analysis that is currently done piecemeal, depending on the availability
and quality of data, to credibly and confidently distinguish between null and coincident strandings.
Another follow-on effort is to explore methods to mitigate uncertainties resulting from various confounding factors.
Although such methods are also intrinsically statistical and well known, they have rarely been applied to sonar-
stranding analyses.

59



60



61



62



63



64



65



66



This slide shows estimates of the minimum number of observed coincident strandings required to
simultaneously satisfy both Type I (significance) and Type II tests (power); see slides 19 to 22.
The algorithm consists of two loops. The first loop is to find the minimum null stranding rate for
which the significance Min  c. Note that whatever this null stranding rate is would not
(necessarily) be the one that is observed (i.e., the number of observed strandings on non-sonar
days divided by the total number of non-sonar days); it is merely an interim value that must be
computed first as part of this combined Type I–Type II test.
Once Min is estimated, the second loop is to find the minimum number of coincident strandings
(technically, this is to find the minimum effect size, as defined on slide 19, which represents the
minimum statistically discernable difference between expected and observed coincident strandings)
for which the Type II (false negative) test is satisfied.
We produced estimates for four real-world datasets (see slide 40): Central Mediterranean, Western
Mediterranean, Mariana Islands, and Southern California.
The red dashed lines depict the desired power threshold, c=0.8. The value of NCoinS,Req (highlighted
in the red box) is the required minimum number of coincident strandings to satisfy both Type I and
Type II tests. The observed number is highlighted in the green box.
We see that in each case, the number of observed coincident strandings is less than NCoinS,Req.
Because none of these datasets simultaneously satisfies both Type I and Type II tests, we conclude
that the null hypothesis cannot be rejected for any of them.
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This appendix summarizes each of the information fields that appear as part of the output of
running MCS #1 (see Slides 30 and 31 and Appendices H and I).
The top row contains basic statistics summarizing the input data, including the number of Monte
Carlo samples, total number of days, actual (NSonar/Actual) and effective (Nsonar/Effective) number of days
with sonar (the latter is a function of the maximum sonar decay range (dMax)), and total number of
observed strandings (NS,Obs).

The remaining rows summarize four types of statistical tests: NCS refers to comparing the observed
number of coincident strandings with the minimum number required to satisfy both Type I and
Type II tests (see slides 19 and 20), the 1-Poisson refers to the single-mean Poisson test (see slides 7
and 15); Binomial refers to the EBT (see slide 24 and Appendix A), and Fisher refers to the FET (see
slide 26 and Appendix A).
The entries highlighted in green on the right of the slide refer to a measure called strength that
(loosely speaking) is intended to serve as a complement to statistical power. Although additional
details are provided on the next slide, please note that strength is not a standard measure, so it is
best viewed as an experimental heuristic that we found useful during the early parts of our analysis
(although it does not appear in the main narrative). It is included in this appendix for completeness.
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As discussed on slide 18 of the main narrative, one of the limitations of single-mean Poisson test is
that the statistical power of rejecting the null hypothesis never exceeds ~0.63, which is far short of
typically used thresholds (e.g., 0.80 or 0.85). This limitation is an artifact of the Poisson distribution
and results from the fact that the best estimate to use for the alternative hypothesis is the observed
number of coincident st randings. As a result, the power to reject the null hypothesis can never pass
the Type II test (for thresholds over 0.63), even when significance is far below the required limit (say,
0.05). Now, this does not mean the Type I and Type II tests cannot be simultaneously satisfied;
rather, it means that the power of an already administered Type I test (that results in an   c) will
always be less than is typically required. This issue is mitigated by following the recommendation
made in the main narrative, as appears in Pathways two to five in the SCAP (see slides 47 to 51).
Specifically, the recommendation is to estimate the minimum number of observed coincident
strandings required to simultaneously satisfy both Type I (significance) and Type II tests (power). By
doing so, power is not computed at a given value of  (based on the null stranding rate) but rather
on the basis of whatever null stranding rate (possibly less than that which is actually observed)
yields the desired threshold, c.
If stakeholders wish to continue to base their decisions to reject on significance (rather than
comparing the observed and required number of coincident strandings), one way is to use strength
as a heuristic complement of power. Strength estimates the probability that the true Poisson mean,
True, that describes the distribution of coincident strandings is greater than the required minimum.
The greater the strength, the greater the likelihood that the true mean of the Poisson distribution
entailed by the observed number of coincident strandings will be at least as great as required to
satisfy both Type I and Type II tests.
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Slide #27 (“Plethora of Uncertainties”) summarizes several key uncertainties associated with sonar-
stranding correlation analysis. Slide 34 expands on the second of these uncertaintiesambiguous
or inconsistent criteria for including sonar in datasetsby illustrating how MCS can be used to test
the degree to which a given statistical test is robust to uncertainties. For example, an analyst might
ask whether a nominal decision to reject the null hypothesis (using the original dataset, DOriginal)
remains the statistically most credible inference to draw if a certain number of sonar days are
added to Doriginal. These added sonar days can be used as simple proxies for any ambiguous criteria
that may have been used to select which days are associated with sonar. Assuming a greater
number of sonar days (than are actually observed in Doriginal) results in a larger number of expected
coincident strandings, which in turn increases the effective P-value. If, despite this, the P-value
remains below the critical threshold (say, below 0.05), the nominal rejection is said to be robust
with respect to this kind of ambiguity.
However, as this appendix shows (albeit, mostly heuristically), the often ill-defined way in which
active sonar is codified in datasets is a harbinger of a deeper methodological problem—specifically,
that information must inevitably be lost during the preparation of Doriginal because three-
dimensional real-world data (two space dimensions plus one time dimension) are effectively
pigeonholed into a one-dimensional time-series.
Observe that all stranding analyses, to date, consist of applying one or more statistical tests to a
one-dimensional dataset. Each element (that is, each day) in this dataset codifies a single bit of
three types of information: the element is empty, it is highlighted in blue (to denote the presence
of sonar that was active for some part of that day), or it contains a stranding (that may be
highlighted in green to indicate a null stranding or in red to highlight a coincident stranding).
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(Continued …)
The graphic at the bottom left of the slide identifies the salient real-world elements that eventually find
their way into the dataset. It shows a top-level view of a notional two-dimensional scenario centered on
a circular island (highlighted in dark gray) with a radius = rIsland. Note that the all-important time
dimension is implicit in this graphic (as discussed below). Three stranding events are depicted at points
S1, S2, and S3. The circles of radius = 60 nmi centered on each of these strandings depict the respective
areas within which a stranding may be determined to be coincident with sonar if sonar was active there
during a x-day window of time (typically equal to six days) preceding a given stranding. The circle
centered on the island and highlighted in light gray denotes the maximum area such that if sonar is
active outside of it, we would assume that it cannot possibly be correlated with any strandings (subject
to the 60 nmi and x-day window constraints).
Now, somehow the information contained in this “two space dimensions plus one time dimension”
scenario must be pigeonholed into a one-dimensional time-series. We use the term pigeonholed
deliberately. The pigeonhole principle asserts that if N objects are distributed throughout N + x boxes,
where x > 0, then there will be at least one box that contains at least two objects.1

The graphic at the bottom right of the slide illustrates schematically one way that three dimensions can
be pigeonholed into a one-dimensional dataset—specifically, by “unwrapping” or unrolling the island’s
boundary onto a single spatial dimension (along the y-axis) and using the x-axis to depict the temporal
dimension.
Most of the elements can be resolved without ambiguity. But what label ought to be assigned to the day
marked with a “?” and highlighted in orange?
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The graphic on the right side of this slide zooms in on the space-time plot to the left to highlight
the column that harbors a potential (pigeonholed) ambiguity.
Each day in the dataset, DOriginal, can accommodate/highlight a single piece of information, but two
dynamic elements are at play: (1) the stranding, S1 (highlighted in green), and (2) sonar, highlighted
in blue).
Which of these two elements are in DOriginal?
This question can be asked from two points of view. The first point of view is from the perspective
of an existing dataset. That is, suppose we are given DOriginal, with the day corresponding to “?”
labeled either as “stranding” (i.e., green box) or “sonar” (i.e., blue box)it does not matter which.
The point is that it must be a single label, not two. Absent the full space-time scenario (as depicted
on the bottom left of the previous slide) and given only DOriginal, either label necessarily hides the
existence of the other, which in turn biases the associated statistical analysis.
The second point of view is from the perspective of creating the dataset. As we have just argued,
there is room enough for a single label. So that, just as before, assigning a “stranding” effectively
hides “sonar,” and vice versa.
Even when the data describing the full (two-dimensional space plus time) scenario is available and
(at least in principle) allows for proper distinctions to be drawn between null and coincident
strandings, most stranding analysis nonetheless consists of applying a regimen of statistical tests to
time-series data, which unavoidably biases the statistics because it pigeonholes relevant
information.
The situation is actually even more complicated than this. For example, an additional pigeonhole-
like bias may be introduced by weighing the contribution of days during which there is a single
active sonar equally to days during which there were multiple active sonars. We leave the analysis
of such hypothetical scenarios to a future study.
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Pigeonholing is increasingly likely to happen as the size of the island, rIsland, increases relative to the
maximum distance a sonar is allowed to be from a stranding for the stranding to be considered
coincident. Nominally, this distance is set to 60 nmi.
Most stranding analysis implicitly assumes that rIsland  0 because only in this case are strandings
unambiguous: either a was coincident with sonar that was active within x= six days and 60 nmi of
the stranding, or it was not (i.e., it was a null stranding). See Case A.
As rIsland increases to 60 nmi (Case B) and larger (Case C), the probability also increases that some
sonar will have been active within x= 6 days of a stranding X but within the 60 nmi perimeter of
another stranding Y, or vice versa. In this way, labeling ambiguities are increasingly likely to arise on
any given day in the dataset.
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The final slide in this appendix illustrates one way in which null stranding rates may be estimated
not from time-series data (as is traditionally done, and, as has just been argued, is rife with
potential bias-generating ambiguities) but by using the combined space plus time data describing
the full scenario.
The idea is to generalize how the null stranding rate, 0, is estimated. Conventionally, 0 is
estimated by counting the number of strandings that occur on days without sonar and dividing by
the number of such null sonar days (see slide 11). In like fashion, we can use the two-dimensional
space-time representation of the same scenario to do the same thing in three steps: (1) cordon off
all areas within which strandings are, by definition, coincident with sonar (these appear as dotted
red areas in the figure on the slide); (2) count the number of strandings that are not in any of those
areas (these are the “null strandings”); and (3) estimate 0 as the number of null strandings divided
by the total space-time area minus the (red highlighted) sonar zones.
Similarly, whereas the expected number of coincident strandings is traditionally estimated by
multiplying 0 by the number of effective sonar days, we multiply the generalized 0 by the total
effective sonar area (i.e., by summing over the component areas).
By preserving the information and geometry relevant to a given scenario, this approach eliminates
the ambiguities that might otherwise be latent in a traditional time-series.
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The Mathematica source code developed for this study includes an option to apply user-defined
decay-state-dependent stranding decay functions when necropsy data are (typically only rarely)
available. Case study four, which summarizes the analysis for the SOCAL dataset (described in [16]
and summarized on slide 38 of the main narrative), is given in Appendix G, which immediately
follows.
We caution readers that even when necropsy data are available, the classification and implication of
a given decay state are highly subjective. About the only definitive conclusion that may be drawn is
that the actual stranding dates for animals that have been long dead by the time an observation is
made are likely much earlier, relatively speaking, than if an animal is obviously still alive and
uninjured.
Beyond making such a broadly sweeping intuitive observation, little else is certain. The functional
forms shown on this slide are emphatically not panacea depictions of what the true decay-
stranding function looks like (analysts can easily modify the appearance of these functions); indeed,
there is no definitive function. The best we can do is to gauge how strongly any uncertainty in actual
versus observed stranding dates would influence stranding analysis based on specific dates. The
weight of statistical evidence to reject the null hypothesis would be strengthened only if it remains
robust with respect to this or any other kind of uncertainty (however crudely these uncertainties are
taken into account).
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Appendix G contains two additional case studies using the datasets described on slide 40.
The Mariana dataset is an update to the data that was used in the study described in [27], which
showed a significantly higher (at the 0.95 level) stranding rate during sonar periods compared to
non-sonar periods. We updated the data from [27] with one additional stranding, and we used the
Navy’s SPORTS database to compile much more complete information on military sonar use.
The output includes the same items that were previously used to summarize the analysis for case
studies one and two (slides 42 to 46); also see Appendix C.
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The SOCAL dataset was used in the study described in [16] and summarized on slide 38 of the
main narrative. This particular dataset includes necropsy information. Specifically, each
stranding is accompanying by one of four labels: (1) alive or sick/injured, (2) fresh dead, (3)
long dead, or (4) advanced decomposition.
The stranding correlation results for this last case study are based on the stranding decay
functions that appear in Appendix F.
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More than 2,000 lines of Mathematica source code1 have been developed for this study. Individual
functions include basic data import and timeline visualization, input data modification for
experimentation and scenario development, the stranding decay and sonar discount functions,
various statistical tests (including significance and power), and stand-alone MCSs.
The complete source code is available upon request.
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Appendix I contains illustrative (albeit small and heavily truncated) input/output samples of a few of
the 50+ Mathematica functions developed for this study (as described in Appendix H).
This slide shows how Mathematica can be used to easily generate notional datasets of arbitrary size
for experimentation (such as those that appear on slides 30 to 37 and in Appendix D). The function
GenerateRandomDataSet[…] takes the following as input:

1. TypeFlag, which instructs the function to generate a dataset either by assuming a fixed
number of strandings (TypeFlag=1) or by assuming a stranding rate (TypeFlag=2).

2. NumberOfDays, which specifies the total number of days to include in the notional dataset.
3. NumberOfSonarDays, which specifies the total number of days that include active sonar.
4. NumberOfStrandings, which specifies the total number of strandings.

The dataset is randomly generated and saved as a variable array called TestInputArray.
The second function, PlotTimelineData[…], generates a graphic view of the data in TestInputArray.
The timeline’s appearance may be defined or altered by specifying the values of the following six
optional parameters:

1. SonarCoincidenceTimeDelta defines the time delay x (as defined on slide 28) between the
stranding and the last sonar day.

2. NumberOfDaysPerRow specifies how many days will be rendered per row (e.g., the user may
specify 365 days for datasets that contains several years’ worth of information).

3. ImageSizeDesired defines how many total pixels will be used to render the image.
4. MeshDesired instructs the function whether to display a thin, light gray “mesh” to seperate

the days (‘0’ = no, and ‘1’ = yes).
5. OpacityDesired  [0,1] defines the opacity of the mesh (the closer the value is to ‘1’, the

more visible will be the mesh).
6. AspectRatioDesired specifies the desired aspect ratio (though a value of ‘0’ yields a default

value, which may be suboptimal, depending on the size of the dataset).
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This slide shows the complete input parameter list for the function MonteCarloAlgorithm1[…], the
pseudocode for which is given on slide 32.
In perusing this code, note that any text between symmetric instances of “(*” and “*)” are
comments. For example, the string “(*Stranding Decay function parameters*)” that appears on the
bottom left of the slide merely identifies that the parameters that follow are all associated with (and
used to define) the stranding decay function (see slide 30).
Other clusters of related parameters are grouped accordingly, such as sonar discount function
parameters, statistical test parameters, and timeline plot display parameters (the latter of which
replicates the parameter list used by the function PlotTimelineData[…], as discussed on the
previous slide).
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The function MonteCarloAlgorithm1[…] provides nine optional forms of output, two of which are
shown on this slide.
Setting the “(*OutPutFlag*)” parameter equal to “0” (as highlighted in green at the top left)
instructs Mathematica to output a histogram of the fraction of runs that yield a given number of
observed coincident strandings (as determined probabilistically using the value of other run-time
parameters).
Setting the “(*OutPutFlag*)” parameter equal to “s” (as highlighted in green at the bottom left)
instructs Mathematica to output the matrix of summary statistics described in Appendix C.
Other options (not shown on the slide) include additional histograms (such as those that appear on
slide 30, which were generated by setting OutPutFlag = 1), a timeline plot (which uses the function
PlotTimelineData[…], as discussed earlier, and is activated by setting OutPutFlag = 3), and options
to display the values of various interim variables and test arrays while the simulation is running (but
which are designed more as debugging aids).
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Goals
• Fundamental goal of this project 

 To determine the likelihood that stranding events are correlated 
with—not necessarily caused by—the use of sonar 

– The statistical analysis we describe is based solely on ambiguously 
defined binary-valued "sparse event" datasets

– Basic statistics provides only limited insight into a complex, 
multidimensional problem

• More practical goal of this project
 To develop a step-by-step analysis framework that the Navy

can use to quickly determine whether the statistical evidence
is sufficient and supports the assertion that a series of stranding 
events are correlated with sonar
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Problem with the current approach
• Past analyses have typically inferred a correlation (or lack thereof) 

based on a single statistical means test—the null stranding rate 
 This rate is determined by dividing the number of observed stranding events 

that took place on days when sonar was not active by the number of such days
 It is used to estimate the number of expected stranding events coincident with 

sonar and compared to the actual number recorded for days with active sonar
 If the actual number of coincident strandings greatly exceeds the expected 

number, a correlation between strandings and sonar is inferred to exist
• Although statistically valid, this approach is significantly limited in two 

key respects 
 The observed null stranding rate is a proxy for the unknown true mean of a 

random process
 The inference is based solely on whether the data passes a so-called 

significance test; however, inferences cannot be credibly drawn if the statistical 
power of the test is too small 
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Results of this study
• Refined existing analysis methodology 

 E.g., added estimates of Poisson confidence intervals and statistical power      
• Developed additional statistical tests to strengthen the veracity of 

inferences 
 More stringent tests generally increase the minimum number of observed 

coincident strandings required to infer a positive correlation      
• Developed methods to account for underlying uncertainties in the data

 Such as ambiguity in how coincident stranding is defined, uncertainty of the 
actual stranding date, the possibility of existing but unreported stranding events, 
or the presence of other (non–US Navy) sonar

• Introduced a draft Stranding Correlation Analysis Playbook (SCAP)
 The SCAP serves as an inference flowchart for stepping though the battery

of statistical tests developed for this study
 Multiple pathways through this flowchart are possible, depending on individual 

stakeholder preferences and requirements
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Recommendations
• Use both significance and power tests to reject the null hypothesis

(i.e., that stranding events are not correlated with sonar) and not just 
significance alone, as is currently done

• Use Monte Carlo sampling to determine the robustness of single test 
inferences with respect to uncertainties in the data

• Follow the guidelines in the SCAP flowchart to apply a sufficient battery
of tests to achieve the desired level of inferential veracity
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Outline
• Review of past work

 Peer-reviewed academic journals | NOAA and Navy reports documenting strandings
• Basic questions motivating this study

 The fundamental statistical analysis problem
• The existing approach

 Nontechnical walkthrough | Technical details
• Easiest first-cut solution

 Statistical inference lookup table → Accept/Reject Criteria Chart
• Mutually confirming battery of statistical tests
• Mitigating uncertainties 

 Reported vs. actual stranding dates | Definition of “coincidence” | Monte Carlo simulations
• Case studies

 Real-world datasets
• Pulling everything together

 Decision flowchart → Stranding Correlation Analysis Playbook
• Recommendations | Next steps
• References 
• Appendices
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Past CNA work correlating sonar use and strandings
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Review of past work (1/2)
• Many (many!) research papers on strandings and accompanying analyses

 Many discuss or compile instances of coincidence with sonar
• Some studies looked for conditions common to mass stranding events

 Such as deep water near shore, surface ducting acoustic propagation conditions, 
wind direction, and shoreline 

• Some used regression analysis to examine correlations of strandings
with respect to various environmental variables
 Such as seasonality, seismic events, proximity to a naval base, and presence of 

fringing reefs
• Others reviewed distant history, noting that strandings were extremely

rare during the pre-sonar era
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Review of past work (2/2)
• Virtually no past research efforts have performed objective statistical analysis

 CNA (2008)
– Examined beaked whale strandings in the Mediterranean 

 CNA (2009)
– Examined beaked whale strandings in southern California 

 Simonis et al. (2020)
– Examined the level of event correlation between active sonar use and strandings

in the Mariana Islands 
 Frantzis et al. (2003) 

− Examined the May 1996 Greece event
 D’Amico et al. (2009)

– Compiled a list of 126 beaked whale mass strandings from the 1870s to 2004
 Quiros et al. (2019)

– Noted that beaked whale mass strandings were very rare in the days before the
advent of mid-frequency military sonars in the 1960s

 Parsons et al. (2017)
– Simply counted instances of coincidence

 Foord et al. (2019)
– Did not attempt to correlate strandings with military sonar or any particular cause
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Review of past work (2/2) - continued
• Virtually no past research efforts have performed objective statistical analysis

 CNA (2008)
– Examined beaked whale strandings in the Mediterranean 

 CNA (2009)
– Examined beaked whale strandings in southern California 

 Simonis et al. (2020)
– Examined the level of event correlation between active sonar use and strandings

in the Mariana Islands 
 Frantzis et al. (2003) 

− Examined the May 1996 Greece event
 D’Amico et al. (2009)

– Compiled a list of 126 beaked whale mass strandings from the 1870s to 2004
 Quiros et al. (2019)

– Noted that beaked whale mass strandings were very rare in the days before the
advent of mid-frequency military sonars in the 1960s

 Parsons et al. (2017)
– Simply counted instances of coincidence

 Foord et al. (2019)
– Did not attempt to correlate strandings with military sonar or any particular cause
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Basic questions motivating this study

Q1 How was the dataset prepared?

How are the “first day” and length of time-series determined?

What is the quality of the sonar data?

Was non-US sonar active in same operating area?

If a stranding event is observed and reported on a given day,
when did it actually occur?

Do other stranding events go unreported?

How are coincident strandings determined?

What information is lost by pigeonholing three-dimensional data
(two space dimensions + time) into a one-dimensional time-series?

How may the uncertainties in data and correlation analysis be
best communicated to allow informed regulatory rulemaking?

Q2

Q3

Q4

Q5

Q6

Q7

Q8

? ? ? ?

Q9

Given a dataset that consists of a day-indexed time-series
of stranding events and sonar
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The fundamental statistical analysis problem

Define coincident strandings
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Nontechnical walkthrough of existing approach (1/2)

• Virtually all researchers (inside and outside of CNA) have traditionally based the 
decision to either accept or reject the null hypothesis (i.e., that strandings and 
sonar are uncorrelated) on the results of applying a single Poisson means test 

• In this test, the significance (or P-value) of observing a given number of coincident 
strandings is compared to the number that one expects to see based on how many 
strandings occur on days without sonar
 The P-value estimates the probability that two means (the observed and expected number

of coincident strandings) fall outside an acceptance region within which the two means
are assumed equal

 Small P-values that are less than some critical threshold (typically 0.05) are interpreted 
as providing sufficient evidence to reject the null hypothesis

• However, two potential issues arise by following this approach
• The first issue is that the method assumes that the observed null stranding rate 

(estimated by dividing the number of observed strandings on days without sonar 
by the number of no-sonar days) is the true average of an underlying random 
Poisson process
 In fact, the true average may be any number that lies within a range of numbers (called the 

confidence interval) that may be estimated by assuming an underlying Poisson process



Copyright © 2024 CNA. All rights reserved 14

Nontechnical walkthrough of existing approach (2/2)

• An immediate consequence is that one must compute not a single P-value (as almost 
all current strandings analyses do) but rather a range of possible P-values predicated on 
the possible null stranding rates that fall within the confidence interval

• For some scenarios, the difference between using a single mean estimate of P-values 
and averaging over a range of coincident rates falling within confidence interval will not 
effectively matter—in the sense that both tests may result in the same final inference
 However, for other scenarios, significant differences may arise, typically resulting in more 

stringent criteria for rejecting the null hypothesis; for example, though a single mean estimate 
may, by itself, suggest that strandings and sonar are correlated (P-value < 0.05), averaging 
over a range of coincident rates within the confidence interval may push the P-value over the 
critical threshold (i.e., P-value > 0.05), which means the null hypothesis cannot be rejected

• The second issue is that existing stranding analysis mitigates only so-called Type I 
(i.e., false positive) errors
 However, by itself, this approach is insufficient because we must simultaneously minimize the 

probability of making Type II (false negative) errors; that is, we must also minimize the 
probability that the null hypothesis is false but is erroneously accepted 

 Unfortunately, this test of power (of not making Type II errors) is seldom, if ever, applied
 An alternative, more stringent test for accepting/rejecting the null hypothesis would be to 

estimate the minimum number of coincident strandings required to satisfy both Type I and 
Type II tests
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Technical details of existing approach (1/6)

• Historically, the null hypothesis is accepted or rejected by applying a single means test

• There are two potential issues with this prima facie laudable approach
• Issue #1:  It implicitly assumes that the observed null stranding rate = the true mean

 To emphasize: this estimate of the mean is based on a single observation of null strandings!

• Problem:

 Find µLower and µLower such that:

Given that NNullS,Obs strandings have been observed on non-sonar days, determine
confidence interval (CI) for the expected mean, µ0 ≈ DSonar Effec × (NNullS,Obs /DNo Sonar)
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Technical details of existing approach (2/6)

• Rather than use a single means test to adjudicate accepting/rejecting H0, may instead
use a P-Value averaged over all coincident rates falling within confidence interval 
that are consistent with DSonar Effec, NNullS,Obs, and DNo Sonar: µLower ≤ µi ≤ µLower

• For some scenarios, the difference between αPoisson and αPoisson,Ave may not matter

 E.g.,                                 → αPoisson ≈ 0.0016 and αPoisson,Ave ≈ 0.0060 

→ Both are ≤ αc = 0.05
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Technical details of existing approach (3/6)

• However, for other scenarios, significant differences may arise; e.g.,

αPoisson

αPoisson,Ave ← ρ(µ) = Uniform distribution

αPoisson αPoisson

αc

αc
αc

αPoisson,Ave ← ρ(µ) = Normal
distribution

αPoisson,Ave ← ρ(µ) = Uniform distribution

αPoisson,Ave ← ρ(µ) =

distribution
Normal

αPoisson,Ave ← ρ(µ) = Normal
distribution

αPoisson,Ave ← ρ(µ) = Uniform distribution

"OLD" test → Reject at 8 (since P-value ≤ αc),
but αPoisson,Ave(8) > αc → Cannot reject
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• Issue #2: α ≤αc test mitigates only Type I errors (false positives)
 Data may pass the significance test, but an inference cannot be credibly drawn if the

power of the test is too small ← this additional criterion is seldom, if ever, applied 
– Power, π ≡ probability of not making Type II errors (false negatives)

Technical details of existing approach (4/6)

Issue #2
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Technical details of existing approach (4/6) – continued

• Issue #2: α ≤αc test mitigates only Type I errors (false positives)
 Data may pass the significance test, but an inference cannot be credibly drawn if the

power of the test is too small ← this additional criterion is seldom, if ever, applied 
– Power, π ≡ probability of not making Type II errors (false negatives)

Issue #2
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Technical details of existing approach (5/6)

• Estimate Type I and Type II errors → reject null hypothesis only if both test positive

• This equation for π is formally identical to the equation that defines α, except that λ0
(= null stranding rate in the equation for α) is replaced by λCS (= coincident stranding 
rate), as determined by the observed number of coincident strandings, NCoinS,Obs

• However, π(NCoinS,Obs+1) < π(NCoinS,Obs), and πMax≡ Max[π(x)] ~ 0.63 at NCoinS,Obs =1
 The Power of rejecting H0 (at α as determined by comparing NCoinS,Obs to the expected number

of coincident strandings, NCoinS,Exp (defined by λ0), cannot pass the Type II test for any πc > 0.63 
 This is true even if a scenario yields α ≤αc; that is, the Type I test alone is satisfied!

Example: expected # coincident strandings = 3 and observed # = 7 → a ≈ 0.03, but π ≈ 0.55





 Remains generally true even if one averages over all (possible) coincident strandings within a confidence interval 
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• An alternative statistical test to accept or reject the null hypothesis (H0) 

 Step 1
– Find the minimum null coincident stranding rate, H0 = (λ0)Min, that yields α ≤αc

 Step 2 

– Find the minimum coincident stranding rate, HA = (λCS)Min, that satisfies π ≥ πc 

 Step 3 

– Estimate the minimum required number of coincident strandings: NCoinS,Req[(λCS)Min] 

In the example above, the minimum number of observed coincidences required to satisfy
both tests is 10 because the power for nine coincident strandings (≈ 0.79) is just shy of πc = 0.8

→ Reject H0 if the observed number of coincident strandings > NCoinS,Req[(λCS)Min]

Technical details of existing approach (6/6)

Estimate the minimum number of coincident strandings 
required to satisfy both Type I and Type II tests, NCoinS,Req
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Easiest first-cut solution: Poisson Mean Lookup Table (1/3) 

Number = α ≥ αc = 0.05,  Number = α ≤ αc = 0.05, ■ = α ~ 0, π < πc, √ = α ≤ αc, π ≥ πc

Number of observed of coincident strandings, NCoinS,Obs

Number of 
expected 

coincident 
strandings 
under null 
hypothesis, 

NCoinS,Exp
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Alternatively, 
consult the 

"Accept/Reject
Criteria Chart”

(A/R-CC)

Easiest first-cut solution: Poisson Mean Lookup Table (2/3) 
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Poisson Mean "Accept/Reject Criteria Chart" (PM-ARCC)

Easiest first-cut solution: Poisson Mean Lookup Table (3/3) 
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• Best not to accept or reject the null hypothesis based on just
a single test
 Accept or reject the null hypothesis only when "yea/nay" inferences

of multiple tests all agree
• We recommend two additional statistical tests for two populations 

that may be used to mutually confirm the results of the Poisson 
means test: 
 The exact binomial test looks for differences between two Poisson means
 Fisher’s exact test is a significance test used to help analyze contingency 

tables
– Contingency tables are matrices that contain the frequency distributions for 

combinations of two categorical variables (such as the presence or absence
of sonar and strandings).  

Additional statistical tests: nontechnical walkthrough
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Additional statistical tests: technical details

• Exact binomial test
 An exact test for analyzing the difference between two Poisson means

• Fisher's exact test
 "Exact" in the sense that α and π can both be calculated without approximations
 FET designed to analyze the relative statistics of 2-by-2 contingency tables if the 

event size (i.e., number of strandings) is small compared to the sample (i.e., 
number of days)

( ) ( )

NullS NullS CoinS
NullS CoinS No Sonar No Sonar

Binomial
0 No Sonar Sonar Effec No Sonar Sonar Effec

Binomial Binomial c 0 No Sonar
0 0

= 1  

= , ,

N

n

n m

N N nnN N D D
n D D D D

Poisson n D Poisson m

α

π δ α α λ

−

=

∞ ∞

= =

+
+     

⋅ ⋅ −     + +     

≤ ⋅ ⋅ ⋅

∑

∑∑ ( )CS Sonar EffecDλ





 ⋅ 

In practice, only terms for which the probability of n and m is significant 
need to be included (i.e., near λ0⋅DNo Sonar and λCS⋅DSonar Effec, respectively)







Key assumption: row/column totals are fixed
The hypergeometric distribution describes the probability 

of having k successes in n draws without replacement from 
a population of size N that contains exactly K objects with 

the given feature (and such that each draw is either a 
success or failure)
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Plethora of uncertainties (1/2) 
• Sonar

 Pre-SPORTS (2006) data very sparse | deployment of non–US Navy sonar
 (Possibly) ambiguous or inconsistent criteria for including in datasets

• Stranding events
 Data completeness / randomness of observations

– Specter of existing but unreported strandings
 State of decay (actual stranding date versus observation date)
 Size of stranding is rarely taken into account (as part of analysis)

– Typically, n > 1 → “single stranding event”
• Definition of coincident stranding

 Presumes ability to do (approximate) space-time reconstruction 
• Data size

 Drawing inferences from very small sample sizes
– Null hypothesis stranding rate (typically) based on only a few observed strandings

 Arbitrariness of time windows (defined by data availability)
• Confounding effects of other factors; specter of Simpson’s paradox

 Such as seasonality, seismic events, and presence of fringing reefs
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Plethora of uncertainties (2/2) 
• Underlying distributions of strandings, sonar use

 Previous analyses assume, but do not test for, Poisson statistics
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How robust is H0 rejection?



Each additional unobserved non-coincident stranding effectively 
increases the expected number of coincident strandings by δµ 

The value of which depends 
on the ratio of sonar days

to non-sonar days
(and, implicitly, on δMax)

Ask: Given a dataset that satisfies the Type I significance test
(α ≤ αc), how many additional unobserved non-coincident 

strandings are required for this test to fail (such
that the null hypothesis cannot be rejected?   

• With each pair of observed (=NCoinS,Obs) and expected (=NCoinS,Exp) 
coincident strandings for which α ≤ αc is associated a range of
expected coincident strandings, entailed by the presence of 
unobserved noncoincident strandings for which α remains ≤ αc

• Each additional unobserved noncoincident stranding entails an 
effective increase in the expected number of coincident strandings, 
δµ = DSonar-Effec / DNo Sonar 

• Apply the same logic to all elements highlighted in red (including 
pairs that satisfy both Type I and Type II errors); each such pair 
entails an associated "region of robustness"

[ ]0 0 Sonar Effec NullS 1 NullS, 1D N f N fµ λ µ= ⋅ ≈ ⋅ = + ⋅

Assume there exists an additional 
unobserved non-coincident stranding

( )Sonar Effec No Sonar Sonar Effec No Sonarwhere , /f f D D D D= ≡

( )1 0 Sonar Effec No Sonar,f D Dµδ µ µ≡ − =





– Specter of existing but unreported strandings

Plethora of uncertainties: example 1 (of 3)
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• Definition of "coincident stranding"
A heuristic approach

 State of decay (actual stranding date vs. observation date)

Example of why 
this may be 
significant

Plethora of uncertainties: example 2 (of 3)
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Fractional coincident stranding function

Salient takeaway
Wide range of possible scenarios in which any given 

observed stranding may be called "coincident" with sonar

Use Monte Carlo 
simulation to explore 

distribution of possible 
outcomes for different 

assumptions
and scenarios
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∆Max= 1

Summary of statistical tests

Observed stranding
= Actual stranding

Only one 
coincident 
stranding is 

possible in this 
"test case" 
scenario

NCoinS,Req ≈ 6.86

Conventional
'P-Value"

≈ 0.82

δMax= 1

Test

Monte Carlo Algorithm #1: Estimate probability distribution of coincident strandings

Monte Carlo Simulation #1

∆Max= 6δMax= 1

(a) (b)

(c) (d)

Accounting for  uncertainties: Monte Carlo sampling
Estimate probability distribution of coincident strandings
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Summary of statistical tests

Observed stranding
= Actual stranding

∆Max= 1δMax= 1

Test

Monte Carlo Simulation #1

This is the P-value that is 
conventionally estimated 

The strongest test statistic is the 
probability that both Type I and II
tests are simultaneously satisfied

Appendixes C and D contain 
illustrative examples

(a) (b)

Accounting for  uncertainties: Monte Carlo sampling
Estimate probability distribution of coincident strandings
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Ask
Given a dataset that satisfies Type I "significance" 

(α ≤ αc) and Type II "power" (π ≥ π c) tests,
how many additional sonar days does

it take for these tests to fail? 

Modified Monte Carlo #1

∆Sonar= 0

∆Sonar= 5

∆Sonar= 10

How robust is H0 rejection?

Prob[α ≤αc,π≥πc] decreases as ∆Sonar increases

Example: Sonar Days = 5 (Total) and 25 ("Padded") using dMax = 6 
Modified Monte Carlo #1

Additional issues 
identified in Appendix E (Possibly) Ambiguous and/or inconsistent criteria for including in datasets

Plethora of uncertainties: example 3 (of 3) 
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Additional tests: bootstrapped vs. observed strandings (1/5)

Distribution of coincident 
strandings, as determined 

using Monte Carlo #1

Bootstrapped distribution 
of coincident strandings with 

random stranding dates

Modified Monte Carlo #2a

Ask → How likely is it that a set of randomly assigned stranding dates (for a fixed number 
of total strandings) yields the observed number of coincident strandings?

Monte Carlo Algorithm #2a

Randomly distribute a fixed number of total strandingsTest A
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Fraction of samples that 
yield at least as many 
coincident strandings

as estimated by Monte 
Carlo Algorithm #1:
f ≥ CSFull/Min ≈ 0.077 

Ask → How likely is it that a set of randomly assigned stranding dates (for a fixed number 
of total strandings) yields the observed number of coincident strandings?

Monte Carlo Algorithm #2a

Randomly distribute a fixed number of total strandingsTest A

CSFull/Min = 2

Additional tests: bootstrapped vs. observed strandings (2/5)
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( ) ( ) ( )
( ) ( )

( ) ( )
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1, 1 1, 2
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1, 1 2, 2

2
1, 2,

1 1
1 1, 2,

,

,

i ii

i ii i

n
i i

i i i

h h h h
D h h

h h h h

h h
D h h

h hχ
=

 − ⋅ −
 =


− ⋅ −

 − = +

∑

∑ ∑

∑

 
 

 

 

• Nothing sacrosanct about using the Pearson correlation and χ2

• Many other metrics are possible; we have selected two common 
ones that have the added virtue of being symmetric in h1 and h2

• Other metrics include Bhattacharyya, Earth mover's distance, 
Euclidean, Intersection, and Kullback-Leibler divergence

( ),1 ,2 ,where , , ,  are histogram frequency vectors
kk k k k Nh h h h≡




Ask → How likely is it that a set of randomly assigned stranding dates (for a fixed number 
of total strandings) yields the observed number of coincident strandings?

Monte Carlo Algorithm #2a

Randomly distribute a fixed number of total strandingsTest A

Additional tests: bootstrapped vs. observed strandings (3/5)
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

Import data from Monte Carlo Algorithm #1

Ask → How likely is it that a set of randomly assigned stranding dates (for a fixed number 
of total strandings) yields the observed number of coincident strandings?

Test B Sample over random datasets using the estimated distribution of null stranding rates

Monte Carlo Algorithm #2b

Additional tests: bootstrapped vs. observed strandings (4/5)
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NCoinS    NNullS

1            6

3           3

6            1

δMax = 6, ∆Max= 6

f ≥ CSFull/Min ≈ 0.064 

Fraction of samples that 
yield at least as many 
coincident strandings

as estimated by MC #1

f ≥ CSFull/Min ≈ 0.349 

f ≥ CSFull/Min ≈ 1 

Ask → How likely is it that a set of randomly assigned stranding dates (for a fixed number 
of total strandings) yields the observed number of coincident strandings?

Test B

Import data from Monte Carlo Algorithm #1
Monte Carlo Algorithm #2b

Additional tests: bootstrapped vs. observed strandings (5/5)

(a)

(b)

(c)

Sample over random datasets using the estimated distribution of null stranding rates
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Real-world datasets
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Real-world datasets − continued
• Mediterranean

 Sonar use: 1992–2004, location by basin
 Strandings: Beaked whale mass, rough geographic location

• SOCAL
 Sonar use: 1982–2002; geographic coordinates (SPORTS) 
 Strandings: Multi-species singles, geographic coordinates (NOAA data)

• Hawai’i-Mariana Islands
 Strandings only, 100 years, singles, rough location information

• Mariana Islands (“Simonis Study”)
 Sonar use: 2007–2019; geographic coordinates (SPORTS) 
 Strandings: Beaked whale single; geographic coordinates

• NOAA National Stranding Database data
 SOCAL, HI, MidLant
 Last 5 years
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Western Mediterranean

Case study: Western Mediterranean (1/2)

DMax = 4751 days, DSonar = 254, NS,Obs= 5

CoinS,Expected 0 Sonar Effec 0.2800N Dλ≈ ⋅ ≈

Estimate expected number
of coincident strandings

NullS
0

No Sonar

3 0.00069
4229

N
D

λ = ≈ ≈

0.018 < α < 0.037

But is this 
really the 

case?

Observed 
coincident 

stranding #1

Observed 
coincident 

stranding #2

The conventional 
analysis suggests that 

the null hypothesis can 
be rejected!

Poisson Mean Lookup Table 
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Case study: Western Mediterranean (2/2)

Account for 
uncertainty in the 

observed vs. actual 
stranding dates

Ave number of CS ≈  1.27

DMax = 4751 days, DSonar = 254, DSonar Effec = 405, NS,Obs= 5

0.491

0.390

0.119

Observed CS < Required CS

Poisson test, BET, and FET
 all yield α > αc = 0.05

The probability that the number 
of coincident strandings is

equal to one or zero ≈  61%  

∆Max= 6

1 20

Cannot Reject H0Western Mediterranean
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NullS
0

No Sonar

3 0.000709
4229

N
D

λ = ≈ ≈

Case study: Central Mediterranean (1/3)

DMax = 4751 days, DSonar = 354, NS,Obs= 6

Central Mediterranean

δMax= 6

DSonar Effec = 522, NNullS,Obs= 3, NCoinS,Obs= 3

CoinS,Expected 0 Sonar Effec 0.3703N Dλ≈ ⋅ ≈

Poisson Mean "Accept/Reject 
Criteria Chart" (PM-ARCC)

Estimate expected number of coincident strandings

Need to
study further

The coarse grained PM-
ARCC does not yield a 

definitive inference
(i.e., is too close to call).
Significance ranges from 

α = 0.03 (reject H0) to
α = 0.06 (accept H0)

P-Value
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δMax= 6

∆Max= 6

Ave number of CS ≈  2.31

0.694

0.306

DMax = 4751 days, DSonar = 354, NS,Obs= 6

Poisson test, BET, and FET
 all yield α > αc = 0.05

No scenarios satisfy 
both Type I and II tests

Central Mediterranean

Observed CS < Required CS

Case study: Central Mediterranean (2/3)

(a)

(b) (c)
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δMax= 6

∆Max= 6

f ≥ CSFull/Min ≈ 0.126 

CSFull/Min = 2

f ≥ CSFull/Min ≈ 0.008 

CSFull/Min = 2

DMax = 4751 days, DSonar = 354, NS,Obs= 6

Monte Carlo Algorithm #2a Monte Carlo Algorithm #2b

Central Mediterranean Cannot Reject H0

Case study: Central Mediterranean (3/3)

(a) (b)
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Towards a Stranding Correlation Analysis Playbook (SCAP)

Summary of statistical tests and analysis tools
• Test 1: (Original) single-means Poisson test, αPoisson

 Test 0/Strength: Poisson or Bayesian estimate
• Test 2: Averaged over all coincident rates in CI, αPoisson,Ave
• Test 3: Minimum # of CS required to satisfy both Type I and Type II tests 

 Use (as reference) the Poisson Mean "Accept/Reject Criteria Chart" (PM-ARCC)
• Test 4: Fisher’s exact test
• Test 5: Exact binomial test 
• Test 6: How robust is H0 rejection to unobserved non-coincident strandings?

 Determine range of expected coincident strandings entailed by the presence of unobserved 
noncoincident strandings, for which α remains ≤ αc

• Test 7/Monte Carlo #1 (MCS 1)
 How robust is H0 rejection to uncertainties regarding actual versus observed stranding date

and regarding labeling a given stranding event as "coincident" with sonar?
 4-by-4 matrix of test statistics

• Test 8: How robust is the rejection of the null hypothesis to ambiguous or 
inconsistent criteria for including a specific number of sonar days in dataset?

• Tests 9A/9B: What is the probability that a set of randomly assigned stranding 
dates (for a fixed number of total strandings) yields the observed number
of coincident strandings?
 Test 9A/Monte Carlo #2a (MCS 2a): Randomly distribute a fixed number of total strandings
 Test 9B/Monte Carlo #2b (MCS 2b): Sample over random datasets using estimated 

distribution of null stranding rates
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Pulling everything together (1/2) 
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Start w/original dataset = DOriginal

Towards a Stranding Correlation Analysis Playbook (SCAP)

Pulling everything together (2/2) 

Cannot
reject H0

Multiple 
pathways
possible

≥
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Start w/original dataset = DOriginal

Towards a Stranding Correlation Analysis Playbook (SCAP)

Reject H0

Cannot
reject H0

SCAP: pathway 1 

Cannot
reject H0

Pathway 1

≥
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Start w/original dataset = DOriginal

Towards a Stranding Correlation Analysis Playbook (SCAP)

Reject H0Reject H0

Cannot
reject H0

Pathway 2

≥

SCAP: pathway 2 
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Start w/original dataset = DOriginal

Towards a Stranding Correlation Analysis Playbook (SCAP)

Reject H0

Cannot
reject H0

Pathway 3

≥

SCAP: pathway 3 
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Start w/original dataset = DOriginal

Towards a Stranding Correlation Analysis Playbook (SCAP)

Cannot
reject H0

Reject H0

Pathway 4

≥

SCAP: pathway 4 
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Start w/original dataset = DOriginal

Towards a Stranding Correlation Analysis Playbook (SCAP)

Cannot
reject H0

Reject H0

Pathway 5

≥

SCAP: pathway 5 
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Recommendations

1. Given the limitations of statistical analyses of time-series in general (and 
the inherent ambiguities and uncertainties of sonar-stranding datasets
in particular), use only the strictest significance tests to reject the null 
hypothesis
 Use αc = 0.03 or αc = 0.01 rather than αc = 0.05

2. Do not rely on significance tests alone → add tests for power 
 Reject null hypothesis if the number of observed coincident strandings

is greater than the minimum number of coincident strandings required
to satisfy both significance and power

3. Use Monte Carlo simulation methods to determine how robust "single 
test" inferences (even those that use both α and π) are with respect to 
underlying uncertainties in data

4. Follow the general guidelines as implemented in the SCAP flowchart
 Multiple inferential pathways are possible, subject to the requirements of 

individual analysts, decision-makers, and other stakeholders

Strike a balance between methodological minutiae and expediency
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Next steps
• Automate deployment of the SCAP

 Develop stand-alone interactive decision-aid tailored to individual stakeholders 
(and other users with varying levels of mathematical and simulation expertise)

• Develop more robust dataset preparation methods for statistical analysis
 Minimize loss of information due to pigeonholing three-dimensional information

(two-dimensional space plus time) into a one-dimensional time-series
• Develop a stranding reconstruction toolkit to complement the use of SCAP

 Apply traditional reconstruction analysis and visualization methodology
• Explore methods to mitigate uncertainty caused by heretofore unexplored 

confounding factors and other potential biases
 Such as seasonality, seismic events, and presence of fringing reefs
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Appendices
• Appendix A: Main statistical tests
• Appendix B: Satisfying both Type I and Type II errors
• Appendix C: Monte Carlo #1 output data fields
• Appendix D: Monte Carlo #1 notional examples
• Appendix E: Mitigating ambiguous/inconsistent dataset preparation
• Appendix F: Necropsy-dependent stranding decay functions
• Appendix G: Real-world datasets—case studies 3 and 4
• Appendix H: Mathematica functions
• Appendix I: Sample Mathematica analysis session
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Appendix A: Main statistical tests
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Appendix A: Main statistical tests
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Central Mediterranean Western Mediterranean

Ec ≈ 0.083
→ NCoinS,Req ≈  4.3

Ec ≈ 0.064
→ NCoinS,Req ≈  5.6

Ec ≈ 0.078
→ NCoinS,Req ≈  3.9

Ec ≈ 0.051
→ NCoinS,Req ≈  60.1

Observed
Number

3

Mariana Islands Southern California

Observed
Number

2

Observed
Number

2

Observed
Number

42

Appendix B: Satisfying both Type I and Type II errors
Minimum required number of coincident strandings to satisfy both Type I and II errors
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Appendix C: Monte Carlo #1 output data fields

Maximum 
number of 
observed 
coincident 
strandings

Average 
Poisson
P-value

Average
P-value for 

Fisher’s exact 
test

Required minimum 
number of coincident 
strandings to satisfy 

both Type I and 
Type II tests

Probability that 
the Poisson

P-value is less 
than or equal to 
the critical value

Average
P-value for 

Fisher’s exact 
test

Average
P-value for 

binomial exact 
test

Probability that 
the binomial 

exact test
P-value is less 
than or equal 
to the critical 

value

Probability that the required number of coincident 
strandings to satisfy both Type I and Type II tests is less 

than or equal to the maximum observed number

Average 
Poisson power 
for samples in 

which the
P-value is less 
than or equal 
to the critical 

value

Average power 
for binomial 
and Fisher’s 
exact tests, 

respectively, 
for samples in 

which the
P-value is less 
than or equal 
to the critical 

value

Probability that the 
observed number of 

coincident strandings is 
less than or equal to the 

minimum required number 
to satisfy both Type I

and Type II tests

Average strength 
as a heuristic 

complement to 
power for samples 

in which the 
Poisson P-value is 
less than or equal 
to the critical value

Probability that 
both Type I and 
Type II tests are 
satisfied for the 

binomial exact test

Probability that 
both Type I and 

Type II tests
are satisfied for 

Fisher’s exact test

Basic statistics summarizing the input dataset, including the number of Monte Carlo samples, total 
number of days, actual (NSonar/Actual) and effective (Nsonar/Effective) number of days with sonar (the latter is a 
function of the maximum sonar decay range (δMax), and total number of observed strandings (NS,Obs)

The elements highlighted in red refer to extra strandings that 
fall on days without sonar (NNonCS) and extra days with sonar 

(NSonar), used for Monte Carlo scenarios to test robustness
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• What if α ≤αc but the observed number of coincident strandings, NCoinS,Obs, 
is less than the required minimum, NCoinS,Req?
 We cannot immediately reject the null hypothesis

– At least, not if the goal is to simultaneously satisfy both Type I and Type II errors

• However, we can still estimate the strength, S, of rejecting the null hypothesis
• Use either the Poisson distribution or Bayesian inference to estimate the probability 

that the true mean of the Poisson distribution (assumed to describe the distribution of 
coincident strandings), µTrue, is greater than the required minimum, µTrue ≥ NCoinS,Req

1. Poisson: S(α ≤αc | NCoinS,Obs, NCoinS,Req) ≈
2. Bayes: Prob(µTrue | x = NCoinS,Obs) = Prob(x = NCoinS,Obs | µTrue) × Prob(µTrue) / Prob(x = NCoinS,Obs) 

– Observed data  x = NCoinS,Obs (single observation)
– Parameter of interest  µTrue (true mean of the distribution)
– Likelihood function  Prob(x = NCoinS,Obs | µTrue) = Poisson(x, µTrue)
– Marginal likelihood  Prob(x = NCoinS,Obs) 
– Prior distribution  Prob(µTrue) ≈ Gamma(a, b), with a = b = 1
– Posterior distribution  

Prob(µTrue | x = NCoinS,Obs) = Prob(x = NCoinS,Obs | µTrue) × Prob(µTrue) / Prob(x = NCoinS,Obs) 
– For the Poisson-Gamma conjugate pair, the posterior distribution is also a Gamma distribution,

Prob(µTrue | x = NCoinS,Obs) ~ Gamma(a+ NCoinS,Obs, b +1)
→ S(α ≤αc | NCoinS,Obs, NCoinS,Req) = Prob(µTrue ≥ NCoinS,Req | x = NCoinS,Obs) =      Prob(µTrue | x = NCoinS,Obs) dµ 

CoinS,ReqNµ

∞

=
∫

CoinS,Req CoinS,Obs1
CoinS,Obs0

1 / !N N i
i

e N i− −

=
− ⋅∑

S(α ≤αc | NCoinS,Obs, NCoinS,Req) = 1− CDF[Gamma(NCoinS,Req; a+ NCoinS,Obs, b +1)]

Appendix C: Monte Carlo #1 output data fields
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•  Expected # coincident strandings = NNullS = µ0 = 3
 α ≈ 0.03 → satisfies Type I test

•  Actual (observed) number of coincident strandings, 
 NCoinS,Obs = µA = 7 → π(α) ≈ 0.55 does not satisfy Type II test

• dfg

The probability that the true mean of the coincident 
strandings distribution is at least as large as the minimum 
number of coincident strandings required to satisfy both 
Type I and Type II statistics tests, NCoinS,Req

SPoisson(α ≤αc) ≈ 0.17, SBayes(α ≤αc) ≈ 0.87 

Appendix C: Monte Carlo #1 output data fields
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NCoinS    NNullS

2            3

3            2

4            1

First scenario with positive Type I test No scenarios satisfy both Type I and Type II tests

δMax = 6, ∆Max= 6

Estimate probability distribution of coincident strandingsMonte Carlo Algorithm #1: Estimate probability distribution of coincident strandings

Appendix D: Monte Carlo #1 notional examples
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Days0 + 

100

200

300

Start w/ DOriginal → NCoinS = 4    NNullS = 1 

Significant number of samples and scenarios
also satisfy both Type I and Type II tests

δMax = 6, ∆Max= 6

Significant number of samples
and scenarios satisfy Type I tests

Monte Carlo Algorithm #1: Estimate probability distribution of coincident strandings

Appendix D: Monte Carlo #1 notional examples
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NCoinS    NNullS

1            7

4            4

7            1

δMax = 6, ∆Max= 6

Average value of α decreases as 
the relative number of observed 
coincident strandings increases

Appendix D: Monte Carlo #1 notional examples
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Days0 + 

200

400

800

δMax = 6, ∆Max= 6

For a fixed number of total 
strandings, the average value

of α decreases as the number of 
days without sonar increases

Appendix D: Monte Carlo #1 notional examples
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But...how is this dataset prepared?

Mitigating ambiguous or inconsistent dataset preparation

Effectively collapses a three-dimensional space (two spatial coordinates plus time) onto a single dimension (time) 

Boundary at 60 nmi 
from island at center 

Island 

The time series allows only one label per day
What label ought to be assigned to this day?

***Note***
Notional map
for illustrative 
purposes only!

Appendix E: Uncertainties − additional comments

What is the fundamental statistical analysis problem?

Recall slide 12
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Mitigating ambiguous or inconsistent dataset preparation
Recall slide 12

Appendix E: Uncertainties − additional comments

But...how is this dataset prepared?

Effectively collapses a three-dimensional space (two spatial coordinates plus time) onto a single dimension (time) 

Boundary at 60 nmi 
from island at center 

Island 

The time series allows only one label per day
What label ought to be assigned to this day?

***Note***
Notional map
for illustrative 
purposes only!

What is the fundamental statistical analysis problem?
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Effectively collapses a three-dimensional space (two spatial coordinates plus time) onto a single dimension (time) 

Because we are testing for a statistical difference between null strandings (no sonar) and
coincident strandings (sonar) days in a time series, this must be labeled as a sonar day

The stranding, S1, isstatisticallyneither null nor coincident (in time series)

Doriginal →

Appendix E: Uncertainties − additional comments

Consider
a single

day-long
slice in
time
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Effectively collapses a three-dimensional space (two spatial coordinates plus time) onto a single dimension (time) 

In the extreme limit when the 
size of the island ≈ 0,

ambiguities do not arise.
All strandings are either 

coincident or null.
Most datasets implicitly 
make this assumption

Case A

When island size ≈ 60 nmi,
ambiguities may arise.

Non-coincident strandings may
be incorrectly labeled coincident 

because they appear within six days, but 
they are too far separated in space.

Neither are they null because
they do appear on sonar days

Case B

As island size increases beyond 60 nmi,
there is an increasing likelihood that 
ambiguous labels will arise on any

given day in a dataset

Case C

Pigeonholing is increasing likely to happen as rIsland increases relative to 60 nmi 

Appendix E: Uncertainties − additional comments
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Toward a possible mitigation

Estimate null and coincident stranding rates using combined space plus time data

NullS

Max Max
1

Number of strandings  of effective sonar zones
Total area - Area of effective sonar zones A

Number of strandings 

Maxs

i
i

Noutside

t x

ins
=

≡ =
⋅ −

≡

∑
0

CS

Null - stranding rate

Coincident - stranding rate

=

=

λ

λ CoinS

1

 of effective sonar zones
Area of effective sonar zones A

Maxs

i
i

Nide

=






 =




∑

***Note***
Notional map
for illustrative 
purposes only

Appendix E: Uncertainties − additional comments
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Appendix F: Necropsy-dependent stranding decay functions

Alive Sick Fresh Dead

Long Dead Advanced Decomposition

• The Mathematica source code developed for this study (see Appendix F) includes an option 
that tailors stranding decay (i.e., a probabilistic assignment of an actual stranding date 
given an observed date) as a function of necropsy state: alive, sick, fresh dead, long dead, 
and advanced decomposition

• We show an illustrative set (but many other forms are possible)
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δMax= 6

∆Max= 6

Ave number of CS ≈  3.64

0.010

DMax = 4317 days, DSonar = 263, NS,Obs= 9

0.097

0.303

0.425

0.165

Mariana Islands (Simonis et al. area of study)

Poisson test, BET, and FET
all yield α > αc = 0.05

No scenarios satisfy both 
Type I and Type II tests

Observed CS < Required CS

Appendix G: Mariana Islands case study
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δMax= 6

∆Max= 6

DMax = 4317 days, DSonar = 263, NS,Obs= 9

f ≥ CSFull/Min ≈ 0.864 

CSFull/Min = 1

f ≥ CSFull/Min ≈ 0.689 

CSFull/Min = 1

Monte Carlo Algorithm #2a Monte Carlo Algorithm #2b

Cannot reject H0Mariana Islands (Simonis et al. area of study)

Appendix G: Mariana Islands case study
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δMax= 6

SOCAL

DMax = 6943 days, DSonar = 877, NS,Obs= 144

Ave number
of strandings

≈  39.43

30 40 50

Observed CS < Required CS

Poisson test, BET, and FET
all yield α > αc = 0.05

No scenarios satisfy both 
Type I and Type II tests

Appendix G: SOCAL case study
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δMax= 6

DMax = 6943 days, DSonar = 877, NS,Obs= 144

0.20 0.05

f ≥ CSFull/Min ≈ 0.886 

CSFull/Min = 33

Monte Carlo Algorithm #2a

Cannot reject H0SOCAL

Appendix G: SOCAL case study
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Appendix H: Mathematica functions
• 2,000+ lines of source code have been developed for this study

 Require Wolfram Mathematica versions 12.0 and higher
 Available upon request

• Main function clusters
 Data import/information-extract/necropsy functions
 Modify input data files (for scenario development/experimentation)

– Generate random dataset, add/subtract strandings, add/delete days, add sonar
 Visualize timeline
 Stranding-decay/sonar-discount/fractional coincident stranding functions
 Statistical tests: significance and power estimates

– Poisson means test 
– Fisher's exact test 
– Exact binomial test 

 Poisson confidence intervals and mean "Accept/Reject Criteria Chart" (PM-ARCC)
 Estimate # of coincident strandings required to pass Type I and Type II tests
 Monte Carlo simulations

– Monte Carlo algorithms #1/modified-1, #2a, and #2b
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Appendix I: Sample Mathematica session (1/3)

TestInputArray = GenerateRandomDataSet[
    1 (*TypeFlag_ :: 1=use stranding NUMBER, 2=use stranding RATE*),
    100 (*NumberOfDays_*),
    5 (*NumberOfSonarDays_*),
    5 (*NumberOfStrandings_*)
   ];

PlotTimelineData[
   TestInputArray,
   6 (*SonarCoincidenceTimeDelta_*),
   100 (*NumberOfDaysPerRow_*),
   1000 (*ImageSizeDesired_*),
   1, (*MeshDesired_ :: 0=NO, 1=YES*)
   .25, (*OpacityDesired_ :: Nominal = 1*)
   .05 (*AspectRatioDesired_ :: 0 = automatic*)
 ]

Note
Text highlighted in light 

gray between the 
parentheses represents 

comments, not executable 
source code
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MonteCarloAlgorithm1[
 TestInputArray,
 "s"
 (*OutPutFlag_ =
  "s"=JUST the GRID of salient statistics,
  -|x|=ADD GRID of salient statistics,
   0=Prob(CS) vs. CS plot,
   1=MAIN 2-by-2 Plots, 
   2=Plots 'sonar-discount' and 'stranding-decay' functions, 
   3=Timeline Plot,
   4=MAIN 2-by-2 Plots + test Arrays/Summary, 
   5=ONLY test Arrays/Summary, 
   6=DEBUG
 *),
 0, (*AddOneUnobservedNonCoincidentStrandingFlag_ :: 0=NO,1=YES :: addition 
ONLY changes value of ProbabilityOfStrandingNull, and therefore, 
ExpectedNumberOfStrandings*)
 0, (*AddSonarDaysNum_ :: Nominal =0, basic 'robustness' probe = 1, but can use 
any positive number :: Monte Carlo sampling includes random insertion of 
specified number of additional sonar days*)
 100 (*NumberOfDaysPerRowForVisualTimeline_*),
 "Test Text", (*DescriptiveTextStringForVisualTimeline__ :: Text to displkay 
'between QUOTES' for visual timeline display*)
 1200 (*ImageSizePixelsDesired_ :: Nominal for Andy Home PC = 1400*),
 1000 (*NumberOfSamples_ :: for Monte Carlo*),
 0.05, (*DesiredPValueToRejectNullHypothesis_ :: nominal -> 0.05*)
 0.8, (*DesiredStatisticalPower_ :: nominal -> 0.8*)
 6, (*LastSonarDayToStrandingCoincidenceIntervalThreshold_ :: nominal=6 
days*)
 6, (*LastSonarDayToStrandingCoincidenceIntervalThresholdMax_ :: for extended 
parse*)
 (*------------*)
 (*Necropsy Flag*)
 (*------------*)
 0, (*NecropsyFlag_ :: 0=use DEFAULT values, 1=use NECROPSY-STATE-
SPECIFIC stranding-decay parameters*)
 (*-----------------------------------*)
 (*Stranding Decay function parameters*)
 (*-----------------------------------*)
 0 (*DayMin_*), 6 (*DayMax_*), 1 (*FuncMin_*), 0 (*FuncMax_*), 
 1 (*PowerN_*), 1 (*MinValue"At0ORMaxFlag_*),
 

(*---------------------------------------------------------*)
  (*Stranding Decay function parameters :: NECROPSY-STATE-SPECIFIC
  ... these are used ONLY if NecropsyFlag==0*)
  (*...These must all be ARRAYS :: 
  1=alive, 
     2=sick/injured, 
     3=fresh dead,
     4=long dead/moderate decomposition, 
     5=advanced decomposition*)
 (*---------------------------------------------------------*)
 {0,0,0,4,14}, (*StrandingDecayDayMinNecropsyStateSpecific_*)
 {0,1,3,14,30}, (*StrandingDecayDayMaxNecropsyStateSpecific_=Subscript[Δ, Max] *)
 {1,1,1,1,1}, (*StrandingDecayFuncMinNecropsyStateSpecific_*)
 {1,0,0,0,0}, (*StrandingDecayFuncMaxNecropsyStateSpecific_*)
 {0,1,1,1,1}, (*StrandingDecayPowerNNecropsyStateSpecific_*)
 {1,1,1,1,1}, (*StrandingDecayMinValueAt0ORMaxFlagNecropsyStateSpecific_*)
 (*-----------------------------------*)
 (*Sonar discount function parameters*)
 (*-----------------------------------*)
 0 (* SonarDiscountFunctionTypeFlag_ :: 0 = nominal/ramp-style; 1 = sigmoid*),
 0 (*SonarDiscountDayMin_*), 0 (*SonarDiscountDayCen_*),
 0 (*SonarDiscountImpactDelay_*), 6 (*SonarDiscountDayMax_*),
 1 (*SonarDiscountFuncMin_*), 0 (*SonarDiscountFuncMax_*), 
 0 (*SonarDiscountPowerN_*),
 (*-----------------------------------*)
 (*Statistical test parameters*)
 (*-----------------------------------*)
 10 (*Lambda0MultiplicativeFactorMax_*),
 50 (*Lambda1Samples_*),
 5 (*BinomialExactTestPowerCountDeltaMax_*),
 (*-----------------------------------*)
 (*Timeline plot display parameters*)
 (*-----------------------------------*)
 1200 (*ImageSizePixelsDesiredTimeline*),
 1, (*MeshDesired_ :: 0=NO, 1=YES*)
 .5, (*OpacityDesired_ :: Nominal = 1*)
 .1, (*AspectRatioDesired_ :: 0 = automatic*)
 1 (*PValueAndPowerPlotMaxFlag_ :: 0=adaptive; 1=use '1' as MAX for all plots*)
 ]

Appendix I: Sample Mathematica session (2/3)



Copyright © 2024 CNA. All rights reserved 84

MonteCarloAlgorithm1[
 TestInputArray,
 0
 (*OutPutFlag_ =
  "s"=JUST the GRID of salient statistics,
  -|x|=ADD GRID of salient statistics,
   0=Prob(CS) vs. CS plot,
   1=MAIN 2-by-2 Plots, 
   2=Plots 'sonar-discount' and 'stranding-decay' functions, 
   3=Timeline Plot,
   4=MAIN 2-by-2 Plots + test Arrays/Summary, 
   5=ONLY test Arrays/Summary, 
   6=DEBUG
 *),
       [… other input parameters left out for space …]
 1000 (*NumberOfSamples_ :: for Monte Carlo*),
 0.05, (*DesiredPValueToRejectNullHypothesis_*)
 0.8, (*DesiredStatisticalPower_ :: π = 0.8*)
       [… other input parameters left out for space …]
 ]

Appendix I: Sample Mathematica session (3/3)

MonteCarloAlgorithm1[
 TestInputArray,
 "s"
 (*OutPutFlag_ =
  "s"=JUST the GRID of salient statistics,
  -|x|=ADD GRID of salient statistics,
   0=Prob(CS) vs. CS plot,
   1=MAIN 2-by-2 Plots, 
   2=Plots 'sonar-discount' and 'stranding-decay' functions, 
   3=Timeline Plot,
   4=MAIN 2-by-2 Plots + test Arrays/Summary, 
   5=ONLY test Arrays/Summary, 
   6=DEBUG
 *),
       [… other input parameters left out for space …]
 1000 (*NumberOfSamples_ :: for Monte Carlo*),
 0.05, (*DesiredPValueToRejectNullHypothesis_*)
 0.8, (*DesiredStatisticalPower_ :: π = 0.8*)
       [… other input parameters left out for space …]
 ]
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Statistical Analysis of Marine Mammal 
Stranding Events: Executive Summary 


Navy operations, training, and testing at seamost notably active sonarcan potentially harm 
marine mammals and lead to stranding events. However, it is difficult to determine whether a 
stranding was caused by Navy sonar (or any other human activity) or was a natural event. The Navy 
is thus often challenged by non-governmental organizations and federal agencies on the issue of 
active sonar harming marine mammals.  


Previous analysis of stranding events 
Following a stranding event, researchers often examine time-space correlations between Navy sonar 
use and the stranding in the area of interest. However, there is no universally agreed-upon 
methodology for conducting such studies. The goal of this project is to develop a statistically rigorous 
approach for inferring correlations (or lack thereof) between strandings and sonar that respects the 
inherent limitations and uncertainties of the available data.  


Previous analyses have been limited by two statistical shortfalls: 


• Shortfall #1: Sole reliance on the null stranding rate. The observed null stranding rate 
(estimated by dividing the number of observed strandings on days without sonar by the total 
number of days without sonar) is typically used as the de facto average null stranding rate. 
However, if we assume that stranding events are distributed according to an underlying 
Poisson random process, the observed number of strandings represents only a single sample 
in a statistical distribution, the true average of which may be any number that lies within a 
range of numbers (called the confidence interval). 


• Shortfall #2: Ignoring the probability of a false negative (Type II) error. Inferences are 
drawn on the basis of adjudicating only Type I (i.e., false positive) errors; however, doing so 
is insufficient because we must simultaneously minimize the probability of making Type II 
(i.e., false negative) errors. That is, we must also minimize the probability of erroneously 
accepting the null hypothesis (i.e., that strandings are uncorrelated with sonar) when it is 
actually false. Unfortunately, this test of power (as it is called) is seldom, if ever, performed. 


In developing a more rigorous approach, including mitigating these statistical shortfalls, we have 
both refined existing methodology and developed a battery of new statistical tests. 


A more rigorous method 
We have developed a method that effectively administers both Type I and Type II tests 
simultaneously. Rather than rejecting the null hypothesis based on a single means test of significance 
(or P-value), the decision to reject the null hypothesis follows only if the number of observed 
coincident strandings is greater than the minimum number required to simultaneously satisfy both 
Type I and Type II tests. This approach imposes a more stringent set of conditions that must be 
satisfied to reject the null hypothesis and is therefore a statistically stronger test to apply. Because it 
is stronger, we can generally expect fewer stranding events to be statistically correlated (i.e., 
coincident) with sonar than are found through existing methods that test for only Test I errors.  
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New tool for analysis #1: the Accept/Reject Criteria Chart 


We developed a chart (Figure 1) that identifies the statistical inference entailed by given numbers of 
expected coincident strandings (under the null hypothesis) and observed coincident strandings.  


Figure 1.  Accept/Reject Criteria Chart  


 


Source: CNA. 


The chart maps each pair of values (expected and observed) to one of three inferential results: 


1. Reject the null hypothesis. The statistics pass both Type I and Type II error tests, so a statistical 
correlation exists. (The red area in Figure 1.) 


2. Cannot reject the null hypothesis. Because the P-value exceeds the desired minimum, no 
statistical correlation exists. (The green area in Figure 1.) 


3. Provisionally reject the null hypothesis. The statistics pass the Type I test but not the Type II 
test; the determination of significance therefore lacks sufficient statistical power. (The yellow 
area in Figure 1).  


Because this chart can be precomputed to accommodate a large set of possible real-world scenarios, 
stakeholders can use it to identifyat a glancescenarios in which the statistical evidence to reject 
or not reject the null hypothesis is strong enough to warrant drawing an immediate inference. 
Stakeholders can then distinguish these scenarios from others that require additional analysis 
(specifically, those in the “provisionally reject the null hypothesis” class). 
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New tool for analysis #2: the Stranding Correlation Analysis Playbook  
The underlying data contain several sources of uncertainty, including the following: 


1. Whether a given stranding event is coincident with sonar. 
2. The actual stranding date (which may be different from the observed stranding date). 
3. The possibility that a given area of operations may include other unreported strandings.  
4. The presence of non-Navy sonar. 


To mitigate these sources of uncertainty, we developed a set of Monte Carlo simulations. Our report 
also introduces, describes, and provides illustrative use cases for 10 statistical tests and analysis 
tools, most of which we developed specifically for this study.  


However, the proper application of these tests requires a threshold level of knowledge regarding 
mathematical and statistical modeling methods. Therefore, some stakeholders may not immediately 
recognize which tests are best suited for a given scenario or whether a given test is necessary (or 
even applicable). To mitigate this challenge, we developed the Stranding Correlation Analysis 
Playbook (SCAP) as the main result of this study (Figure 2). 


Figure 2.  Stranding Correlation Analysis Playbook  


 


Source: CNA. 


The SCAP is a flowchart that analysts, stakeholders, and decision-makers can use to navigate the 
myriad options of the inferential process at various levels of granularity and specificitya process 
that culminates in a decision to “Reject” or “Cannot Reject” the null hypothesis.  
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The SCAP flowchart weaves together five increasingly refined inferential pathways through the 
battery of statistical tests and analysis tools described in this report.  


• The first and shortest pathway (highlighted in gray at the top of Figure 2) denotes the current 
method (Test 1), which typically consists of administering only a single test for significance. 


• The second pathway (highlighted in the green box) adds two tests to strengthen the veracity 
of whatever final inference is drawn, and it simultaneously accounts for both Type I (false 
positive) and Type II (false negative) errors, as described earlier. This is the pathway we 
recommend, at a minimum, as an immediate and rigorous refinement of the current 
method. 


For additional confirmation or to administer more stringent tests that better account for 
uncertainties in the data, other optional pathways are illustrated in Figure 2 and are described in the 
report. 
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Statistical Analysis of Marine Mammal 
Stranding Events: Executive Summary 


Navy operations, training, and testing at seamost notably active sonarcan potentially harm 
marine mammals and lead to stranding events. However, it is difficult to determine whether a 
stranding was caused by Navy sonar (or any other human activity) or was a natural event. The Navy 
is thus often challenged by non-governmental organizations and federal agencies on the issue of 
active sonar harming marine mammals.  


Previous analysis of stranding events 
Following a stranding event, researchers often examine time-space correlations between Navy sonar 
use and the stranding in the area of interest. However, there is no universally agreed-upon 
methodology for conducting such studies. The goal of this project is to develop a statistically rigorous 
approach for inferring correlations (or lack thereof) between strandings and sonar that respects the 
inherent limitations and uncertainties of the available data.  


Previous analyses have been limited by two statistical shortfalls: 


• Shortfall #1: Sole reliance on the null stranding rate. The observed null stranding rate 
(estimated by dividing the number of observed strandings on days without sonar by the total 
number of days without sonar) is typically used as the de facto average null stranding rate. 
However, if we assume that stranding events are distributed according to an underlying 
Poisson random process, the observed number of strandings represents only a single sample 
in a statistical distribution, the true average of which may be any number that lies within a 
range of numbers (called the confidence interval). 


• Shortfall #2: Ignoring the probability of a false negative (Type II) error. Inferences are 
drawn on the basis of adjudicating only Type I (i.e., false positive) errors; however, doing so 
is insufficient because we must simultaneously minimize the probability of making Type II 
(i.e., false negative) errors. That is, we must also minimize the probability of erroneously 
accepting the null hypothesis (i.e., that strandings are uncorrelated with sonar) when it is 
actually false. Unfortunately, this test of power (as it is called) is seldom, if ever, performed. 


In developing a more rigorous approach, including mitigating these statistical shortfalls, we have 
both refined existing methodology and developed a battery of new statistical tests. 


A more rigorous method 
We have developed a method that effectively administers both Type I and Type II tests 
simultaneously. Rather than rejecting the null hypothesis based on a single means test of significance 
(or P-value), the decision to reject the null hypothesis follows only if the number of observed 
coincident strandings is greater than the minimum number required to simultaneously satisfy both 
Type I and Type II tests. This approach imposes a more stringent set of conditions that must be 
satisfied to reject the null hypothesis and is therefore a statistically stronger test to apply. Because it 
is stronger, we can generally expect fewer stranding events to be statistically correlated (i.e., 
coincident) with sonar than are found through existing methods that test for only Test I errors.  
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The chart maps each pair of values (expected and observed) to one of three inferential results: 


1. Reject the null hypothesis. The statistics pass both Type I and Type II error tests, so a statistical 
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2. Cannot reject the null hypothesis. Because the P-value exceeds the desired minimum, no 
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3. Provisionally reject the null hypothesis. The statistics pass the Type I test but not the Type II 
test; the determination of significance therefore lacks sufficient statistical power. (The yellow 
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Because this chart can be precomputed to accommodate a large set of possible real-world scenarios, 
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or not reject the null hypothesis is strong enough to warrant drawing an immediate inference. 
Stakeholders can then distinguish these scenarios from others that require additional analysis 
(specifically, those in the “provisionally reject the null hypothesis” class). 
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New tool for analysis #2: the Stranding Correlation Analysis Playbook  
The underlying data contain several sources of uncertainty, including the following: 


1. Whether a given stranding event is coincident with sonar. 
2. The actual stranding date (which may be different from the observed stranding date). 
3. The possibility that a given area of operations may include other unreported strandings.  
4. The presence of non-Navy sonar. 


To mitigate these sources of uncertainty, we developed a set of Monte Carlo simulations. Our report 
also introduces, describes, and provides illustrative use cases for 10 statistical tests and analysis 
tools, most of which we developed specifically for this study.  


However, the proper application of these tests requires a threshold level of knowledge regarding 
mathematical and statistical modeling methods. Therefore, some stakeholders may not immediately 
recognize which tests are best suited for a given scenario or whether a given test is necessary (or 
even applicable). To mitigate this challenge, we developed the Stranding Correlation Analysis 
Playbook (SCAP) as the main result of this study (Figure 2). 
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The SCAP is a flowchart that analysts, stakeholders, and decision-makers can use to navigate the 
myriad options of the inferential process at various levels of granularity and specificitya process 
that culminates in a decision to “Reject” or “Cannot Reject” the null hypothesis.  
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The SCAP flowchart weaves together five increasingly refined inferential pathways through the 
battery of statistical tests and analysis tools described in this report.  


• The first and shortest pathway (highlighted in gray at the top of Figure 2) denotes the current 
method (Test 1), which typically consists of administering only a single test for significance. 


• The second pathway (highlighted in the green box) adds two tests to strengthen the veracity 
of whatever final inference is drawn, and it simultaneously accounts for both Type I (false 
positive) and Type II (false negative) errors, as described earlier. This is the pathway we 
recommend, at a minimum, as an immediate and rigorous refinement of the current 
method. 


For additional confirmation or to administer more stringent tests that better account for 
uncertainties in the data, other optional pathways are illustrated in Figure 2 and are described in the 
report. 
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actually false. Unfortunately, this test of power (as it is called) is seldom, if ever, performed. 
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A more rigorous method 
We have developed a method that effectively administers both Type I and Type II tests 
simultaneously. Rather than rejecting the null hypothesis based on a single means test of significance 
(or P-value), the decision to reject the null hypothesis follows only if the number of observed 
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The chart maps each pair of values (expected and observed) to one of three inferential results: 


1. Reject the null hypothesis. The statistics pass both Type I and Type II error tests, so a statistical 
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New tool for analysis #2: the Stranding Correlation Analysis Playbook  
The underlying data contain several sources of uncertainty, including the following: 


1. Whether a given stranding event is coincident with sonar. 
2. The actual stranding date (which may be different from the observed stranding date). 
3. The possibility that a given area of operations may include other unreported strandings.  
4. The presence of non-Navy sonar. 


To mitigate these sources of uncertainty, we developed a set of Monte Carlo simulations. Our report 
also introduces, describes, and provides illustrative use cases for 10 statistical tests and analysis 
tools, most of which we developed specifically for this study.  


However, the proper application of these tests requires a threshold level of knowledge regarding 
mathematical and statistical modeling methods. Therefore, some stakeholders may not immediately 
recognize which tests are best suited for a given scenario or whether a given test is necessary (or 
even applicable). To mitigate this challenge, we developed the Stranding Correlation Analysis 
Playbook (SCAP) as the main result of this study (Figure 2). 
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The SCAP is a flowchart that analysts, stakeholders, and decision-makers can use to navigate the 
myriad options of the inferential process at various levels of granularity and specificitya process 
that culminates in a decision to “Reject” or “Cannot Reject” the null hypothesis.  
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The SCAP flowchart weaves together five increasingly refined inferential pathways through the 
battery of statistical tests and analysis tools described in this report.  


• The first and shortest pathway (highlighted in gray at the top of Figure 2) denotes the current 
method (Test 1), which typically consists of administering only a single test for significance. 


• The second pathway (highlighted in the green box) adds two tests to strengthen the veracity 
of whatever final inference is drawn, and it simultaneously accounts for both Type I (false 
positive) and Type II (false negative) errors, as described earlier. This is the pathway we 
recommend, at a minimum, as an immediate and rigorous refinement of the current 
method. 


For additional confirmation or to administer more stringent tests that better account for 
uncertainties in the data, other optional pathways are illustrated in Figure 2 and are described in the 
report. 
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