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Abstract—Underwater acoustics is a key tool for monitor-
ing marine environments and understanding marine mammal
populations. However, extracting meaningful information from
passive acoustic recordings poses challenges due to overlapping
signals, species-specific vocalization behavior, and missed and
false detections. Many methods for marine mammal tracking
and localization rely on human operators for signal detection
and measurement association, which is a subjective and labo-
rious process. In this paper we demonstrate a fully automated
framework for marine mammal tracking and localization using
wide-baseline arrays based on a multi-target Bayesian approach.
Leveraging a “track-before-localize” strategy and fusing informa-
tion from multiple sensors and virtual sensors, the framework
eliminates the need for detection, classification, or association
steps, thereby improving efficiency and objectivity. The feasibility
and performance of the proposed framework are demonstrated
using real-world data of a clicking sperm whale from the US
Navy’s AUTEC test range.

I. INTRODUCTION

Underwater acoustics plays a key role in monitoring the
marine environment, providing essential data to various gov-
ernmental agencies and stakeholders about endangered marine
mammal populations [1]. Marine mammals produce a variety
of sounds, which can be used to identify and monitor the in-
dividual species [2]. Understanding species occurrence, abun-
dance and distribution is a key element in assessing ecosystems
health, implementing and assessing mitigation measures.

In order to extract meaningful information from passive
acoustics recordings, information from multiple sensors must
be reconciled, and overlapping signals need to be extracted,
tracked and localized. This problem incorporates classical
multi-sensor, multi-target tracking challenges such as signal
detection, measurement origin uncertainty, and targets ap-
pearance and disappearance, which are common challenges
across a wide range of engineering disciplines [3]–[6]. In
addition, typical animal vocalization behaviour can lead to
significant variations in signal availability and characteristics
across species, which can hinder the monitoring output [7].

A. Previous work- marine mammal tracking and localization

Various types of hydrophone arrays, including fixed, towed,
and drifting arrays, are used to localize and track marine
mammals [8]–[11]. Most marine mammal localization meth-
ods rely on the Time Difference Of Arrival (TDOA) of the
signal between pairs of hydrophones (or “virtual” hydrophones
to incorporate reflections). Among these, model-based local-
ization methods can be applied when iso-speed assumptions
are violated [9], [12]–[14]. Model-based methods also provide
a framework that allows environmental uncertainty (e.g. in
sound speed and phone position) to be propagated forward to
give corresponding error bounds and uncertainties in estimated
locations.

Typically, localization methods rely on (a) detecting the
signals of interest (e.g. echolocation clicks), (b) classifying,
associating, and pruning direct and reflected arrivals [14]–
[16], and (c) extracting TDOAs and/or Direct Reflected Time
Differences (DRTDs) to locate the sources. In multiple animal
situations, various approaches that use single animal localiza-
tion methods, after associating viable TDOAs, have been used.
These usually rely on either a source separation/association
step [8], [17], or on a spurious TDOA (from incorrect as-
sociations) pruning step [16], [18]–[20]. In most methods
human operators are needed to manually make decisions on the
presence of animals and perform measurement-to-track asso-
ciations to form TDOA tracks, or associate tracked TDOAs
between different hydrophone pairs to obtain localization,
which is a time consuming and subjective process. Moving
toward more general methods, Ref. [9] introduced a multiple-
animal model-based localization method, relying on clustering
and fixed rules to associate (and reject) detections during the
tracking phase. Ref. [21] introduced a multi-target tracking
method based on multi hypothesis tracking to track clicking
animals.

Situations involving multiple sources, false alarms, and



missed detections are ideally suited for multi-target tracking
(MTT) approaches that jointly estimate the number, states
and trajectories of targets. Automated approaches based on
multi-target Bayesian methods have recently been proposed
for marine mammal tracking and localization [6], [11], [22].
Ref. [6] used an MTT approach based on Gaussian Mixture
Probability Hypothesis Density (GM-PHD) [23] to extract
TDOAs of false killer whales from towed array data using joint
whistle and echolocation click information. Ref. [11] used a
graph-based MTT method to track clicking beaked whales
with compact volumetric arrays. Ref. [22] used both GM-PHD
and graph-based MTT methods to track singing humpback
whales with vector sensors.

B. Contributions

The fundamental question addressed in this paper is the
feasibility of developing a completely automated framework,
and thus eliminating human operator steps, for marine mam-
mal tracking from passive acoustic data from wide-baseline
arrays. The contributions are:

• Development of a fully automated framework for tracking
biological sources underwater by leveraging a “track-
before-localize” strategy that does not require detection,
classification, or association steps.

• Fusing information from multiple sensors, as well as
virtual sensors, to better inform 3D spatial estimates
(virtual sensors are constructed by exploiting underwater
multipath arrivals in the recordings, and are the mirror
image of the real sensor positions with respect to the sea
surface/seabed).

• Demonstration of the tracking and localization perfor-
mance on the real-world data from the US Navy’s
AUTEC test range.

II. BACKGROUND

A. Random Finite Set tracking: the PHD filter

Target tracking is often achieved using Bayesian methods
[24], [25]. Among these is the random finite sets (RFS) frame-
work [25]. RFS prompted development of non-traditional MTT
approaches that are data-association free and can sometimes
outperform traditional MTT methods [25]. RFS provides a
Bayesian framework for recursive update of the multi-target
posterior density based on the noisy measurements, and it
incorporates the missed detections and false alarms in the
problem formulation. Detailed information can be found in
Refs [25] and [3]. The filters developed within this framework
have been successfully applied to MTT applications across a
broad range of disciplines including tracking targets in sonar
[4], tracking multiple speakers in reverberant environments [5],
and tracking multiple biological sources in spectrograms and
correlograms [6], [26], [27].

The Probability Hypothesis Density (PHD) filter is one of
the filters formulated within the Random Finite Sets (RFS)
framework [28]. It is an approximation to the multi-target
Bayes filter, and propagates the first-order statistical moment
(termed the PHD) of the multi-target posterior distribution at

TABLE I
HYDROPHONE RELATIVE LOCATIONS AND DEPTHS (REF. [31])

Hydrophone x (m) y (m) z (m)

G 10658.04 -14953.63 -1530.55
H 12788.99 -11897.12 -1556.14
I 14318.86 -16189.18 -1553.58
J 8672.59 -18064.35 -1361.93
K 12007.50 -19238.87 -1522.54

discrete time intervals [28]. An analytical solution to the PHD
filter, termed the Gaussian Mixture Probability Hypothesis
Density (GM-PHD) [23], is obtained by assuming linear Gaus-
sian models for the underlying dynamics and noise processes.
The GM-PHD filter approximates the PHD function by a
mixture of weighted Gaussian components, and propagates it
recursively via a two-stage prediction and update procedure.
At each time step, new targets are introduced via the birth
model, target states are estimated based on the posterior PHD,
and computational efficiency is maintained through pruning
and merging techniques [23]. Extensions to the measurement
model that incorporate additional features have been proposed
to better discriminate between targets and clutter, and strate-
gies to reduce the bias in the number of estimated targets when
initiating new targets based on measurements have also been
proposed [6], [29], [30].

III. TRACKING APPROACH

A. Data

Development and testing were accomplished on the sperm
whale (Physeter macrocephalus) “bench-mark” data from the
2nd International Workshop on Detection Classification Local-
ization and Density Estimation (DCLDE). The data come from
the US Navy’s Atlantic Undersea Test and Evaluation Center
(AUTEC) test range and were prepared by the Naval Undersea
Warfare Center (NUWC) [31]. The AUTEC range consists of
wideband, bottom-mounted hydrophones. The DCLDE dataset
consists of data from five sensors located approximately 2 - 4
nmi apart, at a depth of roughly 1500 m (Table I). One dataset
consists of 25 min of recordings of a single vocalizing sperm
whale. The dataset was corrected for a time offset of 2.3359
seconds to properly time-align the recordings [31]. While no
real ground truth data exists for this dataset, prior analyses
[14]–[16] provide a comparison point for this study.

B. Signal processing and tracking workflow

Our proposed framework consists of two main parts (Fig. 1).
In the first part, a “track-before-localize” strategy is employed
to track TDOA information from multiple pairs of sensors.
In the second part, a “localize-then-track” strategy is used to
track sources in the 3-D spatial domain.

The data is first preprocessed by applying a fourth-order
bandpass Butterworth filter with cutoff frequencies of 2 and 20
kHz. We use both cross- and auto-correlation techniques [32],
[33] to obtain correlograms (cross- and auto-correlograms) for
each sensor pair. Cross-correlograms and auto-correlograms



Fig. 1. Overall workflow of our framework. The framework consists of two
parts: Part 1- “Track-before-Localize” and Part 2- “Localize-then-Track”.

are constructed by computing an envelope of the generalized
cross- or auto-correlation function across a 10 s window, then
advancing the window by 2.5 s step (i.e., 75% overlap) across
the full recording length. Correlograms are normalized so that
the background has a Rayleigh parameter of 1 [6]. Cross-
correlograms are used to identify TDOAs of the signal’s direct
path between a pair of sensors. They also contain “ghost
tracks” that originate from the close agreement between a
signal’s direct and surface-reflected paths. Auto-correlograms
are used to identify DRTDs of the signal’s direct and surface-
reflected paths on the same sensor. Auto-correlograms also
contain “ghost tracks” from agreement between direct arrivals
of different clicks and direct and surface-reflected arrivals of
different (successive) clicks.

In contrast to most marine mammal tracking approaches,
we do not try to classify and/or eliminate “ghost tracks”.
Rather, we track all targets with a version of the GM-
PHD filter: GM-PHD-SA filter (“S” stands for the separate
prediction and update for the newborn and persistent targets,
and “A” stands for the amplitude) [6]. This filter uses amplitude
information as an additional feature (to time) and updates
newborn and persistent targets separately [6], [29], [30]. It
outputs automatically extracted TDOA and DRTD tracks, and
can be thought of as a “decluttering” step for the next part
(“Localize-then-Track”) of the framework (Fig. 1). The GM-
PHD-SA tracking process is performed on each sensor pair
(for TDOAs) and each sensor with its virtual counterpart (for
DRTDs). This results in a set of TDOA tracks for each sensor
pair and a set of DRTDs for each sensor.

In the second (“Localize-then-Track”) part of our frame-
work, the extracted TDOA and DRTD tracks are used to
compute ambiguity surfaces. Ambiguity surfaces, which are
probabilistic indicators of source positions [9], [12], [14],
are created for each time step k by comparing modeled
TDOAs/DRTDs to the measurements (extracted tracks). The
ambiguity values for a candidate source position w between
phones i and j are calculated as:

ASDRTD(w, k) ∝
∏
ii

exp

[
−1

2σ2
ii

(τii − τ̂ii(w, k))
2

]
, (1)

ASTDOA(w, k) ∝
∏
ij

exp

[
−1

2σ2
ij

(τij − τ̂ij(w, k))
2

]
, (2)

where τii and τij are measured DRTDs and TDOAs, respec-
tively; τ̂ii(w) and τ̂ij(w) are modelled DRTDs and TDOAs,
respectively, at position w = [px, py, pz]; and σii and σij are
standard deviations in DRTD and TDOA errors, respectively,
and account for errors in arrival-time measurements, sensor
positions, and propagation model. The product in Eqs. (1) and
(2) is taken over minimum number of phones nmin = 4, and
the combination of nmin that results in the highest ambiguity
value at given w is retained.

In results presented here, the modelled τ̂ii(w) and τ̂ij(w)
are obtained using a Bellhop ray tracing propagation model
[34]. Bellhop was used to create a lookup table of direct and
surface-reflected arrivals for a list of candidate source ranges
and depths for each receiver. We used the same historic sound
speed profile as in [14] (taken from the Generalized Digital
Environmental Model at 24° 45’ N, 77° 45’ W for March). The
depth list varied from 0 to 1700 m with 25 m increments, and
the range list varied from 0 m to 10 km with 25 m increments.
Since arrival times varied smoothly for the depths and ranges
of interest, required TDOAs and DRTD are interpolated from
the values in the lookup table.

For each sensor pair, the ambiguity surfaces have the highest
values (close to 1) along the hyperboloids of possible source
locations. The hyperboloids intersect with high combined
ambiguity value, Eqs. (1)-(2), at a source location (Fig. 2a).
Low ambiguity values when a constant sound speed is assumed
(Fig. 2b) illustrate the importance of using a propagation
model to account for depth-dependent sound speed profiles
in the dataset.

The total ambiguity surface at a given position w for a given
time k is then:

AS(w, k) ∝ ASDRTD(w, k)×ASTDOA(w, k) (3)

Total ambiguity surfaces are thresholded, then peaks (that
correspond to potential source location) are extracted and
clustered using the k-means clustering algorithm. The number
of clusters is selected automatically through unsupervised
“gap” evaluation statistics [35]. The extracted peaks are con-
nected/tracked using the GM-PHD-SA filter and thus spatial
3-D tracks of animal movement are obtained.

C. Models

We use the GM-PHD-SA filter [6] to track targets in
both TDOA and DRTD and spatial domains. Some of the
parameters in “Track-before-Localize” part of the framework
were estimated based on a small set of hand-annotated data.
For this purpose cross- and auto-correlograms were annotated,
then the parameters were statistically estimated from manually
annotated tracks and from comparison between extracted mea-
surements and hand-annotations. The following assumptions
and models are used.



(a) (b)

Fig. 2. DRTD-based ambiguity surfaces (AS) for the first 10 s of data at 690 m depth (depth at which source is likely located based on this and previous
studies [14], [16]), when using (a) depth-dependent sound speed profile and (b) isospeed profile with c = 1510 m/s. Triangles indicate receiver position. The
colorbars indicate the value of the surface: in case of hyperbolas they reflect the total summed value, and in case of AS they reflect the total product.

The target state xk develops according to a nearly constant
velocity (NCV) model [36] and has survival probability pS =
0.99. At time step k, the target state is defined as:

xk = Fxk−1 + nk−1 =

[
In △In
0n In

]
xk−1 + nk−1 , (4)

where F is the state transition matrix, In and 0n denote n×n
identity and zero matrices respectively, △ denotes the time
step between windows, nk−1 is the zero-mean white noise
process with a system noise covariance matrix Q defined as
[36]:

Q = σ2
ν

[
△4

4 In
△3

2 In
△3

2 In △2In

]
(5)

where σν is the standard deviation of the system noise.
In the “Track-before-Localize” part of the framework, the

state xk = [τ, τ̇ ]T consists of TDOA/DRTD (τ ) and rate of
change of change of TDOA/DRTD (τ̇ ), where [·]T denotes
transpose. In Eqs. (4)-(5) n = 1, and the time step △ = 2.5
s. The standard deviation of the system noise σν in Eq. (5) is
σν = 2 × 10−4 (1/s) and σν = 1.2 × 10−4 (1/s) for TDOAs
and DRTDs respectively. The standard deviation values were
estimated from a set of hand-annotated data.

In the “Localize-then-Track” part of the framework, the state
xk = [px, py, pz, ṗx, ṗy, ṗz]

T consist of position (px, py, pz)
and velocity (ṗx, ṗy, ṗz). In Eqs. (4)-(5) n = 3, and the time
step △ = 10 s. The standard deviation of the system noise σν

in Eq. (5) is σν = 0.1 (m/s2).
A target is detected with a probability of detection pD

and generates a measurement. The measured TDOA/DRTD
positions zk at time step k are related to the target states
through the following measurement model:

zk = Hxk + ηk =
[
In 0n

]
xk + ηk , (6)

where H denotes the measurement matrix, and ηk is the zero-
mean white noise process with a measurement noise matrix R:

R = σ2
rIn , (7)

where σr denotes the standard deviation of the measurement
noise.

In the first part of the framework n = 1 in Eqs. (6)-(7).
The standard deviation of the measurement noise σr in Eq.
(7) is σr = 0.025 s and σr = 0.001 s for TDOAs and DRTDs
respectively. Targets are detected with pD = 0.5 and pD = 0.9
for TDOAs and DRTDs, respectively. σr and pD values were
estimated from a set of hand-annotated data.

In the second part of the framework, targets are detected
with pD = 0.8 and n = 3 in Eqs. (6)-(7). The standard
deviation of the measurement noise is σr = 10 m in Eq. (7).

In addition to time/position, the amplitude (of the envelope
of the cross-/auto-correlation and of the ambiguity surfaces) is
also measured but is not directly propagated through the filter.
Rather, it is used to inform the weights of the newborn targets
and the weights of targets and clutter in the update step of the
filter [6]. New targets are initialized based on measurements
[6], [29], [30] with a birth rate νb. In the first part of the
framework, the birth rate is estimated from hand-annotated
data to be νb = 5 × 10−3 and νb = 2 × 10−3 for TDOAs
and DRTDs, respectively. In the second part of the framework
νb = 5× 10−4.

The clutter measurements are assumed to follow a Poisson
model. They are uniformly distributed over the observation
space: between τmax and τmin with clutter rate rc = 26 in the
“Track-before-Localize” part of the framework, and between
[8673, 14319] × [−19239,−11897] × [0,−1362] with clutter
rate rc = 1 for the “Localize-then-Track” part.
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Fig. 3. Examples of extracted TDOA tracks from phones G and I (a) and
DRTD tracks from phone I (b) with the GM-PHD-SA filter are shown. The
extracted tracks contain both the true target track (which can be detected in
fragments) and false positive tracks (which result from “ghost tracks”). In a)
“ghost tracks” originate from the close agreement between a signal’s direct
and surface-reflected paths (reflected phone G - reflected phone I, direct phone
G - reflected phone I, reflected phone G - direct phone I). In b) “ghost tracks”
originate from agreement between direct arrivals of different clicks and direct
and surface-reflected arrivals of different (successive) clicks. The dark vertical
lines occurring in both a) and b) are instances between click trains (when
animal stops vocalizing and no animal generated signals are produced).

The pruning parameters of the GM-PHD filter are: maxi-
mum allowed number of Gaussian components Jmax = 100,
pruning threshold Tr = 1 × 10−3, merging threshold for
Mahalanobis distance U = 4, and weight threshold wth = 0.5.

IV. RESULTS

In the first part of the framework, the TDOA and DRTD
tracks are successfully extracted from the normalized cross-
and auto-correlograms. An example based on phone pair G
and I is shown in Fig. 3. The extracted tracks are often
fragmented (as seen in the main DRTD track in Fig.3.b). This
happens when there are no measurements available to the filter
for several consecutive steps, either due to animal stopping
vocalizing, change in the signal-to-noise-ratio or when no
reflections are present in the recordings. In addition to the
main TDOA/DRTD tracks “ghost tracks” are also extracted.

Total ambiguity surfaces, Eq. (3), are formed every 10
s based on both TDOA and DRTD extracted tracks, using
σii = σij = 0.009. Peaks in the surface that exceed a
threshold of 0.6 are extracted and clustered to form the 3-
D spatial measurements. Based on these measurements, the
whale is tracked using the GM-PHD-SA filter (Figs. 4-6).
The false positive tracks (“ghost tracks”) from the first part of
the framework do not result in consistent 3-D measurements,
and the filter tracks the whale successfully through gaps in
measurements (Figs. 4-6). The results compare well with
previously reported trajectory in Refs. [15], [16]. In contrast to
other methods applied to this dataset, no explicit detection of
the echolocation clicks, or pruning of the reflections or false
targets was performed: these get resolved automatically within
our proposed signal processing workflow.

V. CONCLUSION

This paper presents a fully automated framework for track-
ing marine mammals using passive acoustic data from wide-
baseline arrays. The approach consists of “Track-before-

Fig. 4. 2-D view of the automatically extracted spatial track of a sperm
whale with the GMPHD-SA filter. Black dots denote extracted measurements
from the combined ambiguity surfaces; colored line denotes extracted track;
triangles denote receiver positions. The results compare well to Fig. 6 in Ref
[16] and Fig. 3 in Ref [15].

Fig. 5. 3-D view of the automatically extracted spatial track of a sperm
whale with the GMPHD-SA filter. Black dots denote extracted measurements
from the combined ambiguity surfaces; colored line denotes extracted tracks.
Projections onto the three planes are shown with dotted lines.

Localize” and “Localize-then-Track” steps, fusing information
from multiple sensors, including virtual sensors. The GM-
PHD-SA filter is used to track targets in TDOA and 3-D spatial
domains, and the results compare well with previous studies
on the same real-world dataset.

This work is an initial proof of concept showing that the
proposed framework can track a biological target from raw
passive acoustic data without the input from a human operator.
This is a significant advancement compared to conventional
bio-acoustics methods, as it drastically reduces processing time



Fig. 6. Automatically extracted spatial track of a sperm whale with the
GMPHD-SA filter. x (top), y (middle) and z (bottom) coordinate through
time. Black o denote extracted measurements from the combined ambiguity
surfaces; and colored line denotes extracted track. The results compare well
to Fig. 2 in Ref. [15].

and removes the subjective aspect of human analyst decision-
making.

While in theory the two steps of MAMBAT could be
combined into a single step by using a non-linear measurement
model and a corresponding non-linear filter, we have opted
to reduce the computational complexity and cost by using
two linear models instead. In addition, by using the two step
approach we can examine the intermediate results and fine
tune the two parts separately.

To asses the generalization capabilities of the proposed
framework, future studies will employ it to different multi-
ple animal scenarios, different species (that produce diverse
narrowband and broadband signals), and a wider spatial range
(and bigger number of sensors).
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