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ABSTRACT: The Critically Endangered North Atlantic right whale Eubalaena glacialis entered a 
population decline around 2011. To save this species without closing the ocean to human activities 
requires detailed information about its intra-annual density patterns that can be used to assess and 
mitigate human-caused risks. Using 2.9 million km of visual line-transect survey effort from the US 
Atlantic and Canadian Maritimes conducted in 2003–2020 by 11 institutions, we modeled the 
absolute density (ind. km–2) of the species using spatial, temporal, and environmental covariates at 
a monthly time step. We accounted for detectability differences between survey platforms, teams, 
and conditions, and corrected all data for perception and availability biases, accounting for plat-
form differences, whale dive behavior, group composition, and group size. We produced maps of 
predicted density and evaluated our results using independently collected passive acoustic mon-
itoring (PAM) data. Densities correlated positively (r = 0.46, ρ = 0.58, τ = 0.46) with acoustic detec-
tion rates obtained at 492 stationary PAM recorders deployed across the study area (mean recorder 
duration = 138 d). This is the first study to quantify the concurrence of visual and acoustic obser-
vations of the species in US waters. We summarized predictions into mean monthly density and 
uncertainty maps for the 2003–2009 and 2010–2020 eras, based on the significant changes in the 
species’ spatial distribution that began around 2010. The results quantify the striking distribution 
shifts and provide effort- and bias-corrected density surfaces to inform risk assessments, estima-
tions of take, and marine spatial planning.  
 
KEY WORDS:  Eubalaena glacialis · Density models · Line-transect surveys · Passive acoustic 
 monitoring · Abundance estimation · Generalized additive models 
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1.  INTRODUCTION 

The recovery of the Critically Endangered North 
Atlantic right whale Eubalaena glacialis (hereafter 
‘right whale’) is at a tipping point. After falling from a 
pre-whaling estimated abundance of 9000–21 000 to 
fewer than 100 in 1935 at the end of commercial whal-
ing, the population increased to a post-whaling peak 
of 481 in 2011 before declining again to only 340 in 
2021 (Monsarrat et al. 2016, Pace et al. 2017, Pettis et 
al. 2023). For 2003–2018, 88% of necropsied whales 
died from human-caused injuries (fishing gear entan-
glements and vessel strikes) (Sharp et al. 2019). When 
calves are excluded, the causes of death for necrop-
sied adults and juveniles for which cause of death 
could be determined were all human-related. 

Historically, right whales exhibited an annual mi -
gration cycle in which a portion of the population 
moved around the feeding grounds of the Gulf of 
Maine (GOM) and southwestern Nova Scotia (Can-
ada) in a general counterclockwise pattern (Kenney 
et al. 2001, Brillant et al. 2015), while some animals 
migrated in the winter to calving grounds along the 
continental shelf of the southeastern USA, mainly off 
Florida and Georgia (Gowan et al. 2019). Starting 
around 2010, this pattern changed as climate change-
driven oceanographic shifts drove declines in prey 
availability (primarily copepods) at the traditional 
summer feeding grounds, and a large portion of the 
population was subsequently documented in the Gulf 
of St. Lawrence (GSL), exposing it to new gear-entan-
glement and vessel-strike risks (Davies & Brillant 
2019, Record et al. 2019, Simard et al. 2019, Crowe et 
al. 2021, Meyer-Gutbrod et al. 2021, 2023). The usage 
of Cape Cod Bay (CCB) in the winter and spring 
increased substantially (Ganley et al. 2019, Pendleton 
et al. 2022), and migration to the calving grounds 
 de creased (Gowan et al. 2019). Right whales began 
inhabiting southern New England (SNE) waters in 
increasing numbers, primarily in winter and spring 
(Leiter et al. 2017), but eventually sightings in this 
area were documented year-round (Quintana-Rizzo 
et al. 2021, O’Brien et al. 2022). Despite the rise in 
numbers in SNE and the GSL, a nontrivial fraction of 
the population remains unaccounted for in summer, 
likely foraging in unknown locations that lack protec-
tion measures (Crowe et al. 2021). The combination of 
reduced prey availability and frequent injury has not 
only increased the mortality rate but has also led to 
reduced calving frequency, body condition, body 
length, and many other aspects of population health 
(Moore et al. 2021, Stewart et al. 2021, 2022, Knowlton 
et al. 2022, Reed et al. 2022). 

To arrest the decline of right whales, managers 
 re quire a detailed understanding of the intra-annual 
distribution of the species, so that risks can be 
assessed and mitigated. Research groups have con-
ducted visual surveys for right whales and other pro-
tected species since the late 1970s (Cetacean and Tur-
tle Assessment Program 1982). In the 1990s, advances 
in electronic tagging technology allowed a limited 
number of individual whales to be tracked by satellite 
telemetry (Mate et al. 1997). In the early 2000s, re -
searchers began deploying stationary passive acous-
tic monitoring (PAM) instruments to detect right 
whale vocalizations (Gillespie 2004, Mellinger 2004). 
Despite these advances, it remains infeasible to con-
tinuously monitor more than a small fraction of the 
population by any of these modes of observation, and 
implantable tagging may be detrimental to whale 
health (Davies & Brillant 2019). As an alternative, 
researchers can build models of the species’ distribu-
tion by linking available whale observations to envi-
ronmental covariates such as seafloor depth and sea 
surface temperature (SST) (Moses & Finn 1997, Good 
2008, Keller et al. 2012, Pendleton et al. 2012, Gowan 
& Ortega-Ortiz 2014, Wikgren et al. 2014, Monsarrat 
et al. 2015, Roberts et al. 2016, Gowan et al. 2021, Ross 
et al. 2021). These models can then be applied to time 
series of covariate maps collected by satellite remote 
sensing or extracted from ocean models, to hindcast 
or forecast corresponding maps of the species’ distri-
bution, filling in spatial and temporal gaps in survey 
coverage. 

In the USA, the Marine Mammal Protection Act 
(16 USC §§ 1361–1423) generally prohibits inten-
tional ‘takes’ (harm or disturbance) of marine mam-
mals and stipulates the rules under which takes are 
allowed to occur incidentally during human activ-
ities. Within the National Oceanographic and Atmo -
spheric Administration (NOAA), the National Mar-
ine Fisheries Service (NMFS, or NOAA Fisheries) 
re gulates the incidental take of marine mammals 
under its jurisdiction that may result from such activ-
ities, and is required to estimate the number of inci-
dental takes that would occur and implement moni -
toring and mitigation measures to minimize them. In 
the case of takes resulting in mortality and serious 
injury (M/SI) incidental to commercial fisheries, if 
the number of actual takes exceeds a statutory thres-
hold known as the Potential Biological Removal 
(PBR) level, NMFS must take steps to further eval-
uate and reduce M/SI takes. For right whales, the 
number of known human-caused M/SI incidental to 
commercial fishing has exceeded PBR in nearly all 
years since 1993 (Kenney 2018). 
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The need to estimate and reduce marine mammal 
takes in commercial fisheries, as well as from other 
human sources, has prompted the development of 
models that estimate the count or probability of harm-
ful interactions. Harmful interactions are often esti-
mated using the spatiotemporal co-occurrence of the 
species and activity of interest (e.g. Martin et al. 2016, 
Crum et al. 2019, Derville et al. 2023). This requires es-
timates of the number of individual animals and the 
amount of harmful activity likely to be present at the 
location. Density surface modeling (Hedley & Buck-
land 2004, Miller et al. 2013) is a widely used method 
for estimating animal density (ind. km–2) from line-
transect or point-transect surveys and has been ap-
plied to cetaceans throughout the world (e.g. Williams 
et al. 2011, Hammond et al. 2013, Roberts et al. 2016, 
Chavez-Rosales et al. 2019, Becker et al. 2022). A den-
sity surface model (DSM) has 2 stages. In the first 
stage, known as the detection model, distance sam-
pling (Buckland et al. 2001) is used to model the prob-
ability of animals being detected given their distance 
from survey transects and other covariates that affect 
detectability. The detection model corrects for animals 
that were present but not detected. In the second 
stage, known as the spatial model, the corrected abun-
dance on transect segments is modeled from spatial, 
temporal, or environmental covariates, traditionally 
using a generalized additive model (GAM; Wood 
2017) that relates abundance to covariate values ex-
tracted from remote sensing or ocean models. 

Here, we present a right whale DSM for US Atlantic 
waters and a portion of the Canadian Maritimes. The 
model, initially developed by Roberts et al. (2016) and 
updated several times, has been used by federal 
agencies to assess and mitigate risks from activities 
such as trap and pot fishing (86 FR 51970), vessel 
traffic (Garrison et al. 2022, 87 FR 46921), naval testing 
and training (84 FR 70712), and offshore energy activ-
ities (https://www.fisheries.noaa.gov/national/marine-
mammal-protection/incidental-take-authorizations-
other-energy-activities-renewable). NOAA Fisheries 
and the US Navy were the principal funders of the 
model. As such, they were given the opportunity to 
suggest goals for each update and recommend spatial 
and temporal resolutions and a geographic extent that 
would facilitate the use of the results in US manage-
ment applications. When the model was complete, 
they were given the opportunity to review the prelimi-
nary results. To maintain the independence of the 
model, the funders did not participate in the analysis 
of the data or the preparation of this manuscript 
 beyond the scientific contributions of the individual 
NOAA coauthors.  

The goals of this update, known as version 12, were 
to redevelop the model using cetacean surveys con-
ducted through 2020; to characterize regional density 
changes that began around 2010; to estimate density 
prediction uncertainty with a method that accounts 
both for uncertainty in model parameter estimates 
and for temporal variability in model covariates 
(Miller et al. 2022); and to evaluate density predictions 
using PAM detections (Davis et al. 2017). (Although 
DSMs may be used to estimate population abundance, 
this was not a goal here, as our study area did not 
 encompass the full range of the species. The photo-
graphic mark–recapture model of Pace et al. 2017 is 
better suited to estimating population abundance.) 
The density predictions may be freely downloaded 
from the OBIS-SEAMAP model archive (https://sea
map.env.duke.edu/models/Duke/EC/), and additio -
nal technical details about the model are available 
there as a supplementary report (https://seamap.env.
duke.edu/seamap-models-files/Duke/EC/North_
Atlantic_right_whale/v12.2/NARW_v12.2_report.
pdf) to which we will refer throughout this paper.  

2.  MATERIALS AND METHODS 

This analysis used the same overall methodology as 
our 2016 model (Roberts et al. 2016) with several 
improvements and substantial additional data (Rob-
erts et al. 2023). 

2.1.  Survey data, study area, and time period 

We built this model from shipboard and aerial visual 
line-transect surveys for marine mammals. For a sur-
vey to be used in our model, observers must have ac-
curately tracked the position of the survey vessel or 
aircraft, the times observers went on and off watch, the 
distances and bearings to sighted animal groups, and 
the number of animals in each group. Animals must 
have been detected before they moved in re sponse to 
the survey platform. Transects must have been laid out 
in a pre-planned systematic design. Data from surveys 
conducted haphazardly, or routed directly to known 
locations of whales, could not be used. NOAA’s 2010–
2019 Atlantic Marine Assessment Program for Pro-
tected Species (AMAPPS; Palka et al. 2021) and its 
predecessor programs met these requirements and 
covered the entire study area. However, during 1999–
2020, AMAPPS and its predecessors only sighted 120 
right whale groups and provided limited coverage in 
non-summer months. To increase sighting counts and 

https://seamap.env.duke.edu/seamap-models-files/Duke/EC/North_Atlantic_right_whale/v12.2/NARW_v12.2_report.pdf
https://seamap.env.duke.edu/seamap-models-files/Duke/EC/North_Atlantic_right_whale/v12.2/NARW_v12.2_report.pdf
https://seamap.env.duke.edu/seamap-models-files/Duke/EC/North_Atlantic_right_whale/v12.2/NARW_v12.2_report.pdf
https://seamap.env.duke.edu/seamap-models-files/Duke/EC/North_Atlantic_right_whale/v12.2/NARW_v12.2_report.pdf
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non-summer coverage, we incorporated surveys from 
numerous regional programs conducted by 11 col-
laborating institutions (see Section 3). 

Until the 2010s, a substantial fraction of the right 
whale population migrated between winter calving 
grounds along coastal Florida and Georgia and 
summer feeding grounds in the GOM and deep 
basins of the Canadian Maritimes (Kenney et al. 
2001). Consistent surveying of these areas reached an 
important milestone in 2003 when the right whale 
Early Warning System (EWS) aerial surveys started 
monitoring the calving grounds using the same 
survey protocol across all teams (Gowan & Ortega-
Ortiz 2014), and the NMFS Northeast Fisheries 
Science Center’s (NEFSC’s) North Atlantic Right 
Whale Sighting Survey (NARWSS) program started 
monitoring the GOM with bubble-window Twin Otter 
aircraft (Cole et al. 2007). Pursuant to our goal of char-
acterizing regional density changes that began in ap -
proximately 2010, we built most of our model from 
surveys conducted during 2003–2020. To increase 

sighting counts in August–September in the GOM, 
when most whales had migrated to Canadian waters, 
we extended our temporal window back to 1999 to ob-
tain additional NEFSC surveys covering Canada. For 
surveys monitoring the calving grounds, where ex-
tensive effort and sightings were available, we re-
stricted the model to transects with Beaufort sea 
states of 3 or less (Gowan & Ortega-Ortiz 2014). Else-
where, where effort and sightings were sparser, we 
 ac cepted up to Beaufort 4 or 5, depending on the sur-
vey program and data availability. In all locations, we 
excluded transects with poor weather or limited vis-
ibility for surveys that reported those conditions, and 
accounted for the influence of sea state, weather, vis-
ibility, and other factors on the probability of making 
a sighting (see Section 2.2.1). 

The full study area extended from the southern tip of 
Florida (USA) to the Laurentian Channel off eastern 
Canada, and from shore to the edge of the US ex -
clusive economic zone and the 2000 m isobath in Can-
ada (Fig. 1). We split the study area into several re -
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Fig. 1. Modeling regions (white-outlined polygons with large labels) with aerial transects (orange lines), shipboard transects 
(purple lines), and right whale sightings (black dots) available for modeling after detection functions were applied and ex-
cluded transects and truncated sightings were removed. Inset shows bathymetric features around the Gulf of Maine that are  

referenced in the text. Base map credits: Esri, Garmin, GEBCO, NOAA NGDC, and other contributors
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gional models (see Section 2.2.4). We excluded Che-
sapeake Bay and Delaware Bay, where survey data 
were sparse and right whale sightings are very rare. 

2.2.  Density modeling 

2.2.1.  Detection modeling 

For line-transect surveys, detection functions esti-
mate the probability of detecting an animal given its 
perpendicular distance from the transect line as well 
as other conditions affecting detection probability, 
such as sea state. Ideally, at least 60–80 observations 
should be used to fit a detection function, but as few 
as 40 can be adequate (Buckland et al. 2001). With 
these guidelines in mind, we arranged the surveys 
available for our analysis into tree-like ‘detection 
hierarchies’ that grouped surveys according to the 
similarity in their detection characteristics (Roberts et 
al. 2016). We then traversed each hierarchy in a 
depth-first manner, intending to fit detection func-
tions at the lowest-level nodes that pooled enough 
sightings to meet the 40–80 observations guideline. 
However, although long-running survey programs 
occasionally reported enough sightings to allow a 
detection function to be fitted for each annual survey, 
an exploratory analysis showed that this approach 
was inferior to a single detection function fitted for all 
years pooled together, especially when the pooled set 
al lowed additional covariates to be utilized. When a 
branch of the hierarchy contained too few right whale 
sightings to fit an effective detection function, but it 
was not reasonable to ascend higher to obtain a larger 
pool of surveys, we included sightings of other large 
whale species in the pool (Barlow & Forney 2007, 
Palka et al. 2021). When sufficient sightings of each 
species were available, we tested the taxonomic iden-
tification as a covariate in the detection function to 
account for differences between species. Sightings of 
other species were used only in detection models; 
they were not used in the spatial models of right 
whale density described in following sections. 

For each detection function (Supplementary Re -
port Section 2), we attempted several formulations 
and selected the one with the lowest value of Akaike’s 
information criterion (AIC). We tested both conven-
tional distance sampling using commonly recom-
mended key functions and adjustment terms (Thomas 
et al. 2010) and multiple covariate distance sampling 
(Marques & Buckland 2003) using the sea state, other 
ocean and weather conditions, glare, the observer’s 
subjective estimate of the quality of observation con-

ditions, and the season as covariates. When data were 
combined from multiple survey programs, we tested 
the program, vessel, or aircraft used. For multi-year 
programs for which we had a specific reason to sus-
pect interannual differences were not addressed by 
other covariates, we tested the year. We discarded 
covariates when the standard errors of their scale 
coefficients exceeded their estimates. We fitted all 
detection functions using the R package ‘mrds’ ver-
sion 2.2.5 (Laake et al. 2021). 

2.2.2.  Bias correction 

Distance sampling assumes that the detection prob-
ability is 1 for animals on the transect line (Buckland et 
al. 2001). When this assumption is not met and animals 
on the transect are missed, detection probability is 
 biased high, leading to an underestimation of density. 
This problem is known as g0 < 1, where g0 refers to the 
detection probability at a perpendicular distance 0. 
Modelers often address this problem by estimating g0 
empirically and using this estimate to correct for the 
missed animals. Two important sources of bias that 
contribute to g0 being <1 for visual surveys are avail-
ability bias, in which an animal was present but impos-
sible to detect (e.g. because it was underwater), and 
perception bias, in which an animal was available for 
detection but was not detected (e.g. be cause of its 
small size or cryptic coloration or be havior, or observer 
fatigue) (Marsh & Sinclair 1989). Modelers often esti-
mate correction factors for these 2 biases independ-
ently (Hammond et al. 2021), hereafter referred to as 
g0A and g0P, and multiply them to gether to obtain a 
final, combined correction: g0 = g0A · g0P. We estimated 
g0 on a per-sighting basis to ac count for differences in 
platform type (aerial vs. shipboard), institution, group 
size, group composition (e.g. singleton, mother–calf 
pair, or surface active group), and geographic location 
(Supplementary Report Section 3). 

The only surveys conducted with protocols that 
permitted estimation of perception bias corrections 
were those from the NOAA AMAPPS program (Palka 
et al. 2021). These surveys used 2 independent teams 
on both shipboard and aerial platforms, allowing cor-
rections to be estimated with mark–recapture dis-
tance sampling (Burt et al. 2014). We applied these 
corrections to all surveys, including those conducted 
by other institutions (having none better available for 
them). We caution that this could have biased our 
density estimates (see Section 4). 

For aerial surveys, 92% of the sightings used to de -
velop the AMAPPS corrections had a group size of 
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1 or 2 whales. For aerial sightings of 3 or more individ-
uals, we assumed that perception bias was negligible 
(Carretta et al. 2000, Heide-Jørgensen et al. 2012, 
Hansen et al. 2018). We estimated availability bias 
corrections for aerial surveys using the availability 
model of Laake et al. (1997), accounting for aircraft 
speed and altitude, as well as right whale dive and 
surface intervals according to geographic location, 
group composition, and group size (Supplementary 
Report Section 3.1.2). Given that dive intervals were 
short relative to the amount of time a given patch of 
water remained in view to shipboard observers, we 
 as sumed that availability bias was negligible on ship-
board surveys (Palka et al. 2021). 

2.2.3.  Preparation of segments and covariate grids 
for spatial modeling 

We split survey transects into the segments that 
formed the data used to fit the spatial model using the 
method of Roberts et al. (2016), with a target segment 
length of 5 km. We discarded segments shorter than 
1 km to avoid introducing high-leverage records into 
the data, representing a loss of 0.5% of the segments. 
Then, for each segment i, we computed the total 
number of individuals observed ni, corrected by the 
sighting-specific bias correction: 

                                                           (1) 

where sir is the group size reported for sighting r at the 
segment and ĝ0ir is the estimated bias correction for 
the sighting. We then computed the effective area 
surveyed at the segment: 

                                                             (2) 

where p̂j(ziLEFT) is the probability of detection esti-
mated by the survey’s detection function j using the 
detectability covariates ziLEFT for the left observer, 
and p̂j(ziRIGHT) is the same for the right observer. wj is 
the half-width of the segment (i.e. the detection func-
tion’s right truncation distance minus left truncation 
distance, if any), and li is the length of the segment. 

Based on input from NMFS and the US Navy, who 
planned to utilize the results in various management 
processes, and on the resolutions of available covari-
ates, we set the model’s spatial and temporal resolu-
tions to 5 km and monthly. We assessed 21 spatial and 
environmental candidate covariates in the model 
(Table 1) that were plausibly correlated with cetacean 
habitat and available as gridded surfaces spanning 

the entire study area in an uninterrupted time series 
from 1999–2020, with 25-km spatial resolution and 
monthly temporal resolution or higher. We favored 
products in which the covariate producer solved gap-
filling problems, as with Level 4 remote sensing pro-
ducts. We resampled each product to the model’s 
5 km grid, filled any remaining gaps with a diffusion-
based interpolation algorithm (D’Errico 2006, Crema 
et al. 2020), prepared monthly contemporaneous (per 
month, per year) and climatological (per month, all 
years) mean grids, and sampled both at each segment. 
We performed all processing in an Albers equal-area 
coordinate system. 

2.2.4.  Spatial modeling 

The right whale’s distribution shift, combined with 
life stage and regional complexity, raised fundamen-
tal challenges for the spatial model. One problem was 
that the population was distributed across several 
marine ecosystems at the same time, with whales in 
different locations exhibiting different environmental 
preferences. For example, whales that migrated to the 
warm, coastal calving grounds had different prefer-
ences than whales that overwintered in the cooler 
GOM. This complexity could be addressed by using 
spline smoothers, which allow for complex, non-lin-
ear relationships. However, the resulting multi-modal 
relationships would be difficult to interpret ecologi-
cally, which could impede qualitative evaluation of 
the models, and it was unclear whether a good result 
could be obtained without explicitly addressing the 
strong regional differences. Consequently, we split 
the study area into several regions (Fig. 1) within 
which we expected right whales to exhibit different 
relationships to environmental covariates and mod-
eled each region separately (Roberts et al. 2016). 

The 3 main regions of the model, the South Atlantic 
Bight (SAB), Mid-Atlantic Bight (MAB), and the 
GOM, correspond to the 3 distinct continental shelf 
ecosystems for which they are named plus the off-
shelf waters adjacent to them. The SAB is strongly 
influenced by the Gulf Stream, a strong, warm, saline, 
subtropical, western boundary current that flows just 
beyond the eastern edge of the upper continental 
shelf (Seim et al. 2022). Evidence suggests that right 
whales rarely occupy the SAB outside of the winter 
calving season (Davis et al. 2017, Gowan et al. 2019). 
To ensure the SAB model spanned only the months 
that right whales were present, we restricted the 
model to the October–May period, based on reports 
of sightings or acoustic detections during those 

ni =
c

si

r
/

g0ir

r

GEpAi = pj zi_ i+ p j zi_ i: c j LEFFT c RIGHHT wiDwj lij
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months. During June–September, we assumed den-
sity in the SAB was zero. 

At Cape Hatteras, the boundary between the SAB 
and the MAB, the Gulf Stream separates from the 
shelf and flows northeast into the North Atlantic. This 
area is an ecoregional boundary between distinct 
cetacean communities (Schick et al. 2011), where 
nutrient-rich, along-shelf currents flowing from the 
GOM south across the MAB turn east, cross the shelf, 
and merge with the Gulf Stream (Roarty et al. 2020). 
Although the MAB was not considered prime feeding 
habitat for right whales before 2010, since then they 
have been observed regularly feeding in SNE during 
all seasons (Quintana-Rizzo et al. 2021), and occa-
sionally with open mouths (i.e. possibly feeding) at 
more southerly locations, such as off New York in 
May 2019 (Zoidis et al. 2021), New Jersey in January 
2009 (Whitt et al. 2013), and Virginia in April 2018 
(Engelhaupt et al. 2020). We placed the boundary be -
tween the SAB and MAB models slightly north of 
Cape Hatteras near Rodanthe, North Carolina, to 

alleviate an edge effect that occurred when we placed 
it at Cape Hatteras itself. We modeled the MAB with 
a single, year-round model. 

The GOM is a highly productive continental shelf 
sea around which the primary right whale feeding 
grounds were distributed until the 2010 shift. The 
GOM is isolated from the MAB to the south by the 
Nantucket Shoals and from the open Atlantic to the 
east by Georges Bank and Browns Bank (Townsend 
1991). We placed the boundary between the MAB and 
GOM models at the northern edge of the Nantucket 
Shoals. The spatial extent of surveying in the GOM 
was seasonally variable; to accommodate this, we 
split the GOM model into 3 seasonal models with 
varying spatial extents. At its largest extent, in 
‘summer’ (August–September), the modeled region 
extended north to LaHave Basin offshore of Nova 
Scotia. North of LaHave, survey effort was too sparse 
and heterogeneous to obtain reasonable model pre-
dictions, so we did not model it. In ‘winter’ (October–
February), the region extended to the US–Canada 
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Type                       Covariates            Resolution       Description 
 
Spatial                    x, y                                5 km            Easting (m) and northing (m); geographic location in the projected 

coordinate system of the analysis 
Static                      Depth, Slope         30 arc sec        Seafloor depth (m) and slope, derived from SRTM30-PLUS global 

bathymetry (Becker et al. 2009) 
                                DistToShore,        30 arc sec        Distance (km) to the closest shoreline, excluding Bermuda and  
                                DistTo125m,                                   Sable Island, and various ecologically relevant isobaths,  
                                DistTo300m                                     derived from SRTM30-PLUS 
                                Fetch_50km         30 arc sec        Mean distance (km) to shore averaged over 16 radial directions, limited to 

a maximum of 50 km 
 
Physical                SST_CMC            0.2°, daily        Sea surface temperature (°C) from GHRSST Level 4 CMC0.2deg and  
oceanographic                                                                CMC0.1deg (Brasnett 2008, Meissner et al. 2016) 
                                DistToFront063,  0.2°, daily        Distance to front in daily CMC_SST images detected with the edge  
                                DistToFront105,                            detection algorithm of Canny (1986) with MGET (Roberts et al. 2010);  
                                DistToFront207                              3 parametrizations tested 
                                BotT_HYCOM,   0.08°, 3 h         Bottom temperature (°C), and sea surface and bottom salinity (PSU),  
                                SSS_HYCOM,                               from the HYCOM GOFS 3.1 3-hourly ocean model  
                                BotS_HYCOM                               (Chassignet et al. 2009) 
                                WindSpeed            0.25°, 6 h         Wind speed (m s–1) from the CCMP V2 L3 surface wind vectors (Atlas et 

al. 2011, Wentz et al. 2015) 
 
Biological              Chl                               4 km,           Chlorophyll a concentration (mg m–3) from Copernicus GlobColour  
                                                                   monthly         (Garnesson et al. 2019) provided by Copernicus Marine Service 

(CMEMS product code OCEANCOLOUR_GLO_CHL_L4_REP_
OBSERVATIONS_009_082) 

                                PP_VGPM,              4 km,           Net primary productivity (mg C m–2 d–1) from the Vertically Generalized  
                                PP_EVGPM,         monthly         Production Model (VGPM) (Behrenfeld & Falkowski 1997), ‘Eppley’  
                                PP_CbPM,                                      VGPM (Eppley 1972, Morel 1991), Carbon-based Production Model  
                                PP_CAFE                                        (CbPM) (Behrenfeld et al. 2005, Westberry et al. 2008), and Carbon, 

Absorption, and Fluorescence Euphotic-resolving (CAFE) model (Silsbe 
et al. 2016)

Table 1. Candidate covariates for spatial modeling
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border, as virtually no visual surveying occurred in 
Canada at this time. In ‘spring’ (March–July), the 
model extended slightly farther, encompassing the 
entirety of Georges Bank. 

CCB is an important feeding ground where right 
whales reliably aggregate in high numbers from Janu-
ary to May (Mayo et al. 2018, Ganley et al. 2019). CCB 
has been surveyed extensively by the Center for 
Coastal Studies (CCS) for more than 2 decades, but 
until recently, CCS did not collect distances to sight-
ings, making the data unusable for our model. 
Instead, for December–May, we derived per month, 
per year, CCB-wide density estimates from the abun-
dance estimates of Ganley et al. (2019) and sub-
sequent data from CCS (Supplementary Report Sec-
tion 4.4). For June–November, we included CCB in 
the GOM model or assumed density was zero, de -
pending on the month. Finally, during all months, we 
assumed density was zero in Long Island Sound and 
the ‘Caribbean Buffer’ (Fig. 1). These are poor right 
whale habitats, and the surveys in our analysis re -
ported no sightings there, but we caution that oppor-
tunistic sightings have occurred very occasionally. 

Another fundamental problem in modeling the 
right whale distribution was its strong temporal vari-
ability, which included seasonal variations related to 
the species’ life cycle, interannual variations associ-
ated with shifting prey availability, and the long-term 
rise and fall in the population and its health. Com-
pounding this challenge and limiting our ability to 
address it were strong seasonal and interannual varia-
tions in survey effort across most of the study area. 
Our approach was first to assume that the significant 
interannual changes in the distribution were not 
related to changes in right whale environmental pref-
erences but rather that the environment had changed, 
and the whales redistributed in response. Therefore, 
rather than fitting different models to different eras, 
such as 2003–2009 and 2010–2020, we fitted a single 
model to the entire period and relied on contempora-
neous dynamic environmental covariates, resolved to 
the year and month, to address interannual changes 
in distribution. Because we lacked potentially impor-
tant covariates such as prey density, we also included 
either the year or the era (e.g. 2003–2009 and 2010–
2020) as categorical covariates, depending on the 
degree of interannual replication in survey effort, to 
account for unexplained interannual variability in 
regional abundance. 

We also relied on dynamic environmental covari-
ates to address seasonal changes. However, in the 
GOM, where right whale movements were particu-
larly complex and challenging to resolve with a sin-

gle, year-round model and the spatial extent of sur-
vey effort depended strongly on the season, we split 
the year into the 3 seasonal models discussed above 
and included interactions between day of year and 
distance to CCB as covariates, to better capture their 
annual cycling around the GOM (Kenney et al. 2001, 
Brillant et al. 2015). We did not explicitly incorporate 
the known population decline or health effects (e.g. 
the influence of anthropogenic stressors on move-
ment patterns; Schick et al. 2013) in the model. 

After defining the regions, we fitted log-link GAMs 
for each of the SAB, MAB, and 3 seasonal GOM 
regions: 

                                                             (3) 

where the segment’s effective area Ai is an offset, β0 is 
an intercept, and each ƒk(zik) is a smoothed function 
of the spatial model covariate k with the value zik for 
the segment. We fitted GAMs in R with the ‘mgcv’ 
package version 1.8-36 (Wood 2017). We used thin-
plate regression splines with shrinkage smoothers 
(Marra & Wood 2011), the Tweedie distribution 
(Miller et al. 2013) with automatic selection of the 
power parameter, and restricted maximum likelihood 
(REML; Wood 2011) for smoothness selection. If a 
covariate p-value was >0.05 or its estimated de grees 
of freedom were <0.85, we removed the covariate 
from the model and refitted it. 

For each GAM, we fitted and ranked a large number 
of candidate models that utilized different combina-
tions of covariates. We lacked the computing capac-
ity to try all possible combinations of covariates, so 
we used the 2-step procedure of Roberts et al. (2023) 
to first identify a smaller number of the most promis-
ing covariates and then tested all combinations of 
those. We used contemporaneous formulations of 
covariates except in the GOM summer model, for 
which interannual replication in surveying was very 
sparse and climatological formulations yielded better 
results (Supplementary Report Section 4.3.3). We 
ranked candidates by REML score, inspected predic-
tions, and selected one as best. This selection was 
informed by the candidates’ statistical performance, 
the spatiotemporal noisiness of the predictions, and 
our judgment of how well the predictions matched 
well-established findings from the literature (detailed 
discussion and diagnostic plots in model-specific sub-
sections of Section 4 in the Supplementary Report). 
We also assessed the degree of univariate and multi-
variate extrapolation across model covariates using 
the NT1 and ExDet statistics (Mesgaran et al. 2014, 
Bouchet et al. 2020), and either avoided covariates for 

(z )iƒi i k
k

0( expn AE b= + k) F< /
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which excessive extrapolation occurred or Winsor -
ized relationships (Dixon 1960), rounding extreme 
values up or down to well-sampled ranges to avoid 
such extrapolation without discarding the out-of-
range records. When these checks did not reveal im -
portant concerns among the top candidate models, 
we selected the model with the lowest REML score. 

2.2.5.  Model prediction and summarization 

After selecting the final models for each region, we 
used them to predict right whale density across the 
overall study area and time period (October 2003–
September 2020). For species management purposes, 
NOAA and the US Navy requested we summarize the 
results into monthly mean density surfaces. To charac-
terize and account for the major shift in distribution 
that occurred around 2010, we prepared separate 
monthly summaries for the 2003–2009 and 2010–2020 
periods (Supplementary Report section 5.1). To sum-
marize uncertainty, we estimated empirical variance 
with a method that accounted both for interannual var-
iability in dynamic covariates and for uncertainty in 
model parameter estimates (Miller et al. 2022), except 
in the case of the GOM summer model (August–Sep-
tember) for which climatological covariates were used 
and thus interannual variability was not accounted for. 
For each monthly mean density surface, we produced 
a standard error (SE) and coefficient of variation (CV) 
surface which depicted the variability that would 
result if a single random year within the summary 
period was selected instead of the multi-year mean. 

2.3.  Evaluation of density predictions with PAM 

PAM detections represent a source of right whale 
distribution data to which our density predictions can 
be compared for validation purposes. For some spe-
cies, density may be estimated from vocalizations de-
tected by fixed PAM sensors, so long as vocalization 
rates can be accurately determined and the relation-
ship between detection probability and distance to the 
sensor can be characterized (Marques et al. 2013). For 
right whales, which are highly variable callers, neither 
of those problems had been solved, so it was not pos-
sible to derive right whale density from PAM detec-
tions for direct comparison. As an alternative, we esti-
mated the rate of acoustic presence as the number of 
days per month having detected vocalizations, using 
in this case the upcall, a reliable right whale vocaliza-
tion produced across regions by all ages and sexes 

(Davis et al. 2017). Under the assumption that this met-
ric should correlate with density, we obtained daily 
acoustic presence data from recorders deployed within 
our study area (Davis et al. 2017 and their additional 
unpublished data) and summarized them into monthly 
rates of daily presence resolved to the months of the 
years the recorders were deployed (2004–2020). That 
is, for each month of each year during which a 
recorder was deployed, we divided the number of days 
that whales were acoustically present (as determined 
with the method of Davis et al. 2017) by the number of 
days that were monitored. We caution that non-vocal-
izing animals might still have been present when no 
acoustic activity was recorded (Delarue et al. 2022), 
and that calling whales might have been missed when 
occurrence was very low and very few calls were avail-
able for detection. When a re corder was monitored on 
fewer than 5 days of a month of a year, we dropped that 
month of that year of that recorder from the analysis. 
We then assessed the correlation between acoustic 
presence rate and the density estimated at that 
location and time using Pearson’s correlation coeffi-
cient (r) and locally estimated scatterplot smoothing 
(LOESS, Cleveland & Devlin 1988). Because the result-
ing smoothed relationship was nonlinear (see Fig. 8), 
we also assessed the correlation with Spearman’s (ρ) 
and Kendall’s (τ) rank correlation coefficients. Finally, 
for visual comparison, we overlaid the recorders on 
summarized density maps, symbolizing the recorders 
by monthly acoustic presence rate. To preserve the 
value of the acoustic data as an independent source of 
right whale distribution data to which density predic-
tions could be compared, we did not develop any of 
the comparative maps or statistics until after the den-
sity models were finalized. However, a priori knowl-
edge of acoustic findings (e.g. Davis et al. 2017) was 
impossible to exclude from qualitative assessments of 
candidate models; therefore, the models are not 
wholly independent from the acoustic data. 

3.  RESULTS 

3.1.  Survey data 

In total, the collaborating survey institutions con-
tributed 2 914 000 km of line-transect survey effort, 
comprising 9 786 000 km2 of effective effort once 
detection functions were applied (Table 2, Fig. 1), 
roughly the same as the land area of the USA. The sur-
veys sighted 4439 groups, comprising 13 565 individ-
uals. Aerial surveys accounted for 2 835 000 km (97%) 
of the effort and 4374 (99%) of the sightings. On an 
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annual basis, the highest effort occurred during 
2004–2012, after which effort declined steadily 
(Fig. 2A). The most sightings were reported during 
2007–2010 (Fig. 2C), reflecting both the high level of 
survey effort and the peak population size. In ad -
dition, many whales migrated to the calving grounds 
during those years (Gowan et al. 2019), where effort 
was concentrated. Effort and sightings were highest 
during December–March (Fig. 2B,D), when most of 
the population was likely in US waters and surveys 
covered the calving grounds several times per month. 
Effort and sightings were lowest during August–

October, when much of the population was likely in 
Canada (or farther afield) and our collaborators 
reduced their survey effort. 

3.2.  Density models 

3.2.1.  Detection models 

We fitted 20 detection functions (Supplementary 
Report Section 2). Of these, 6 were specific to right 
whales, for the long-running right whale aerial survey 
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Institution                          Program                                                 Period                 Effort                        Sightings 
                                                                                                                                                  1000s km      1000s km2            Groups     Individuals 
 
Aerial surveys                                                                                                                                                                             
FWRI                                   SEUS NARW EWS                        2003–2020                668                   2609                      806                2,305 
HDR                                          Navy Norfolk Canyon                  2018–2019                 11                       22                             2                     8 
NEAq                                      CNM                                                         2017–2020                  2                      5                           0                     0 
NEAq                                      MMS-WEA                                      2017–2020                 37                       91                          109                   453 
NEAq                                      NLPSC                                                 2011–2015                 43                      118                          37                    122 
NEAq                                      SEUS NARW EWS                        2003–2010                227                   1137                      926                 2489 
NEFSC                               AMAPPS                                             2010–2019                 89                       94                            18                     27 
NEFSC                               NARWSS                                            2003–2020                484                   2199                     1571               5917 
NEFSC                               Pre-AMAPPS                                     1999–2008                 46                       94                            29                     39 
NJDEP                                NJEBS                                             2008–2009                 11                        9                           0                     0 
NYS-DEC/TT                   NYBWM                                             2017–2020                 77                      163                          12                     19 
SEFSC                                 AMAPPS                                             2010–2020                114                    117                            6                    13 
SEFSC                                 MATS                                                    2004–2005                 13                       11                             4                     9 
UNCW                                   Navy Cape Hatteras                     2011–2017                 34                       38                             0                     0 
UNCW                                   Navy Jacksonville                         2009–2017                 92                      103                            2                     3 
UNCW                                   Navy Norfolk Canyon                  2015–2017                 14                       16                             0                     0 
UNCW                                   Navy Onslow Bay                          2007–2011                 49                       55                             0                     0 
UNCW                                   SEUS NARW EWS                        2005–2008                114                     67                            18                     37 
VAMSC                               MD DNR WEA                               2013–2015                 16                       16                             5                    13 
VAMSC                               Navy VACAPES                             2016–2017                 19                       22                             2                     2 
VAMSC                               VA CZM WEA                                2012–2015                 21                       24                             5                     8 
WLT/SSA/CMARI         SEUS NARW EWS                        2003–2020                652                   2492                      822                 2000 
                                                                                                                Total                    2835              9504                  4374            13464 
Shipboard surveys 
MCR                                         SOTW Visual                                  2012–2019                  9                     13                             0                     0 
NEFSC                               AMAPPS                                             2011–2016                 16                       78                            20                     31 
NEFSC                               Pre-AMAPPS                                     1999–2007                  9                     26                            42                     66 
NJDEP                                NJEBS                                             2008–2009                 14                       56                             2                     3 
SEFSC                                 AMAPPS                                             2011–2016                 17                       73                             1                     1 
SEFSC                                 Pre-AMAPPS                                     2004–2006                 15                       37                             0                     0 
                                                                                                                Total                      79                   282                       65                 101 
                                                                                                         Grand total              2914              9786                  4439            13565

Table 2. Survey programs and data used in this analysis. Effort is expressed as linear distance traversed and effective area surveyed 
after detection functions were applied and excluded transects removed. Sightings reported both as groups and individuals; else-
where in this article, sightings are always reported as groups. Institutions: FWRI: Florida Fish and Wildlife Conservation Commis-
sion (FWC) Fish and Wildlife Research Institute; HDR: HDR, Inc.; NEAq: New England Aquarium; NEFSC: National Oceano-
graphic and Atmospheric Administration (NOAA) Northeast Fisheries Science Center; NJDEP: New Jersey Department of 
Environmental Protection; MCR: Marine Conservation Research; NYS-DEC/TT: New York State Department of Environmental 
Conservation and Tetra Tech, Inc.; SEFSC: NOAA Southeast Fisheries Science Center; UNCW: University of North Carolina Wil-
mington; VAMSC: Virginia Aquarium & Marine Science Center; WLT/SSA/CMARI: Wildlife Trust/Sea to Shore Alliance/Clear-
water Marine Aquarium Research Institute. Survey program names and citations are given in the Supplementary Report Section 1
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programs in the US Northeast and Southeast. An -
other 14 incorporated sightings of other large whale 
species to increase sighting counts. Among them, 8 
used a taxonomic covariate to account for detectabil-
ity differences between the species. The remaining 6 
detection functions, for programs that covered low-
density areas, did not have sufficient sightings to 
account for species detectability differences. Across 
all detection functions, mean effective strip half-
widths (transect half width w multiplied by estimated 
detection probability p̂) ranged from 321 m for an aer-
ial survey focused on bottlenose dolphins to 2710 m 
for NOAA shipboard marine mammal surveys that 
utilized 25 × 150 ‘bigeye’ binoculars. 

3.2.2.  Spatial models 

Final model formulations, diagnostics, and detailed 
commentary for each model appear in the Supple-
mentary Report as noted below; here, we summarize 

overall outcomes. Survey effort was strongly biased 
toward the SAB region, reflecting the long-term, con-
sistent high level of effort by the Southeast right 
whale EWS survey programs. As a result, the SAB 
model (Supplementary Report Section 4.1) had about 
twice as much effort and 40% more sightings than the 
other models combined (Table 3). The MAB model 
(Supplementary Report Section 4.2) had the second-
largest quantity of effort but the lowest sightings per 
unit effort, with most of the sightings occurring in 
SNE. In the GOM region (Supplementary Report Sec-
tion 4.3), effort was biased toward spring (March–
July), when right whales were most frequent in the 
region, and the number of sightings per unit effort 
was the highest across the 5 spatial models. Effort 
during summer (August–September), when most 
whales had migrated to Canadian waters, was sparse, 
but it was the only season with substantial coverage in 
Canada. 

All regions benefited from the inclusion of temporal 
covariates that accounted for interannual or seasonal 
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variations not fully explained by the candidate envi-
ronmental covariates (Table 3). In the SAB, consistent 
interannual replication of effort at the calving 
grounds from December–March allowed us to in -
clude Year as a categorical covariate to address high 
interannual variability in right whale abundance, 
which has been linked to prey abundance in the GOM 
during previous summers (Gowan et al. 2019), while 
SST was a strong correlate with seasonal variability 
(Keller et al. 2012, Gowan & Ortega-Ortiz 2014). In 
the MAB, which lacked a long-term dedicated survey 
program spanning the region, interannual replication 
was patchy and dependent on smaller-scale programs 
that usually operated for only a few years. Because of 
this, we included a categorical ‘Era’ covariate with 2 
levels, 2003–2009 and 2010–2020, to account for the 
strong increase in usage of the SNE area in the latter 
era (Quintana-Rizzo et al. 2021, O’Brien et al. 2022). 
Seasonal variability was ad dressed by SST and a pri-
mary productivity covariate. The GOM received 
better interannual replication in winter and spring, 
but we judged that effort was still too heterogeneous 
to include a Year covariate, so we tested an Era covar-
iate. In winter, Era was not statistically significant and 
was discarded; in spring, it was retained but a much 
weaker effect was estimated than in the MAB model. 
These outcomes indicate the environmental covari-
ates had greater interannual predictive power in the 
GOM than in the MAB. Both seasons benefited from 
including Day of Season or Day of Year as a con -
tinuous interaction term with the distance to CCB 
to account for seasonal movement across the GOM 
not explained by the environmental covariates. In 
summer, interannual replication in effort was very 
sparse but sufficient to include an Era covariate, 
which exhibited a strong effect, reflecting the sub-
stantial decline in the use of traditional Canadian 
feeding grounds at Grand Manan Basin and Roseway 
Basin starting in 2010 (Davies et al. 2019, Record et al. 
2019, Meyer-Gutbrod et al. 2021). With the summer 

season being only 2 mo long, there was no benefit 
to including a temporal covariate to capture unex-
plained seasonal variability. 

The SAB model explained the least deviance in the 
data (16%), reflecting the patchy distribution of 
whales within the core calving habitat where the sur-
vey effort was focused. Models for the other regions 
explained more deviance (Table 3), suggesting the 
covariates better tracked seasonal movements and 
interannual variability. The GOM summer model 
explained the most deviance (67.6%) but was only 
2 mo long, so seasonal variability was not a concern; 
the Era covariate addressed the extreme inter-era de -
crease in density. 

3.2.3.  Predictions 

To characterize mean density and how it changed 
before and after the distribution shifted in approx-
imately 2010, we summarized predictions into 3 eras: 
2003–2009 (spanning October 2003–September 
2010), 2010–2019 (October 2010–September 2020), 
and 2003–2019 (October 2003–September 2020). 
We summarized October–September rather than 
 January–December because it better matched the 
start and end dates of the survey data. Here, we pre-
sent one monthly map from the 4 meteorological 
 seasons from the 2003–2019 era as exemplars (maps 
for all months of all eras in Supplementary Report 
 Section 5.1). 

In February, the population was dispersed across 
the study area, with whales aggregated at the calving 
grounds, SNE, the western GOM, and CCB, and scat-
tered across the MAB and northern SAB (Fig. 3). In 
May, the population had largely vacated the SAB and 
much of the MAB, but remained present in moderate 
densities in SNE (Fig. 4). The highest densities were 
predicted in the Great South Channel (GSC), an 
important spring foraging area (Kenney et al. 1995), 

178

Region         Season                       Months                                         Effort                                                Temporal     % Deviance  
                                                                                            Segments   1000s km   1000s km2   Sightings             covariates      Explained 
                                                                    
SAB               Winter                October–May             370942          1754            6521            2564                       Year                  16.0 
MAB         Year-round       January–December        120643           530              1268              412                         Era                   39.4 
GOM            Winter            October–February          26415            132               680               317               DayOfSeason         39.5 
GOM            Spring                   March–July                52842            264              1130            1031            Era, DayOfYear       27.8 
GOM           Summer          August–September          12807              63                157                74                          Era                   67.6

Table 3. Summary of final spatial models. Seasons were region-specific and defined to accommodate patterns in right whale 
distribution and survey effort. Complete details for each model are given in the Supplementary Report Section 4. SAB: South  

Atlantic Bight; MAB: Mid-Atlantic Bight; GOM: Gulf of Maine
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Fig. 3. (A) Survey segments and right whale sightings, (B) mean predicted density with sightings overlaid, (C) coefficient of 
variation, and (D) density with passive acoustic monitoring (PAM) detection rates overlaid for February 2004–2020. Base map  

credits: Esri, Garmin, GEBCO, NOAA NGDC, and other contributors
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Fig. 4. As in Fig. 3, but for May 2004–2020 
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as the population moved east out of CCB and north 
from SNE. In August, density was concentrated in 
Canada, particularly at Roseway Basin and Grand 
Manan Basin (Fig. 5), both important summer feeding 
grounds during the 2000s (Davies et al. 2015), while 
the only appreciable density predicted in US waters 
was in SNE and along the 125 m isobath from Maine 
through Cape Cod. In November, density was con-
centrated in the western GOM (Cole et al. 2013) and 
increased from summer in SNE and the calving 
grounds, as whales began to return from summer 
feeding grounds (Fig. 6). 

Density differences between the 2003–2009 and 
2010–2019 eras were substantial in all regions, with 
strong decreases in the SAB and GOM and strong 
increases in the MAB and CCB (Fig. 7). Across the 4 
months presented, prediction uncertainty across the 
2003–2019 era (Figs. 3C–6C) was moderate to high 
(CV > 0.5), reflecting both the strong inter-era differ-
ences as well as within-era interannual variability. 
Uncertainty within the 2003–2009 and 2010–2019 
eras individually, which excluded the large inter-era 
differences, was lower (Supplementary Report Sec-
tion 5.1). 

3.2.4.  Comparison to PAM 

NMFS NEFSC, using PAM data contributed by a 
large collaboration (Davis et al. 2017 and their sub-
sequent unpublished data), provided daily acoustic 
presence data at 492 recorders deployed between Au-
gust 2004 and September 2020 (mean duration = 
138 d). We summarized these into 2518 records of the 
monthly rate of daily acoustic presence at a given 
recorder, year, and month. (We discarded a further 
152 records that had fewer than 5 d of recording.) 
Correlation analysis revealed positive correlations 
between our model’s predicted density and monthly 
acoustic presence rate (Fig. 8), with the highest corre-
lation in the MAB (r = 0.56, ρ = 0.65, τ = 0.50) and lo-
west in the SAB (r = 0.40, ρ = 0.47, τ = 0.38). Monthly 
correlation statistics for the 2010–2019 era indicated 
higher correlations during November–June with a 
notable decrease during July–October (Fig. 9). 

4.  DISCUSSION 

4.1.  Predicted right whale distribution 

Our predicted monthly mean density surfaces 
largely resembled the distribution patterns described 

in the literature, with whales migrating south into the 
MAB during November–December, aggregating in 
the SAB during December–March (while some over-
wintered in the MAB and GOM), departing the SAB 
and southern MAB during April–June, and cycling 
counterclockwise annually around the GOM (e.g. 
Kenney et al. 2001, Gowan & Ortega-Ortiz 2014, Bril-
lant et al. 2015, Leiter et al. 2017, Quintana-Rizzo et al. 
2021). Strong differences between the 2003–2009 and 
2010–2019 eras were predicted (Fig. 7). In the SAB, 
mean density predicted for January–April declined 
strongly from 2008 to 2018 before rebounding slightly 
in 2020 (Supplementary Report Fig. 164), generally 
mirroring the interannual trend in calf counts (Pettis 
et al. 2023). In the MAB, density was an order of mag-
nitude higher during the 2010–2019 era than 2003–
2009, with the greatest increase in SNE, particularly 
in winter and spring, consistent with the strong in -
crease in sightings and acoustic detections there 
(Davis et al. 2017, Quintana-Rizzo et al. 2021, O’Brien 
et al. 2022). In the GOM, density was lower during the 
2010–2019 era in all seasons, consistent with prior 
findings, especially in important feeding areas such 
as the GSC in spring and Grand Manan Basin and 
Roseway Basin in summer (Davies et al. 2019, Record 
et al. 2019, Meyer-Gutbrod et al. 2021, 2023). Density 
also declined in fall and winter in the northwestern 
GOM, consistent with acoustic results (Davis et al. 
2017), but we caution that visual surveying of this 
area decreased strongly during 2016–2020, limiting 
the model’s ability to detect density changes. We rec-
ommend that surveying in this area be restored to the 
level it was in 2008–2015. 

4.2.  PAM 

In this analysis, we observed positive correlations 
(r = 0.46, ρ = 0.58, τ = 0.46) between acoustic right 
whale presence rate and predicted right whale den-
sity across a database of nearly 500 PAM deploy-
ments. This correspondence supports the density pre-
dictions, but we caution that this analysis did not 
address heterogeneity in the spatiotemporal distribu-
tion of PAM sensors, so the estimated correlations 
may not be unbiased. 

The analysis revealed both regional and seasonal 
differences. However, right whales produce many vo-
calizations other than upcalls and exhibit variable cal-
ling rates and behavior in different regions and during 
different activities (Franklin et al. 2022), for which we 
lacked the data to take into account. Our correlations 
were weakest in the SAB, and the LOESS regression 
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Fig. 5. As in Fig. 3, but for August 2004–2020 
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Fig. 6. As in Fig. 3, but for November 2003–2019
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Fig. 7. Differences in mean monthly densities predicted for the 2010–2019 and 2003–2009 eras for (A) February, (B) May, 
(C) August, and (D) November. Red indicates density was higher in 2010–2019; blue indicates density was lower in 2010– 

2019; white indicates density was about the same 
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was much flatter there, indicating lower acoustic pres-
ence at high predicted densities. The proportion of 
aerial sightings utilized in the SAB model that were 
mother–calf pairs was 47%, much greater than in the 
other regions. Mother–calf pairs on the calving 
grounds exhibit significantly fewer higher-amplitude, 
long-distance communication signals than juvenile 
and pregnant whales (Parks et al. 2019). This life-his-
tory specific vocalization behavior could explain the 
lower correlations between the model’s density pre-

dictions and acoustic detections and highlights the 
importance of accounting for demographic and geo-
graphic variability in vocal behavior when evaluating 
acoustic detections, especially when treating acoustic 
detection rate as a proxy for density. We advise con-
tinued research into vocal behavior throughout the 
right whale’s range, particularly in the MAB where 
data are especially lacking. We recommend that 
future PAM deployments utilize sensors and array 
configurations capable of estimating distances (and, 
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ideally, bearings) to vocalizing whales, especially in 
areas and time periods that are difficult to survey 
visually, so that PAM data can be directly incorpo-
rated into density models, or visual and PAM data can 
otherwise be modeled jointly. Until that time, species 
managers should be sure to consider models and re-
sults developed from both modes of monitoring when 
making management decisions. 

Seasonally, a significant drop in correlation oc -
curred during July–October (Fig. 9), when many 
right whales were believed to be in Canadian waters 
and US visual survey programs reduced effort. The 
areas of most significant mismatch were north of 
Cape Cod and south–southwest of Nantucket, both 
places where whales were acoustically detected every 
month of the year, but visual survey effort was rel-
atively low during July–October and very low den-
sity was predicted. This discrepancy highlights the 
importance of both monitoring modes. We recom-
mend increased visual surveying in summer and fall 
at these 2 locations, and in fall throughout all of US 
waters, to better characterize density in these loca-
tions and seasons. 

For this analysis, we developed a practical method 
for evaluating cetacean density surface model predic-
tions with acoustic presence rates obtained from pas-
sive acoustic monitoring. This method is readily 
applicable to other species and regions where similar 

data exist. For example, while building this right 
whale density model, we also modeled 29 other ceta-
cean taxa using the same methodology (Roberts et al. 
2023). This included models for blue, fin, humpback, 
and sei whales, for which acoustic presence data sim-
ilar to that we used for right whales are readily avail-
able (Davis et al. 2020). The same evaluation exercise 
could be performed for those species. 

4.3.  Model improvements 

The only aerial program that estimated perception 
bias corrections was NOAA AMAPPS, and we applied 
the AMAPPS corrections to all programs. AMAPPS 
flew bubble-window aircraft at 600 ft (~183 m) altitude, 
but most other programs flew flat-window aircraft at 
1000 ft (~305 m) and may have missed more whales 
along the transect line, requiring a stronger per cep -
tion bias correction. By applying AMAPPS’ weaker 
correction to the other programs, we might have bi-
ased density low on their transects. We recommend all 
programs develop perception bias corrections, and 
that funding agencies provide support for these criti-
cal data. Similarly, when developing availability bias 
corrections for aerial surveys of the MAB and GOM, 
we lacked the data needed to correct for regional and 
seasonal differences in diving behavior, except in 
CCB, the GSC, and Canadian basins, where dive data 
exist (e.g. Cetacean and Turtle Assessment Program 
1982, Baumgartner et al. 2017, Ganley et al. 2019). Es-
timates for most of the MAB and GOM were based on 
data collected during spring at the GSC. If the diving 
behavior changed in other locations or times of year 
(e.g. during migrations), then we might have under-
corrected availability bias in those situations. We rec-
ommend continued study of right whale dive behavior 
throughout the species’ range and life cycle, ideally 
culminating in the development of a comprehensive 
model of dive behavior that synthesizes all the extant 
knowledge and that could drive the estimation of 
availability bias in models such as ours. 

To address regional differences in species–habitat 
relationships, we modeled our 3 focal regions inde-
pendently. This precluded sharing information be -
tween regions during model fitting and failed to 
address covariance between regions directly (e.g. 
when fewer whales migrated to the SAB, more re -
mained in the MAB or GOM). Although the use of 
temporal covariates (Year and Era) alleviated this 
problem somewhat, the model might be improved by 
taking a hierarchical approach in which a single 
model is fitted to all data and covariate relationships 
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are allowed to vary regionally via factor-smoother 
interactions (Pedersen et al. 2019, Mannocci et al. 
2020). Better results might also be obtained from co -
variates more proximal to right whale feeding habitat; 
these could be derived from newly-developed zoo-
plankton distribution models (Ross et al. 2023). By 
focusing a follow-up analysis on species–habitat rela-
tionships and leveraging covariates from ocean cli-
mate models, it may be possible to forecast future 
right whale density patterns under projected climate 
change (Ross et al. 2021). Finally, recent methodolog-
ical innovations could allow future density models to 
incorporate additional data not utilizable under tradi-
tional density surface modeling, such as photo-
graphic identifications of right whales (Gowan et al. 
2021), surveys that did not collect sighting distances, 
or presence-only data such as opportunistic sightings 
(Wikgren et al. 2014, Gelfand & Schliep 2018). 

4.4.  Management applications 

Most management applications, such as agency 
rulemaking and permitting, are based on an assumed 
future distribution of right whales. Given that explicit 
forecasts of future density are not yet available, man-
agers usually rely on the recent past as a proxy for the 
near future. In this vein, our mean monthly density 
surfaces for the 2010–2019 era (October 2010–Sep-
tember 2020) are appropriate for managers to con-
sider for this purpose. For those interested, we also 
provide surfaces for the 2003–2009 and 2003–2019 
eras but note that these are not appropriate to use as 
proxies for the near future. We also provide SE and 
CV surfaces that depict the variability that would re -
sult if a random single year within the summary 
period was selected instead of the multi-year mean. 
For users seeking to propagate uncertainty from our 
model into their own models via bootstrapping, we 
can provide on request a set of alternative density 
surfaces predicted by simulated alternative models 
(Miller et al. 2022). 

We selected 2010 as the start of our summary era 
based on a confluence of events centered on that year 
but note that significant species distribution changes 
occurred both before and after. For example, large 
 aggregations first appeared in CCB in 2008 (Ganley et 
al. 2019), daily acoustic occurrence off Gaspé in the 
GSL quadrupled in 2015 (Simard et al. 2019), and the 
SNE area experienced sustained growth in winter and 
spring abundance from 2013 to 2019 (O’Brien et al. 
2022). As changes continue to occur and additional 
data accumulate, we will revisit the best era for sum-

marization in future model updates. For management 
purposes, it is important to note that the spatiotem -
poral distribution of right whales remains highly dy-
namic, and thus uncertainty estimates, as well as 
rapidly adaptable spatiotemporal management mea-
sures, should be considered when making decisions. 
Where resources allow deployment of continuous 
monitoring approaches that have been determined to 
detect whales effectively and that report results in 
near real time, managers could consider highly dyna -
mic mitigations, e.g. that rapidly redirect or relocate 
harmful activities when whales are present, when such 
mitigations are practicable. Consideration should be 
given to multiple data sources, models, perspectives, 
sources of expertise, and possible solutions, rather 
than to a single model output or ap proach to mitiga-
tion. In the face of high uncertainty and variability in 
where right whales are, the most ef fective mitigations 
may be those that apply very broadly, or do not have a 
spatiotemporal component at all. 
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