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 Introduction 

Over 25 species of cetaceans utilize the shelf break regions of the US eastern seaboard, including 
several endangered species.  Understanding patterns in species distribution, and the anthropogenic 
and environmental drivers that may impact their distribution, are critical for appropriate management 
of marine habitats. To better understand patterns in species distribution and vocal activity, NOAA’s 
Northeast Fisheries Science Center and Scripps Institution of Oceanography (SIO) collaboratively 
deployed long-term high-frequency acoustic recording packages (HARPs) at eight sites along the 
western North Atlantic shelf break. This work was conducted from 2015-2019, in coordination with 
the Bureau of Ocean Energy Management (BOEM). Likewise, the US Navy has been monitoring the 
shelf break region at 3 to 4 sites since 2007. Together these combined efforts bring the total to 11 
recording sites spanning the U.S. eastern seaboard, from New England to Georgia.  

Data from earlier HARP recorders have been analyzed in multiple previous studies (e.g. Davis et al. 
2017; Stanistreet et al. 2017, 2018). This project focuses on analyses of the new datasets collected 
from 2015-2019.  The focus of our efforts in 2021 have been to refine species occurrence analyses, 
including extensive work to improve the classification algorithms for odontocetes; applying 
frameworks to assess impacts of anthropogenic noise on the acoustic ecology and acoustic behavior 
of protected species; and finalizing and publishing work on new acoustic metrics to describe species 
occurrence and diversity.  

Objectives 

The work this year was aimed at advancing the analytical components for these key objectives: 

I. Continuing to improve tools for automated classification for beaked whales 
II. Assessing effects of anthropogenic noise on beaked whale vocal activity 

III. Assessing the prevalence of seismic survey noise along the eastern seaboard 
IV. Novel broad-scale approach to assessing acoustic niche and anthropogenic contributors, and 

assessing the utility of new acoustic metrics  
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Acoustic Data Collection 

Continuous passive acoustic recordings were collected along the Atlantic continental shelf break of the 
United States at eleven sites beginning in 2015 by both NEFSC and the U.S. Navy. The sites deployed in 
2015 include Heezen Canyon, Oceanographer Canyon, and Nantucket Canyon (3 northernmost sites), and 
Norfolk Canyon, Hatteras, and JAX (U.S. Navy deployments). These were expanded in 2016 to include 
Wilmington Canyon & Babylon Canyon north of Cape Hatteras, and Gulf Stream, Blake Plateau and Blake 
Spur south of Cape Hatteras. (Figure 1, Table 1). HARPs were deployed at depths of 750-1100 m, with the 
hydrophones suspended approximately 20 m above the seafloor.  Each HARP was programmed to record 
continuously at a sampling rate of 200 kHz with 16-bit quantization, providing an effective recording 
bandwidth from 0.01-100 kHz.  HARPs include a hydrophone comprised of two types of transducers: a 
low-frequency (< 2 kHz) stage utilizing Benthos AQ-1 transducers (frequency response -187 dB re: 1V/µPa, 
± 1.5 dB, www.benthos.com), and a high-frequency stage (> 2 kHz) utilizing an ITC-1042 hydrophone 
(International Transducer Corporation, frequency response -200 dB re: 1V/µPa, ±2dB), connected to a 
custom built preamplifier board and bandpass filter. Further details of HARP design are described in 
Wiggins and Hildebrand,2007.

Figure 1. HARP deployment sites for data collected from 2015 through 2019. 
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Table 1. HARP deployment sites, recording dates and recording durations for 2015-2019. All HARPs recorded 
continuously at a sampling rate of 200 kHz.  The first and last day of each deployment represent partial recording 
days. 

Site Name, Location Recording Date Range Latitude Longitude Recorder 
Depth (m) 

WAT_HZ; Heezen Canyon Jun 2015 - Mar 2016 
Apr 2016 - Jun 2017 
Jul 2017 - Jan 2018 
Jun 2018 - May 2019 

41.0619 -66.3515 845 

WAT_OC; Oceanographer Canyon Apr 2015 - Feb 2016 
Apr 2016 - May 2017 
Jul 2017 - May 2019 

40.2633 -67.9862 1000 

WAT_NC; Nantucket Canyon Apr 2015 - Sep 2015 
Apr 2016 - May 2017 
Jul 2017 - Apr 2018 
Jun 2018 - Jun 2019  

39.8325 -69.9821 977 

WAT_BC; Babylon Canyon Apr 2016 - May 2019 39.1911 -72.2287 1000 
 

WAT_WC; Wilmington Canyon Apr 2016 - May 2019 38.3742 -73.3707 1000 

NCF; Norfolk Canyon Apr 2016 – May 2019 37.166 -74.466 1000 

HAT; Hatteras Apr 2016 – May 2019 35.584 -74.749 1100 

WAT_GS; Gulf Stream Apr 2016 - Jun 2019 33.6656 -76.0014 954 

WAT_BP; Blake Plateau Apr 2016 - May 2019 32.1060 -77.0943 945 

WAT_BS; Blake Spur Apr 2016 - Jun 2019 30.5838 -77.3907 1005 

JAX; Jacksonville Apr 2016 – Jun 2019 30.152 -79.771 750 
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Methods 

I. Improving automated classification for beaked whales 
 
The volume of data generated from the 11 recording sites during 2015-2019 presented a challenge for 
classification of beaked whales to the species level as it requires expertise and time to manually label 
echolocation clicks. The purpose of this effort was to design a system to streamline and automate the 
process of detecting and classifying beaked whale echolocation clicks using deep-learning neural 
networks. The classification pipeline consisted of multiple steps targeted to efficiently detect beaked 
whales, often challenging to detect when other species dominate the soundscape. The steps included (1) 
a generic detector to detect clicks above a received level threshold, (2) a discrimination phase to remove 
dominant non-beaked whale detections, (3) an unsupervised learning to derive clusters of distinct clicks 
types based on similarities in the spectral shape, and (4) a trained deep neural network to classify clusters 
of echolocation clicks based on spectral shape, inter-click interval, and click duration. 
 

a. Generic impulse detection 
In the first step of the workflow, an energy detector was applied using the friendly user-interface from 
the SPICE-Detector Remora (github.com/MarineBioAcousticsRC/Triton/wiki/SPICE-Detector) within the 
open-source data processing software package Triton (Wiggins et al., 2010). The energy detector was 
configured to band-pass the data with a five-pole Burtterworth filter from 5 to 100 kHz, and return signals 
with a received level ≥ 118 dB peak-to-peak re 1µPa² and durations between 30 and 1200 ms. All 
information on the detector settings can be found in Figure 2. 
 

b. Pruning non-beaked whale detections  
The generic detector returned thousands or hundreds of detections per day, depending on the site and 
time. Previously, a clustering method that involved unsupervised learning and neural networks (Frasier et 
al., 2017, Frasier, 2021) was applied directly to the output of the generic detector. This method generated 
a significant amount of false-positive detections and overall false labels for beaked whales. The effort 
during this phase was to implement a new step to remove non-beaked whale detection that dominated 
the recordings before the clustering phase. Then, a targeted clustering method was developed to 
effectively classify beaked whale detections to the species level.  
 
An algorithm was developed to discriminate beaked whale detections based on temporal and spectral 
features (Baumann-Pickering et al., 2013). Clicks with peak and center frequencies of at least 32 and 25 
kHz, respectively, durations of at least 355 ms, and frequency-modulated upsweeps with a sweep rate of 
at least 23 kHz/ms were considered potential beaked whale signals. After this initial discrimination step, 
an additional set of criteria was applied, requiring the waveform envelope of each click to increase over 
the first 0.1 ms and to remain above a 50 % energy threshold for a duration of at least 0.1 ms. Clicks 
meeting these criteria were further evaluated at 75-s time bins. If bins had more than seven clicks or 13 
% of valid clicks, those clicks were retained for the classification task. 
 

https://github.com/MarineBioAcousticsRC/Triton/wiki/SPICE-Detector
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Figure 2. Generic impulse detector settings example from SPICE-Detector Remora interface. 

 
c. Unsupervised clustering of signal types in short time intervals 

An unsupervised clustering approach developed by Frasier et al. (2017) was applied in successive time 
bins of 5 minutes to identify and group similar signals types based on similarities in the spectral shape. 
Spectra of all detections were truncated at 10 and 90 kHz and normalized [0, 1]. A similarity metric was 
computed (Frasier et al, 2017) between pairs of spectra resulting in a matrix of [0 ,1] edge weights. A 
network was constructed in which nodes represented individual clicks, and edge weights connections. 
Weak edges were pruned to reduce the size of the distance matrix input into the clustering algorithm. An 
edge pruning threshold at 80 % was used. This approach improved cluster formation but could result in 
exclusion of highly dissimilar events from any identified clusters. Therefore, different pruning thresholds 
were tested. Clusters of similar nodes were defined through the Chinese Whispers (CW) clustering 
algorithm (Biemann, 2006), using a maximum of 25 assignments iterations and a maximum network size 
of 40,000 clicks for each 5-min bin. 
 
Mean spectra, waveform envelopes and the mode of inter-click interval distributions were calculated for 
each signal type found in each 5-min bin. ICIs were calculated for sequential clicks with each cluster and 
sorted in 10 ms bins up to 800 ms. A time bin could contain multiple clusters, which could represent 
different signal types. Clusters were formed with a minimum of ten clicks. The binned average features of 
all clusters were used as the input for the next classification phase. The unsupervised clustering was 
applied using the friendly user-interface from the Cluster Tool Remora 
(github.com/MarineBioAcousticsRC/Triton/wiki/Cluster-Tool, Figure 3) within the software package 
Triton (Wiggins et al., 2010).  

https://github.com/MarineBioAcousticsRC/Triton/wiki/Cluster-Tool
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Figure 3. Unsupervised clustering settings phase I example from Cluster Tool Remora interface. 

 

d. Development of a deep neural network classifier 
The purpose of this step was to develop a labeled dataset from which to train a deep neural network 
classifier. The steps included: (1) compiling a representative dataset of beaked whale signals and other 
possible signals using an unsupervised clustering method, (2) train a neural network, (3) evaluate the 
network performance, and (4) classify data with the trained neural network. 
 

i. Compilation of a representative dataset 
The generic energy detector was used to detect signals within periods of time with known occurrences of 
different beaked whale species. Detections were gathered from multiple sites and different years. To 
identify distinct click types, a 2-step unsupervised clustering approach (Fraiser et al., 2017) was applied. 
The method was used to cluster signals within each species' known occurrence times and sites 
independently.  
 
In the first step, detections were divided into 5-minute time bins and grouped into similar signal types 
based on similarities in the spectral shape. Spectra of all detections were truncated at 10 and 90 kHz and 
normalized [0, 1]. A network was constructed in which nodes represented individual clicks, and edge 
weights connections. Clusters of similar nodes were defined through the Chinese Whispers (CW) 
clustering algorithm (Biemann, 2006), using a maximum of 25 assignment iterations and a maximum 
network size of 40,000 clicks for each 5-min bin. Multiple clusters were permitted to form per bin with a 
minimum of ten clicks per cluster. An edge pruning threshold at 95 % was used to remove any weakly-
connected nodes. ICIs were calculated for sequential clicks with each cluster and sorted in 10 ms bins up 
to 800 ms. Mean spectra, waveform envelopes and the mode of inter-click interval (ICI) distributions were 
calculated for signal type found in each 5-min. The binned average features were stored as summary 
nodes for the input of the second step.  
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In the second step, the same algorithm was applied to cluster the set of summary nodes within each 
species' known occurrence times and sites independently. Similarities were again computed by comparing 
mean spectral shape as well as mean waveform envelope. Euclidean distances between modal ICIs were 
calculated to determine ICI distances values and converted into a similarity metric (Frasier et al., 2017). 
These two similarity scores were then combined and subsequently used in the CW clustering algorithm, 
allowing 25 interactions and a maximum network size of 40,000 clicks with a pruning threshold of 95 % 
and at least 5 nodes remaining in each resulting cluster (Figure 4). Due to high variability of the click 
duration of this species’ echolocation clicks, similarities were computed only by comparing the mean 
spectral shape and modal ICI to assemble a representative set of signal types for this species. 
 
After the second step of the clustering process, the binned average features grouped into distinct signal 
types were visually evaluated by multiple trained analysts (ASB, LMB, and AD) and assigned to possible 
classes of known species or sound sources. Analysts evaluated the distinct click types by inspecting plots 
of mean summary spectra per cluster, ICI distributions, concatenations of contributing bin-level spectra, 
and concatenations of contributing bin-level mean waveforms envelopes. Multiple clusters from a given 
site were allowed to contribute to a signal class, with the assumption that click types show substantial 
natural variability and the stringency of the clustering process could have led to higher cluster separation. 
 

 
Figure 4. Unsupervised clustering settings phase II example from Cluster Tool Remora interface. 
 

ii. Training a deep-learning neural network 
Once detections from the representative dataset were categorized into signal classes, the dataset was 
used to train a supervised deep learning neural network to recognize the differences between the 
different classes by comparing the mean spectral shape, mean waveform envelope and modal ICI (Frasier, 
2021). The neural network was trained using the friendly user-interface from the Neural Net Tool Remora 
(github.com/MarineBioAcousticsRC/Triton/wiki/NNet-Tool) within the software package Triton (Wiggins 

https://github.com/MarineBioAcousticsRC/Triton/wiki/NNet-Tool
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et al., 2010). The interface allowed the dataset to be divided into training, validation and test sets. The 
training set was used to train the network, the validation set to evaluate the model fit while training, and 
the test set to evaluate the performance of the trained network. For each signal class, detections were 
split first into encounters (separated by a minimum of 15 minutes without detections), and these 
encounters were randomly assigned to the different sets (70 % for training, and 30 % for evaluation). 
Several classes of the dataset had far more examples than others. To obtain a balanced dataset, 1,000 
bins were randomly selected for each signal class across the training encounters and were subdivided for 
training and validation using an 80/20 split: 80 % for training and 20 % for validating performance. To form 
a test set, 500 bins were randomly selected across the evaluation encounters for each signal class. 
 
The deep network was constructed with a similar design applied by Frasier et al. (2021). The network 
architecture consisted of an input layer, four 512-node fully connected layers with rectified linear unit 
(ReLU) (Maas, 2013) activation, 50 % dropout between layers, and a softmax output layer. Deep networks 
were trained with a batch size of 100 with a patience of three training epochs, after which if performance 
on the validation set was not improving , training ceased. A maximum of 15 epochs were allowed (Figure 
5). 
 

 
Figure 5. Deep network architecture settings example from Neural Net Tool Remora interface. 
 

e. Analysis of the summer 2016 data via manual review 
As part of a separate project, the beaked whale data that was run through the first two steps of the 
improved classification method (impulse detector and pruning of non-beaked whale detections) collected 
from July 1 - August 31 2016 at all HARP sites were manually reviewed using the open-source software 
DetEdit (Solsona-Berga et al., 2020). All clicks that exhibited an FM upsweep and contained spectral and 
temporal characteristics that matched previously described click types in the literature for North Atlantic 
species were marked. These marked clicks were assigned a species class, and minutes containing 5+ clicks 
were marked as containing presence for that beaked whale species. The results from this analysis were 
used to test the neural net’s performance and are also being combined with towed array data that were 
collected at the same time as part of a separate project (Atlantic Marine Assessment Program for 
Protected Species [AMAPPS]). 
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II. Assessing effects of anthropogenic noise on beaked whale vocal activity 
The goal for this component of the project is to refine a statistical approach to investigate the potential 
impacts of mid-frequency active (MFA) sonar on beaked whale acoustic activity in the Western North 
Atlantic. The analyses include data for several species of beaked whales for acoustic behavioral response 
to sonar operations in areas with varying naval activity. The relationship between MFA sonar and the 
acoustic behavior of beaked whales is complex and requires the inclusion of natural temporal and spatial 
variability in click densities, e.g., caused by species or population-level seasonality, habitat preference, the 
behavioral context of echolocating, and individual variability. For this part of the project, analyses focus 
on the Navy HARP sites, as presence of MFA sonar is higher there than on the WAT sites.  
 
We previously documented the progress made on data preparation, defining methods for automated 
identification of beaked whales to click-level and parameters to be used in statistical analysis (Van Parijs 
et al, 2021). The proposed statistical analysis to investigate impact entails presence/absence-level 
decisions in 1-min segments, which requires beaked whale data to be classified to a finer resolution of at 
least 1-minute granularity. The previous classification methodology included a clustering method that had 
a significant proportion of false detections and false classifications, which needed to be addressed. 
Therefore, this FY, the majority of the effort was focused on the refinement of the species-specific 
classifier (see above).   
 
A short summary of the progress on this component of the project as reported previously is as follows:  
Automatic detection of MFA sonar was implemented using a modified version of the silbido detection 
system (Roch et al., 2011) designed for characterizing toothed whale whistles. Parameters in silbido were 
adjusted to detect tonal contours ≥ 2 kHz (in data decimated to a 10 kHz sample rate) with a signal-to-
noise ratio ≥ 5 dB and contour durations > 200 ms with a frequency resolution of 100 Hz. Detections were 
compiled into MFA sonar events, defined as MFA sonar detections separated by more than 5 min. For 
each event, start and stop times were saved, as well as peak-to-peak received level (RLpp, in dB) and sound 
exposure level (SEL).  We selected generalized estimating equations (GEES) as the modeling framework 
for statistical data analysis. We explored the power that various explanatory variables have to the 
response variable, including the time of day and season, sonar presence, and sonar signal characteristics. 
As a first approach, we focused on two of the Navy sites (NFC, JAX) and limited the response variables to 
the different beaked whale species' presence in 1-min segments.  To investigate the probability of beaked 
whale signals changing in the presence of sonar, we used a binary response variable which was equal to 
1 (presence) for those 1-minute segments during which at least one signal was detected and 0 (absence) 
for those during which no signal was detected. This was done for the four beaked whale species click 
types. The explanatory covariates were defined to capture the potential effects of sonar on the response 
variable in various ways, e.g., the amount of sonar pings, the intensity of sonar received level at the 
monitoring site, the recovery time since sonar stopped. Non-sonar-related variables such as time of day, 
date, or year were included to account for natural variability in the response. 
 
 
 

https://www.navymarinespeciesmonitoring.us/index.php/download_file/2326/
https://www.navymarinespeciesmonitoring.us/index.php/download_file/2326/
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The current effort is to apply the classification pipeline to automatically label beaked whale acoustic 
events to species level in 1-min level to all Atlantic sites between 2015-2019. Progress per site and 
deployment is shown in the preliminary results section. The results from the Navy sites (NFC, JAX, and 
HAT) will be used to continue the modeling effort to examine anthropogenic effects of sonar activities.  
 

III. Assessing the prevalence of seismic survey noise along the eastern seaboard 

The goal for this component of the project is to describe and quantify the extent to which seismic airgun 
activity is detected along U.S. Atlantic shelf-break waters, and consider these results within the context 
of potential impacts on baleen whale acoustic ecology. Work on this component of the project in FY21 
was two-fold. First, analyses of airgun prevalence were completed for 11 HARP sites, including both WAT 
and Navy sites, recording from 2016-2017. The resulting data were then used to localize all events in which 
corresponding airgun signals were detected across four or more hydrophones.  The initial presence of 
airguns was automatically detected using a matched filter detector, where the time series was filtered 
with a 10th order Butterworth bandpass filter between 25 and 200 Hz.  A cross-correlation was computed 
on the filtered time series; when a correlation coefficient reached a threshold of 2*10-6 above the median, 
a trained analyst manually verified the detections (Rafter et al. 2020).  A second trained analyst reviewed 
the entire dataset, to identify periods with gaps in airgun activity (for example, Figure 6) that could be 
used to match signals across multiple hydrophones.  Custom-written Matlab code was used to align gaps 
in airgun activity and estimate the bearing to the signals via time-of-arrival differences between 
hydrophones. Putative locations with corresponding localization errors were plotted to assess  ocean 
basin-wide sources for airgun signals detected along the US eastern seaboard.  

 

Figure 6. Example of a “gap” and “stop” in airgun activity  from Wilmington Canyon on 05/22/2016. 
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IV. Novel broad-scale approach to assessing acoustic niche and anthropogenic contributors, 
and assessing the utility of new acoustic metrics 

The goal for this component of the project is to develop and apply new techniques for visualization and 
rapid extraction of soundscape information from large acoustic datasets.  For the former objective, in 
FY21 we published the following manuscript in Marine Policy: Weiss SG, Cholewiak D, Frasier KE, Trickey 
JS, Baumann-Pickering SM, Hildebrand JA, Van Parijs SM. 2021. Monitoring the acoustic ecology of the 
shelf break of Georges Bank, Northwestern Atlantic Ocean: New approaches to visualizing complex 
acoustic data. Mar Pol. 130:104570.  This manuscript includes the summary results and data visualization 
from the deployment of three HARPs in 2015-2016, which were presented in our FY19 annual report. The 
manuscript was submitted during 2020; delays due to COVID-19 resulted in a lengthy review process, but 
the paper was published in August 2021.  
 
Towards the goal of assessing the utility of acoustic metrics for the rapid soundscape assessment in long-
term datasets, we pursued an approach to apply a suite of acoustic metrics, using supervised machine 
learning, to assess the presence and species richness (SR) of baleen whales at two sites in the western 
North Atlantic: the Heezen Canyon HARP dataset (2018-2019), and a MARU recorder deployed at 
Nantucket Shoals (2016-2018).  These are referred to as the “slope” and “shelf” sites, respectively. Sound 
files were clipped into 1-minute segments, and we performed stratified random sampling over the entire 
dataset to select files to constitute the training dataset for the model. We quantified species presence or 
absence, as well as the number of species acoustically present in a 1-min file (SR), using aural and visual 
review of spectrograms. We computed 21 different acoustic metrics for every acoustic file in each training 
set over the full bandwidth 0–1,000 Hz.  We used random forest classification models to discriminate 
between the acoustic presence and absence of the different species comprising the acoustic community 
at each site, and to evaluate the discrimination potential of the acoustic metrics. Finally, the trained model 
was run on a full 12 months of acoustic data from the Nantucket Shoals site, and compared with our LFDCS 
detection software and manual verification outputs. 
  
Preliminary Results  
 

I. Improving automated classification for beaked whales 
 

a. Development of a deep neural network classifier 
A representative dataset for the North Atlantic shelf break to train a deep-neural network was collected 
from multiple sites and different years. The total amount of binned average features of clustered clicks 
varied among classes. Classes had signals from more than three sites to increase variability of the 
representative features within each signal class (Table 5). Twelve signal classes were identified which were 
attributed to six different species of beaked whales: Mb - Blainville’s beaked whale (M. densirostris), Zc - 
Cuvier’s beaked whale (Z. cavirostris), Me - Gervais’ beaked whale (M. europaeus), Mm - True’s beaked 
whale (M. mirus), Mb - Sowerby’s beaked whale (M. bidens), and BWG - the unknown Mesoplodon sp. 
designated as Beaked Whale Gulf. Three signal classes were attributed to non-beaked whale species 
representing Kogia sp., Gg - Risso’s dolphin (G. griseus), and a large class categorizing most of the 

https://www.sciencedirect.com/science/article/pii/S0308597X21001810
https://www.sciencedirect.com/science/article/pii/S0308597X21001810
https://www.sciencedirect.com/science/article/pii/S0308597X21001810
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delphinid click types. One class was attributed to different pings of echosounders. Three signal classes 
were categorized to generic noise sources - one representing noise from frequencies above 50 kHz 
(labeled as High-noise), another with frequency between 20-50 kHz (labeled as Mid-noise), and a class 
with signals with frequencies below 20 kHz (labeled as Ship-Pm) containing possibly shipping noise and 
sperm whale echolocation clicks. 
 
Unique training binned average features for beaked whale species classes ranged from approximately 
1,000 bins for Mb, Md and Mm, as low as 29 bins for BWG, to more than 8,000 bins for Me and Zc. For the 
other non-beaked whale signal classes, the total amount of bins varied greatly, with the highest amount 
of examples for the delphinid class and the Ship-Pm class (Table 5).  

Table 5. Number of binned averages of clustered clicks per 5-minute bins within each signal class per deployment. 

 
 
A balanced dataset for training the neural network was selected with a 1,000 bin examples per signal 
class. Classes with more than 1,000 bin examples were subsampled such as the delphinid class, or the Zc 
and Me class. For the minority classes such as BWG and Kogia examples were resampled to reach the 
required number of examples to train the network (Figure 7). 
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Figure 7.  Binned average features of the balanced dataset for neural network training, consisting of concatenated mean spectra, 
ICI distributions, and mean waveforms of 1,000 bins per signal class. Features are normalized [0,1] prior to being fed into the 
neural network. 
 

The learning algorithm required 15 epochs to train the neural network, passing through the entire training 
dataset at every epoch. The network achieved 98 % classification overall accuracy on the balanced test 
set with 500 bin examples per signal class. Confusion was very low for all beaked whale classes, with 
accuracy rates above 99 % (Figure 8). Performance on the non-beaked whale classes was lower, as 
expected since effort was to gather enough non-beaked whale classes to reduce spurious assignments of 
unrepresented non-target signals to beaked whale categories. BWG, Sowerby’s, and Blainville’s beaked 
whales were 100 % correctly classified. Little confusion was observed between Gervais’ and True’s beaked 
whale, with 2 binned examples of Gervais’ classified as True’s. Other 2 binned examples of Gervais’s were 
classified as delphinid, and 2 binned examples of delphinids were misclassified as True’s. Approximately 
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1 % of binned examples of Cuvier’s beaked whales were misclassified as delphinids. Some confusion was 
observed with Mid-noise and delphinid examples that were classified as Cuvier’s beaked whales, which 
some of those examples could have been incorrectly labeled by the unsupervised clustering process. 
Therefore, the Mid-noise class could contain some true Cuvier’s beaked whale examples. Performance 
was the lowest with the delphinid class. This class contained multiple species of delphinids and after being 
resampled to create a balanced dataset, this could have resulted in a brittle class characterization. 
Nonetheless, the unsupervised clustering approach does not ensure the creation of perfect training and 
testing sets, and some of the binned examples could have been correctly classified by the neural network 
although were clustered pertaining to a distinct signal type. 
 

  
Figure 8.  Confusion matrix for the deep neural network classification of the balanced test set, consisting of 500 examples per 
signal class. Values in the matrix indicate total number of 5-min bins classified. 
 

b. Testing the classification pipeline with an independent dataset 
The deep neural network was found to achieve high overall performance on the representative dataset 
compiled from periods of time with known beaked whale presence. The classification pipeline was also 
tested on a small dataset of several deployments from July to August of 2016, which was previously 
labeled for another purpose (described in section I.e). This created an opportunity to test the performance 
of the classification pipeline against a manually labeled dataset and the performance of the previous 
neural network developed in previous fundings for odontocetes in general. 
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For the unsupervised clustering process, different thresholds of pruning were tested to improve the 
formation of clusters of similar signals. The first configuration that was applied was the same configuration 
used to compile the representative dataset to train the neural network. This configuration had a high 
pruning threshold of 95 %. This pruning led to a large number of isolated clicks of beaked whales that 
were off-axis, with a less characteristic spectral shape (Figure 9). Lowering the pruning threshold to 80 % 
improved the inclusion of those clicks while still balancing the distinction of different signal types. 
 

 
Figure 9.  Example of Cuvier’s beaked whale clicks clustered in yellow and not clustered in blue using different pruning thresholds: 
left panel using a 95 % pruning threshold and on the right panel using a 80 % pruning threshold. 
 

The small dataset from summer 2016 was classified using the trained deep neural network. However, only 
results from the Babylon Canyon (BC) site are shown. The manual labels were considered for this purpose 
as the true species classes and compared with the classification given by the neural network. The results 
from a previous trained neural network targeted to classified odontocetes in general were compared with 
the manual labels, and differences between both neural networks were evaluated. To facilitate 
comparison, the developed neural network during this funding will be referenced from now on as the 
“BW neural network”, as it was targeted to improve beaked whale classification, and the other neural 
network as “DE neural network”. For cases in which no labels were given during the manual labeling, a 
label of “No label” was applied to account for the missing bins. Similarly, if no cluster formed, this was 
counted as a “No label” by the classifier for purposes of computing accuracy metrics. 
 
The BW network had a high prediction rate for beaked whale events (Figure 10), with 70 % of the 5-minute 
bins correctly predicted for all beaked whales species present at site BC. The majority of bins not labeled 
had less than 10 clicks (Figure 11). These cases were not directly available to the classifier during the 
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labeling stage due to the clustering choices in prior steps. The unsupervised clustering method was set to 
retain clusters of signals of at least 10 clicks within a 5-min time bin. Examination of the misclassified 
events of the beaked whale classes revealed that a large number of the incorrectly labeled events had a 
low classification probability (Figure 11). Examination of the labeled bins by the neural network that did 
not have a label from the manual dataset revealed a large number of bins correctly assign to the species 
signal type (Figure 12). Therefore, those bins were missed in the manual dataset. The high probability (> 
0.8) of Sowerby’s and True’s beaked whale labels appeared to be of those species, as well as those labels 
with a high probability (> 0.99) of Cuvier’s beaked whale (Figure 12). In contrast, most of those bins labeled 
as BWG, Gervais’ and Blainville’s beaked whales (not labeled in the manual dataset) had lower 
probabilities. Therefore, discarding low probability labels, the precision of the network could increase 
considerably without severely affecting recall.   

 
Figure 10.  Confusion matrix for the BW deep neural network classification of site BC detections during summer months. Values 
in the matrix indicate total number of 5-minute time bins classified. 
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Figure 11.  Total number of signals per cluster within 5-min time bins and label probability scores for each class at site BC. Each 
subplot represents a true class and those predicted classes assigned by the BW neural network. 
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Figure 12.  Averaged features of bins predicted by the neural network and not labeled in the manual dataset at site BC. Only 
predictions of beaked whale classes are shown. Bins are sorted by label probability. 
The DE network had a lower prediction rate for beaked whale events than the BW network (Figure 13), 
with less than 50 % of the bins correctly predicted for Cuvier’s and True’s beaked whale at site BC. The 
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only bin with Gervai’s beaked whale presence was correctly classified by both neural networks (Figure 10, 
13). The DE network achieved a higher predictability for Sowerby’s beaked whale than the BW network, 
with approximately 85 % of the bins correctly classified. In contrast, only 72% of the bins were correctly 
classified by the BW network with double the number of unlabeled bins than the other network. In this 
case, all the unlabeled bins had less than ten clicks per cluster (Figure 11).     

 
Figure 13.  Confusion matrix for the DE deep neural network classification of site BC detections during summer months. Values 
in the matrix indicate the total number of 5-minute time bins classified. 
 

The described classification pipeline facilitated the classification of beaked whale events, reducing the 
time spent running different detectors and analyst revision for different target signals. Overall higher 
performance was accomplished by implementing the classification pipeline with a targeted clustering 
method to beaked whale encounters, improving the classification of those rare events often obscured by 
large acoustic presence of delphinids, sperm whales or shipping noise. By operating on clusters formed 
from multiple similar events co-occurring within 5-minute time bins, the neural network had some 
contextual information. The inclusion of modal ICI distributions as an input feature for the network 
classification facilitated the discrimination between Gervais’ and True’s beaked whale acoustic 
encounters, which are otherwise very similar in spectral shape and waveform. After the network 
classification, the binned labels can be propagated down to all individual signals contained in the each 
cluster giving a label per signal. In this case, manual review and editing of the labels using a batch review 
tool such as DetEdit (Solsona-Berga et al., 2020) remains particularly important to achieve high confidence 
of beaked whale detections in 1-min segments.    
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II. Fine-scale detection of beaked whale signals and Navy sonar events 
To achieve fine granularity of detections at one-minute level, all beaked whale acoustic encounters and 
Navy sonar pings were detected at all Atlantic sites between 2015-2019 using automated methods 
(described in sections I. and II.). Beaked whale encounters were automatically detected and are being 
classified to the species level using the trained deep neural network developed during this funding. 
Progress on classification of encounters per site and deployment can be found in Table 6.  
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Table 6. Summary of data analysis of all Atlantic sites using automated methods for beaked whale and Navy sonar 
detection events at one-minute granularity.
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III. Assessing the prevalence of seismic survey noise along the eastern seaboard 
Acoustic data were analyzed from eleven HARP sites, recording from Apr 20th, 2016 - Jun 29th, 2017, 
totaling over 110,000 hours. Recordings ranged in length from 390-436 days, with an average of 417 days 
per site. Airguns were heard on 21-292 days of recordings, representing 5%-69% percent of the study 
period, spanning all months of the year at all sites (Figure 14). With the exception of the Norfolk Canyon 
site, airguns were detected on 50% or more of days for all sites from Cape Hatteras to the north at Heezen 
Canyon. Seasonally, airgun detections were highest from April-November.  
 
 

 
Figure 14. Number and percent of days with (dark blue) and without (light blue) airgun detections on each HARP site. 
Sites are organized from north (Heezen Canyon) to south (Jacksonville, FL), and site names correspond to FIgure 1.  
 
 
Corresponding airgun pulses were detected across at least 4 hydrophones on over 350 instances.  
Localization analyses suggest that there are four main sources of airgun activity: one along the North 
American eastern seaboard, two off the northeastern coast of South America, and one towards the mid-
Atlantic (Figure 15). Most localized signals originated at great distance, presumably from oil fields along 
the South American coast.  In addition, airguns were detectable across 7 hydrophones in over 30 cases, 
and across 10 hydrophones in at least 11 cases, indicating that in some periods, airgun signals  were 
simultaneously detectable across all US shelf-break Atlantic waters. These findings signify the large spatial 
scale at which airgun pulses can impact local soundscapes, and suggest that marine seismic surveys have 
the potential to affect marine animals across an ocean basin. 
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Figure 15. Localization of seismic survey airgun pulses which were detected on four or more hydrophones, with 
corresponding error bars. Four main regions of seismic survey activity were identified in the acoustic data.  
 

IV. Novel broad-scale approach to assessing acoustic niche and anthropogenic contributors, 
and assessing the utility of new acoustic metrics 

Our training dataset included 695 one-minute clips for the Heezen Canyon HARP dataset (slope site), and 
389 clips for the Nantucket Shoals MARU dataset (shelf site).  Five baleen whales species were present in 
the slope dataset (blue, fin, humpback, North Atlantic right, sei whales); the shelf site also included minke 
whales. Fin whales were the most prevalent species, with North Atlantic right whales being the least 
common in the HARP dataset (4% of acoustic clips). The highest species richness level (number of species 
acoustically present in the same one-minute clip) was 3 for the slope site.  
 
The Random Forest classification models trained with the suite of acoustic metrics showed high overall 
model accuracy (80-92%) for species at the slope site and 82-95% at the shelf site. False negative rates 
were low for all species at both sites, indicating that the models predicted true species’ absence with high 
precision. The false discovery rate varied by species, and was generally low for fin and right whales at the 
slope site, but higher for blue, humpback and sei whales (0.49-0.79 class 1 error).  Overall the most 
important acoustic metrics for the models were AMP (amplitude of peak frequency computed across four 
bandwidths), ACI (acoustic complexity index) and BI (bioacoustic index) (see Figure 16 for slope site). 
There were clear differences in the acoustic metrics that were most important between the slope and 
shelf sites.  
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Figure 16. Adapted from Pegg et al. 2021 (Figure 3).  Conditional variable importance plots showing all acoustic metrics included 
to train the random forest models, and their relative importance per species.  Data shown for HARP site only.  

 
In summary, the random forest classification models, trained with a combination of acoustic metrics, were 
successful at predicting absence for multiple baleen whales species at both sites, which can be extremely 
useful information to inform marine soundscape planning. Models were also successful at predicting 
presence for a subset of the target species.  The acoustic metrics that contributed most to model 
classification were those that summarized acoustic activity and complexity. For some site/species 
combinations, certain metrics contributed more significantly to species classification. The approach of 
using multiple acoustic metrics within a random forest modeling framework is a promising avenue for 
future soundscape monitoring. For more details, please refer to Pegg et al. 2021.  
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