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1 Introduction 
Previous satellite-telemetry studies funded by the United States Navy found that loggerhead 
(Caretta caretta) and Kemp’s ridley (Lepidochelys kempii) turtles that are seasonally resident in 
the Chesapeake Bay (the Bay) spend the majority of their time foraging (Barco et al. 2015; 
Barco et al. 2017), reaffirming that the Bay is a seasonally important foraging ground for these 
animals (Lutcavage & Musick 1985; Keinath et al. 1987; Seney & Musick 2005, 2007; Mansfield 
2006;  Mansfield et al. 2009). The Northwest Atlantic Distinct Population Segment of 
loggerheads, which the loggerheads found in Chesapeake Bay fall into, are listed as threatened 
under the Endangered Species Act (National Marine Fisheries Service 2011). Kemp’s ridleys 
have a single population, nesting predominantly in the Gulf of Mexico, and are listed as 
endangered under the Endangered Species Act. Both species face numerous threats in the 
region, including but not limited to ship strikes from commercial, naval, and recreational fishing 
vessels; dredging activities for shipping channels and beach re-nourishment; commercial and 
recreational fishery bycatch; climate change; and naval training and testing activities (Barco et 
al. 2015).  

To better understand the spatial distribution of habitat usage in the Bay by these species, the 
Navy funded home range analyses of both species based on extant satellite-tagging data for 
tags deployed from 2014 to 2018 (Barco et al. 2018). Foraging habitat for Kemp’s ridley turtles 
was identified in the southwestern corner of Chesapeake Bay, the James and York rivers, and 
several other nearshore locations, though there was extensive variation in home range size and 
location among individuals (DiMatteo et al. 2020). Loggerhead foraging habitat was found 
primarily in the center of the Bay, into the waters of southern Maryland, with some additional 
habitat closer to shore (Barco et al. 2017). Like Kemp’s ridleys, there was extensive variation in 
the size and location of individual home ranges.  

A sensitivity analysis using the same satellite telemetry dataset and tag simulation found that 
not enough tags had been deployed on either species to identify all additional habitat likely to be 
present in the Bay (DiMatteo 2019). Given the funding and logistical constraints of deploying 
additional tags, habitat modelling was chosen as the approach to identify additional potential 
habitat for both of these species in the Bay. 

Habitat models, in this case habitat suitability models using presence/absence data, can: 1) 
describe complex relationships among species and environmental covariates, 2) be 
extrapolated in space and time (with caution), and 3) provide insights into species’ distributions. 
Many frameworks for habitat suitability models exist, including but not limited to generalized 
additive models, maximum entropy (presence-only models), and boosted regression trees. Here 
we use the machine-learning technique of boosted regression trees (BRTs, Elith et al. 2008) to 
create habitat suitability models for both species. 

BRTs allow for the fitting of complex environmental relationships, explicitly explore covariate 
interactions, can include factors as covariates, and are robust to outliers in the dataset as well 
as missing covariate values (Elith et al. 2008). BRTs are a combination of regression trees, a 
type of decision tree model, and boosting technique, which produces a large number of simple 

https://www.navymarinespeciesmonitoring.us/index.php/download_file/view/1794/
https://www.navymarinespeciesmonitoring.us/index.php/download_file/view/1474/
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tree models and then combines them to maximize predictive potential (Elith et al. 2008). These 
features make BRTs a good option for this dataset and location. Turtles may be responding to 
complex environmental cues that create ephemeral features which aggregate prey or create 
conditions advantageous to their physiology (Schofield et al. 2009; Howell et al. 2015). Turtles 
are ectotherms and their metabolism is linked to their body temperature (Spotila and Standora 
1985). Chesapeake Bay is a complex estuarine environment with high variability in 
environmental conditions (Preston 2004; Werdell et al. 2009), increasing the potential for 
animals to react to complex environmental cues.  

Based on previous home-range research for these species, we also explored the possibility that 
they are partitioning their habitat (e.g., using different resources), which may complicate 
conservation efforts, if animals are found in different areas of the Bay. If, for example, two 
species are using different habitat in the Bay, time and area closures meant to protect one 
species may shift potentially harmful activities into the habitat of the other species.  

Green and leatherback turtles also utilize the Bay, though are much less common than Kemp’s 
ridleys and loggerheads (Keinath et al. 1987). Little tracking has been performed on green 
turtles in the region and none on leatherbacks, making assessing these species in the context of 
loggerhead and Kemp’s ridley habitat use impossible. 

2 Methods 
2.1 Turtle-tagging and satellite-telemetry data 

Data were analyzed from tags deployed on 23 Kemp’s ridleys and 11 loggerheads (Table 1). 
Details on capture and tagging methods can be found in Barco et al. (2015, 2017, 2018). Some 
animals that were tagged were excluded from the analysis: animals whose deployments were 
entirely outside the Bay; animals that spent fewer than five days in the Bay; animals tagged 
prior to 2014, which was the earliest year the selected environmental covariates were available; 
and one Kemp’s ridley whose entire deployment was in a small inlet not covered by the 
environmental covariates.  

Table 1. Summary of deployments retained in the analysis for both loggerheads and Kemp’s ridley 
turtles. SCL-NT refers to length of the turtle measured as straight carapace length, notch to tip..  

PTT Release 
Date 

Species Size 
(cm; SCL-NT) 

Mass 
(kg) 

Source # Argos 
Locations 

in Bay 
132367 7/9/2014 Kemp's ridley 36.0 7.0 stranded-cold stun 79 
138114 10/20/2014 Kemp's ridley 42.4 12.8 stranded-cold stun 48 

138117 9/2/2014 Kemp's ridley 35.4 6.5 recreational 
bycatch - hooked 92 

148886 5/29/2015 Kemp's ridley 51.0 18.0 wild capture 26 
148887 5/15/2015 Kemp's ridley 59.0 41.0 wild capture 156 
148889 5/16/2015 Kemp's ridley 45.0 16.4 stranded-cold stun 209 

https://www.navymarinespeciesmonitoring.us/index.php/download_file/view/906/
https://www.navymarinespeciesmonitoring.us/index.php/download_file/view/1474/
https://www.navymarinespeciesmonitoring.us/index.php/download_file/view/1794/
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PTT Release 
Date 

Species Size 
(cm; SCL-NT) 

Mass 
(kg) 

Source # Argos 
Locations 

in Bay 

150767 6/24/2015 Kemp's ridley 35.4 6.2 recreational 
bycatch - hooked 25 

159707 5/19/2017 Kemp's ridley 39.3 8.1 recreational 
bycatch - hooked 228 

159708 7/2/2016 Kemp's ridley 45.2 11.9 recreational 
bycatch - hooked 124 

159709 7/26/2016 Kemp's ridley 49.4 16.3 recreational 
bycatch - hooked 111 

169763 6/8/2017 Kemp's ridley 29.2 3.2 recreational 
bycatch - hooked 74 

169764 6/17/2017 Kemp's ridley 32.1 4.4 recreational 
bycatch - hooked 145 

169765 5/19/2017 Kemp's ridley 40.0 8.1 recreational 
bycatch - hooked 246 

169767 5/5/2017 Kemp's ridley 44.1 11.9 recreational 
bycatch - hooked 169 

169768 5/19/2017 Kemp's ridley 45.7 12.0 recreational 
bycatch - hooked 155 

169769 5/24/2018 Kemp's ridley 38.9 7.8 recreational 
bycatch - hooked 39 

169770 7/10/2017 Kemp's ridley 28.9 3.4 recreational 
bycatch - hooked 39 

169771 5/31/2017 Kemp's ridley 30.1 3.2 recreational 
bycatch - hooked 78 

175216 5/16/2018 Kemp's ridley 48.9 16.0 recreational 
bycatch - hooked 141 

175218 5/16/2018 Kemp's ridley 42.6 10.6 recreational 
bycatch - hooked 119 

175219 5/24/2018 Kemp's ridley 35.9 6.1 recreational 
bycatch - hooked 191 

175220 6/20/2018 Kemp's ridley 36.8 6.1 recreational 
bycatch - hooked 56 

175221 5/24/2018 Kemp's ridley 46.4 13.0 recreational 
bycatch - hooked 250 

175222 6/4/2018 Kemp's ridley 37.1 7.0 recreational 
bycatch - hooked 90 

108053 8/27/2013 loggerhead 66.5 44.5 recreational 
bycatch - hooked 119 

120347 6/12/2014 loggerhead 73.6 75.5 stranded-cold stun 198 
120348 3/16/2015 loggerhead 70.1 58.4 stranded-cold stun 465 

132363 9/28/2013 loggerhead 70.4 52.0 recreational 
bycatch - hooked 125 

138112 6/13/2014 loggerhead 60.4 33.0 stranded-cold stun 480 
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PTT Release 
Date 

Species Size 
(cm; SCL-NT) 

Mass 
(kg) 

Source # Argos 
Locations 

in Bay 
148883 7/1/2015 loggerhead 72.5 ND wild capture 238 
148884 7/1/2015 loggerhead 65.1 ND wild capture 101 
148885 8/5/2015 loggerhead 89.8 ND wild capture 120 

175708 6/29/2018 loggerhead 69.3 45.4 recreational 
bycatch - hooked 129 

175711 6/20/2018 loggerhead 31.5 3.2 recreational 
bycatch - hooked 116 

 

Argos satellite locations for the remaining turtles were run through the Douglas filter (Douglas et 
al. 2012) to remove unrealistic locations by using settings recommended for hardshell turtles by 
the Turtle Expert Working Group (2009). These Argos location errors can be up to 5 kilometers 
(km) depending on the quality of the satellite fix, and Argos locations are not true animal 
locations. The Turtle Expert Working Group Douglas filter settings included parameters for the 
Maximum Redundant Distance filter and the Distance Angle Rate hybrid filter algorithm which 
were used to account for unrealistic animal speeds and turning angles. 

Locations retained by the Douglas filter were processed using a hierarchical state-space model 
(hSSM), segregated by species, in order to create estimated locations at regular time intervals 
from the irregular Argos locations reported by the tags using the R package bsam (Jonsen et al. 
2005; Jonsen 2016; R Core Team 2020). These estimated locations reduced spatial 
autocorrelation from reported locations caused by animal behavior and satellite coverage. An 
hSSM was selected because movement parameters are estimated jointly for all individuals, 
along with an individual effects parameter, allowing shorter deployments to benefit from the 
information in longer deployments. This assumes that animals’ behavior is broadly similar, 
which we feel is reasonable given that animals were the same species and similar reproductive 
class based on carapace length (immature), engaged in similar behavior (foraging), and were in 
the same region. 

We did not include a behavioral component in the hSSM to distinguish between traveling and 
area restricted search (ARS) behavior. Previous state-space modeling work funded by the Navy 
found that both species spent the majority time of their time in the Bay engaged in ARS 
movements, assumed to be foraging (Barco et al. 2015; Barco et al. 2017). This is consistent 
with the known ecology of the species in this area (Lutcavage & Musick 1985; Keinath et al. 
1987; Seney & Musick 2005; Mansfield 2006; Mansfield et al. 2009). Given that few locations in 
the Bay will represent travelling behavior, we assume areas identified by the habitat model will 
represent foraging habitat.  

A 6-hr time step was chosen as the interval between locations as this was the finest-scale time 
step that could be fit to the Kemp’s ridley data. The loggerheads had more locations reported 
per day than the Kemp’s ridleys, which would have allowed for a finer-scaled hSSM, but we 
opted to keep the intervals equal so that each deployment would have the same number of 
locations reported per day, regardless of species.  
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hSSM diagnostics were examined to ensure that Monte-Carlo Markov Chains were mixing, that 
parameters estimates were converging, and that autocorrelation between chains was 
acceptably low. Models for both species performed well, converging with 80,000 posterior 
samples for the Kemp’s ridley model and 50,000 samples for the loggerhead model. Both 
models used 10,000 samples as an adaptation phase, and a span parameter of 0.2. 

After state-space modeling, estimated locations from the hSSM were reviewed visually to 
ensure the resulting deployments were reasonable. Points on land were removed using the 
Global Self-consistent, Hierarchical, High-resolution Geography Database full-resolution 
shoreline (Wessel & Smith 1996). The remaining locations were used as presence locations for 
the BRT models, 2,738 for Kemp’s ridleys and 2,247 for loggerheads (Figure 1). 
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Figure 1. Loggerhead (CC) and Kemp’s ridley (LK) locations used as presence points in the BRT 
models, as well as the high-resolution shoreline used to limit locations to being in-water. 
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2.2 Study area and environmental covariates 
Our study area is the Chesapeake Bay, including Virginia and Maryland waters, and connected 
riverine systems as defined by the extent of the available bathymetry, salinity, and temperature 
covariates. This includes areas farther north and farther upriver than either species has been 
sighted. We wanted to include these areas to see if suitable habitat existed and turtles were not 
utilizing them, or if environmental conditions were different from where turtles frequent. 

We used a mix of static and dynamic physical covariates, habitat maps, and temporal factors as 
candidate covariates (Table 2). Biological covariates such as chlorophyll a were not available at 
appropriate geographic and temporal scales and were not considered. We did not consider 
remotely sensed or ocean model covariates as the available products were at too coarse a 
spatial resolution, generally 5 km2 or greater, to reflect fine-scale habitat use in the 
topographically complex Bay. 

Sea turtles have been shown to be associated with ephemeral habitat features (Howell et al. 
2015) that may have higher quality or quantity of prey. Hardshell turtles are also physiologically 
limited by temperature and will seek to maintain their body temperature or else risk becoming 
cold stunned (Spotila and Standora 1985). Because the Bay is a highly dynamic environment, 
we wanted to make predictions on the finest temporal and spatial resolution possible to reflect 
potential fine-scale features. 

The Chesapeake Bay Operational Forecast System (CBOFS) provides daily readings of 
temperature (°C) and salinity (parts per thousand [ppt]) from sampling stations within the Bay 
and some of the major adjoining river systems. Both temperature and salinity are potentially 
important environmental condition for turtles and their prey, which in the Bay are mainly benthic 
invertebrates (Byles 1988; Seney & Musick 2005; Barco et al. 2015) for both species being 
modeled here.  

We derived temperature and salinity rasters from CBOFS in situ sensors (n=157). We took the 
noon reading from each sensor and used the diffusion interpolation tool in ArcGIS 10.7 (Esri 
2019) to interpolate values to match the extent of high-resolution bathymetry data for the region. 
The resulting daily rasters had a resolution of 500 meters (m). Though turtles may be reacting to 
changes in the environment on temporal scales finer than a day, we were not confident in our 
ability to model suitable habitat at that temporal resolution. 

CBOFS data were not available prior to July 2014 so all locations prior to 2014 were removed 
from the analysis. Rasters were processed for the months of May–November (with the 
exception of May and June 2014), the months with turtle locations present in the Bay. Turtles 
can enter the Bay as early as mid-April (Mansfield et al. 2009) but none of these animals were 
in our tag record so we opted not to model this month. Turtles usually attempt to depart the Bay 
by the end of November to avoid being cold-stunned as water temperatures drop. 

Temporal covariates, day of year and year, were derived from the timestamp of estimated 
locations. We included these covariates to account for intra- and inter-annual variability in 
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habitat not accounted for by other covariates. Latitude was also included as a covariate to 
account for north-south variability not captured by other covariates. 

We also assessed static maps of benthic habitat (National Marine Fisheries Service 2020) and 
submerged aquatic vegetation (Lefcheck et al. 2018) on the assumption that these may reflect 
important habitat for prey species. Ultimately, we dropped these covariates from consideration 
as there were many missing values compared to the extent of other available covariates and the 
submerged aquatic vegetation data had missing years (the benthic habitat map did not vary 
temporally). Even though BRTs are generally robust to missing covariate values, here the 
missing data were extensive both spatially and temporally. 

Table 2. Summary of available covariates for the boosted regression tree models. 

Covariate Type Resolution Source 

bathymetry physical 1/3 arc second 
(500 m) 

NOAA/NOS Chesapeake Bay Bathymetric Digital 
Elevation Model (mean lower low water, NCEI 2017) 

surface 
temperature physical daily, 500 m Chesapeake Bay Operational Forecast System 

salinity physical daily, 500 m Chesapeake Bay Operational Forecast System 
year temporal NA NA 
day of year temporal NA NA 
latitude spatial meter NA 

 

2.3 Boosted Regression Trees 
Interpolated animal locations from the hSSMs for loggerheads (n=2,247) and Kemp’s ridleys 
(n=2,738) were used as presence data for their respective boosted regression tree models.  

The BRTs require absence data to fit the model. Because we were using satellite-tag-derived 
locations for presence data, confirmed absences did not exist for our study. Pseudo-absences 
were generated in one of two ways:  

1) Random absences equal to the number of presence samples were created by selecting a 
random location on a random day from within the study area and time period. Using the same 
number of presence and pseudo-absence locations has been shown to have the best predictive 
performance in machine-learning techniques such as BRTs (Barbet-Massin et al. 2012). 
Random locations were drawn from the centroids of raster cells of the bathymetry covariate. 
Using randomly generated pseudo-absences assumes that animals are not distributed randomly 
in the study area and that the selected covariates will be able to distinguish between the random 
absences and the true habitat of the target species (Hirzel et al. 2001). A separate set of 
random absences was generated for the Kemp’s ridley and loggerhead datasets. 

2) Target-group absences, where confirmed presences of a related but distinct species are used 
as absences (Phillips et al. 2009). Target-group absences have been shown to outperform 
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randomly generated pseudo-absences in some cases (Cerasoli et al. 2017). Here we used 
loggerheads for absences in the Kemp’s ridley model, and vice-versa. Target-group absences 
were unweighted, as the number of locations of Kemp’s ridley and loggerhead turtles were 
similar. The target group absence group method assumes that the species are utilizing distinct 
habitats within the study area. Previous home range analyses indicated that this may be the 
case (Barco et al. 2018).  

We started the modeling process by fitting exploratory models with random absences that 
included all possible covariates and examining covariate interactions and contributions to the 
model. For covariate pairs that were highly correlated, the covariate with a lower contribution to 
the model was removed to simplify the models. In this exploratory phase, tree complexity, 
learning rate, and bag fraction, the primary parameters for adjusting how BRTs are fit, were 
adjusted manually to improve model performance.  

Model performance was assessed by examining residual deviance, coefficient of variation (CV), 
and the area under the curve (AUC) of the receiver operating characteristic (ROC) curve. 
Respectively, these assess the explanatory power of the model, the associated uncertainty, and 
true positive rate compared to the false positive rate at various thresholds.  

Sample predictions for random days, the finest temporal scale of the available covariates, were 
made throughout the exploratory modeling phase to assess whether predictions contained 
obviously spurious artifacts. If a covariate was causing clearly unrealistic predictions, it was 
dropped from subsequent models.  

After the exploratory phase, the retained covariates were used to create four final models for 
each combination of species and absence generation method—Kemp’s ridley with random 
absences, Kemp’s ridley with target-group absences, loggerhead with random absences, and 
loggerhead with target-group absences—in a more systematic fashion. A set of models was 
generated for each final model, with tree complexity, learning rate, and bag fraction being 
systematically changed between commonly used values for each (Elith et al. 2008): 1, 2, and 3 
for tree complexity; 0.1, 0.05, 0.01, 0.005, 0.001, and 0.0005 for learning rate; and bag fraction 
values of 0.1-0.9 in increments of 0.1. This resulted in a total of 162 candidate models, based 
on all possible combinations of the parameter values.  

The final models were selected from the candidate models by assessing residual deviance, 
coefficient of variation (CV), and the area under the curve (AUC) of the receiver operating 
characteristic (ROC) curve, which is an indication of the models’ ability to make correct 
predictions. If one candidate model did not score the best on all three metrics, professional 
judgement was used to assess the relative quality of top-scoring models and make the final 
selection. The selected final models all had at least 1000 trees (Elith et al. 2008). Afterwards, 
we compared final models between the two absence-generation methods and selected the 
better of the two to carry forward into the analyses described subsequently. This selection was 
made by examining both model diagnostics and a qualitative assessment of the resulting 
predictions. 
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2.4 Important habitat and habitat partitioning 
Often, habitat suitability models are predicted for a single time period, with habitat suitability 
values ranging from zero (poor habitat) to one (excellent habitat). These habitat suitability 
scores can be subsequently classified into habitat versus non-habitat by selecting a cutoff value 
that maximizes the ratio of true positives to true negatives predicted by the model (Bradley 
1997). 

In our case, we were interested in assessing habitat quality over the entire period of the study, 
which covered five seasons from 2014 to 2018. Given the fine temporal scale of available 
covariates relative to the length of the study and our assumption that turtles utilized ephemeral 
habitat based on prey distribution and physiological requirements, averaging habitat suitability 
scores over many days did not seem reasonable. This would have the effect of ‘washing out’ 
suitable habitat as conditions changed day to day.  

Instead, we assessed the number of ‘habitat days’ present in locations in the Bay at various 
temporal scales. We defined habitat days as the number of days suitable habitat was found in 
each predicted location within the Bay. For each final model, habitat suitability was predicted for 
each day within the study period. They daily habitat suitability surfaces were reclassified into 
habitat and non-habitat using a cutoff value to maximize the ratio of true positives to true 
negatives predicted by the model. 

The cutoff value was determined by randomly splitting the modeling data sets (presences and 
random absences) into training (70%) and testing (30%) datasets. The model was then fit with 
the training data and used to predict the testing data, which allowed the cutoff value (Bradley 
1997) to be determined. This process was repeated ten times and the cutoff value from the ten 
replicates was averaged and subsequently used to reclassify the daily prediction rasters. This 
process was performed independently for each of the four final models.  

This process yielded a set of rasters representing daily habitat within the Bay, classified as 1 – 
habitat, or 0 – non-habitat. We summed these rasters by month, year, and across all days to 
assess the number of days suitable habitat could be found in a location. Higher numbers of 
‘habitat days’ were an indicator of better habitat, with suitable conditions found there more often 
than elsewhere. 

Lastly, the overall habitat-days analysis for each model was reclassified into important habitat. 
Important habitat was defined as the quartile of locations (raster cells) with the highest number 
of habitat days. This provided a map of the most suitable habitat areas within the Bay, for each 
species, over the entire study period. These maps were then used to assess habitat partitioning 
between the two species.  

Habitat partitioning was examined using three different metrics: Schoener’s D (Schoener 1968), 
Hellinger’s-based I (van der Vaart 1998; Warren et al. 2010), and Syrjala’s test (Syrjala 1996). 
Schoener’s D calculates the range of a species based on probability distributions of abundance 
over a set of locations and calculates niche overlap based upon species abundance in those 
locations. Hellinger’s I is based on probability distributions without the assumptions of 
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Schoener’s D (Warren et al. 2010; Hosseinian Yousefkhani et al. 2016). Syrjala’s test assesses 
whether two distributions are equivalent, invariant of abundance. For our purposes we assumed 
habitat days corresponded proportionally to species occupancy and converted the overall 
habitat-days rasters to proportional occupancy by summing all cells and then dividing all cells by 
that sum. It is unlikely that habitat days corresponded directly to occupancy, but we could not 
test this assumption without extensively surveying the Bay.  

2.5 RESULTS 
2.5.1 Boosted Regression Trees 

Our exploratory models indicated that day of year was highly correlated with temperature and 
that latitude was highly correlated with salinity. Additionally, models that included latitude only 
predicted suitable habitat at latitudes where animals were located. Because of these factors we 
opted to drop these two covariates, day of year and latitude, from consideration in the final 
models. While BRTs can include correlated covariates, we preferred to limit the complexity of 
models as well as to preferentially include covariates related to habitat conditions where 
possible.  

Upon examination of exploratory models that included year as a covariate, it appeared that 
predictions were more closely related to the number of animal locations in that year than 
underlying changes in environmental conditions. Because we did not have similar numbers of 
animals tracked or locations in each year, or a way to reasonably standardize effort between 
years, we opted to drop year as a candidate covariate.  

This left temperature, salinity, and bathymetry as available covariates. For each combination of 
species and absence-generation method, BRT parameters were systematically varied, and the 
best model was selected based on assessing residual deviance, CV, and AUC (Table 3). The 
best model for all four combinations included all three remaining covariates. 

Table 3. Best models for each combination of species and absence generation method, including 
BRT parameters, residual deviance, CV, and AUC. Values with an asterisk indicate that they were 
the best from all evaluated models. 

 
For Kemp’s ridleys, the model with randomly generated pseudo-absences was selected. Even 
though the target-group absence model performed better when examining the model 
assessment values, on qualitative review of the predictions, the target-group absence model 
predicted most of the suitable habitat north of the Choptank River in Maryland, much farther 

Species 

Pseudo-
absence 

generation 
method 

BRT Parameters Model Assessment Values 
tree 

compl
exity 

learning 
rate 

bag 
fraction 

residual 
deviance 

CV AUC best 
number 
of trees 

Kemp's 
ridley 

random 3 0.05 0.8 0.46 0.62* 0.94* 1,250 
target group 3 0.05 0.4 0.13 0.30 0.98* 2,750 

Loggerhead 
random 3 0.05 0.4 0.36 0.64* 0.93* 2,900 

target group 3 0.05 0.2 0.14 0.30 0.98* 3,100 
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north than Kemp’s ridley turtles have been detected previously. Little suitable habitat was 
detected in the southern Bay. We felt this did not accurately reflect either the known ecology of 
the species or the distribution based on stranding data. 

Based on the functional plots of covariates, Kemp’s ridley turtles showed a preference for 
depths shallower than 15 m, temperatures ranging from 17 to 28°C, and salinities of 15–28 ppt 
(Figure 2), consistent with known ecology and previous studies of Kemp’s ridleys within the 
Bay. Each of the three covariates had relatively equal importance in the model: bathymetry – 
37.3%, temperature – 31.7%, and salinity – 31%. 

 

Figure 2. Functional plots and relative importance to the model of covariates for the Kemp’s ridley 
BRT model using randomly generated pseudo-absences. Red dashed lines are fitted smooths of 
the functional relationships. Bathy = bathymetry (m), temp = temperature (°C), and salt = salinity 
(ppt). 

For loggerheads, the model with target-group pseudo-absences was selected. The target-group 
model performed better than the random model when looking at model assessment values 
(Table 2). In the qualitative assessment, both models predicted similar extents of suitable 
habitat, but the target group model predictions were more compact and consistent across time 
periods. 

Based on the functional plots of covariates, loggerheads showed a preference for depths 
deeper than 10 m, temperatures warmer than 25°C, and salinities greater than 15 ppt (Figure 
3). This contrasts with Kemp’s ridleys which preferred shallower waters and a more defined 
temperature range. For loggerheads, bathymetry was the most important covariate (43.6%), 
followed by salinity (29.5%), and temperature (26.9%). 



DoN | Loggerhead and Kemp’s Ridley Sea Turtle Habitat Models for the Chesapeake Bay 
 

August 2020 | 13 

 

Figure 3. Functional plots and relative important to the model of covariates for the loggerhead 
BRT model using randomly target group absences. Red dashed lines are fitted smooths of the 
functional relationships. Bathy = bathymetry (m), temp = temperature (°C), and salt = salinity (ppt). 

2.6 Important habitat and habitat partitioning 
For the Kemp’s ridley model, a cutoff value 0.48 was used to partition daily habitat suitability 
predictions into habitat versus non-habitat. Values less than or equal to 0.48 were classified as 
non-habitat, and values greater than 0.48 were classified as habitat, which maximized the ratio 
of true positive to true negative predictions in ten tests where Kemp’s ridley locations and 
randomly generated absences were randomly split into training and testing data sets. 

Aggregating the daily habitat predictions by year, we saw the year with more suitable habitat 
days, both total number of days and total area, was 2017 and the year with the least suitable 
habitat was 2014 (Figure 4). In all years, habitat was largely found in coastal areas of the Bay 
characterized by shallow depths. Some habitat did occur in Maryland Chesapeake Bay waters, 
although the number of suitable habitat days generally decreased with increasing latitude, as 
salinity decreased. 

Aggregating the daily habitat predictions by month, we saw the most suitable habitat, both total 
number of days and total area, in June and October and the least in November (Figure 5). In 
general, suitable habitat was first found in the southern Bay, extending northward into Maryland 
as the summer progressed, and retreating into the southern Bay in November. These latitudinal 
shifts in prediction were driven largely by temperature, which peaks in mid- to late summer. The 
dip in predicted habitat suitability in July and August was likely caused by the model predicting 
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Kemp’s ridleys do not prefer habitat warmer than 28°C. Again, we saw most suitable habitat 
predicted in shallow, coastal regions of the southern Bay, extending north into Maryland in peak 
months. 

Aggregating all the daily habitat predictions into a single surface, we found the areas with the 
highest suitability had over 700 days where suitable habitat was found over the course of the 
study period, or over 120 per year. The areas with the highest number of habitat days were in 
coastal Virginia waters characterized by shallow depths, moderately high temperature, and 
higher salinity than the northern reaches of the Bay. Some suitable habitat was identified in 
Maryland waters, but it was, in general, predicted to be less suitable than the lower and middle 
portions of the Bay in Virginia. Almost no important habitat (top quartile of habitat days by grid 
cell), was identified in Maryland waters. The total predicted important habitat covered 2,808 km2 
(Figure 6) and was primarily located in nearshore areas of the southern Bay and the James and 
York Rivers.  
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Figure 4. Number of suitable habitat days by year for the Kemp’s ridley using the random pseudo-
absence model. 
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Figure 5. Number of suitable habitat days by month for the Kemp’s ridley turtle using the random 
pseudo-absence model. 
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Figure 6. Number of suitable habitat days across the entire study period (2014–2018) and 
important habitat for the Kemp’s ridley random pseudo-absence model. 
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For the loggerhead model, a cutoff value 0.46 was used to partition daily habitat suitability 
predictions into habitat versus non-habitat. Values less than or equal to 0.46 were classified as 
non-habitat, and values greater than 0.46 were classified as habitat, which maximized the ratio 
of true positive to true negative predictions in ten tests where loggerhead locations and target 
group absences were randomly split into training and testing data sets. 

Aggregating the daily habitat predictions by year, we saw the most suitable habitat, both total 
number of days and total area, in 2015, although 2016 and 2017 were similar, and the least in 
2014 (Figure 7). The similarity between years was driven by the importance of bathymetry to 
the model, which was invariant between years. In all years, habitat was largely found in deeper, 
southern areas of the Bay. Some habitat did occur in Maryland waters and inland into some of 
the larger rivers, though the number of suitable habitat days generally decreased with 
increasing latitude, as salinity decreased. Riverine habitat appeared to be driven by depth, as 
shallower rivers did not have suitable habitat predicted. 

Aggregating the daily habitat predictions by month, we saw the most suitable habitat, both total 
number of days and total area, in August and the least in June (Figure 8). In general, suitable 
habitat was in the southern Bay in spring and early summer, extending northward into Maryland 
as the summer progressed, and retreating into deeper areas in November. In July-September, 
habitat was predicted farther north than loggerheads are generally seen. This is likely driven by 
the importance of depth to the model and loggerhead’s occurrence in less saline conditions 
compared to Kemp’s ridleys (Figures 2 and 3). In the southern Bay, shipping channels, which 
are dredged, were clearly highlighted as habitat as in all months except July and August (Figure 
8).  

Aggregating all the daily habitat predictions into a single surface, we found the areas with the 
highest suitability had over 1,008 days where suitable habitat was found over the course of the 
study period, or over 200 per year. The areas with the highest number of habitat days were in 
the southern, central Bay with the deepest depths, moderately high temperature, and relatively 
higher salinity. Some suitable habitat was identified in Maryland waters, but that area, in 
general, was predicted to be less suitable than lower portions of the Bay. The small amount of 
important habitat found in Maryland waters was limited to deep areas in the central Bay and the 
central reaches of a few larger rivers. The total predicted important habitat covered 2,775 km2 

(Figure 9) and was predominantly in the southern, central Bay.  
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Figure 7. Number of suitable habitat days by year for the loggerhead turtle using the target-group 
absence model. 
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Figure 8. Number of suitable habitat days by month for the loggerhead turtle using the target-
group absence model. 
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Figure 9. Number of suitable habitat days across the entire study period (2014–2018) and 
important habitat for the loggerhead turtle using the target-group absence model. 
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Comparing the Kemp’s ridley randomly generated pseudo-absence model and the loggerhead 
target-group absence model, the Schoener’s D score was 0.52 and Hellinger’s Distance (I) was 
0.82. These scores indicate there is some evidence that these two species are inhabiting 
different areas. 

The Syrjala’s test P values were less than 0.0001 for both the Cramer-von Mises and 
Kolmogorov-Smirnov tests (1000 permutations). Rejection of the null hypothesis indicates that 
the spatial distribution of the two species is significantly different. If we assume our habitat 
model accurately represents spatial distribution in the region, this is strong evidence that the 
species are partitioning habitat and using different resources. Overlaying animal locations on 
top of predicted habitat (Figures 10 and 11), the assumption that our models reflect species’ 
distributions appears to be reasonable. 

Considering the evidence from the D and I metrics and Syrjala’s test, we propose there is 
habitat partitioning occurring between these two species, even given the assumption that our 
habitat suitability models are equivalent to occupancy (which would have to be derived from 
surveys). 



DoN | Loggerhead and Kemp’s Ridley Sea Turtle Habitat Models for the Chesapeake Bay 
 

August 2020 | 23 

 

Figure 10. Number of suitable habitat days across the entire study period (2014–2018) and 
important habitat for the Kemp’s ridley turtle using the randomly generated pseudo-absence 
model with hSSM locations overlaid. 
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Figure 11. Number of suitable habitat days across the entire study period (2014–2018) and 
important habitat for the loggerhead turtle using the target-group absence model with hSSM 
locations overlaid. 
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3 Discussion 
Examining reasons for why the Kemp’s ridley target-group absence model predictions 
performed poorly, we saw that, like the loggerhead target-group absence model, bathymetry 
was by far the most important variable (51.4%). This meant that shallow areas in the north of 
the Bay were classified as suitable habitat even though animals have never been sighted there. 
We could have attempted to ameliorate this by limiting predictions to the southern Bay but one 
of the intents of this study was to identify possible habitat areas where animals have not been 
tracked. While it could be argued that the areas identified in the north of the Bay meet this goal, 
we felt the identified habitat was too extensive, and the artifact of a single covariate relationship, 
rather than a realistic depiction of unutilized habitat. This is supported by an examination of 
Kemp’s ridley stranding data for Chesapeake Bay from 2008–2012 where only five of 224 
Kemp’s ridley strandings were north of the Potomac River, which divides the Maryland and 
Virginia portions of Chesapeake Bay, and no Kemp’s ridley turtles stranded north of latitude 
38.8 °N (Barco et al. 2015). 

The functional relationships of the Kemp’s ridley randomly generated absence model were more 
defined and the three variables had similar influence. We feel this may more accurately reflect 
Kemp’s ridley preferences as the randomly generated absences sampled a broader range of the 
environmental covariates than the target group absences.  

It may be that our model performance is limited by the available covariates. Temporally variable 
prey covariates, solar insolation, bottom temperature, or other covariates related to sea turtle 
physiology or prey could refine these predictions but are not currently available in the Bay at 
appropriate temporal or geographic resolutions. Likewise, prey availability in the form of 
crustacean distribution and abundance, which is likely the driving factor of distribution, is difficult 
to quantify overall and nearly impossible on small temporal and spatial scales. 

The functional relationships from the Kemp’s ridley randomly generated absence model predict 
that Kemp’s ridleys avoid very warm surface temperatures (> 27°C). This may be true as 
juvenile Kemp’s ridleys are small and may not be able to thermoregulate as well as larger turtles 
and may not have cold water refugia in the shallower depths they appear to prefer. Bottom 
temperatures would be a better reflection of the actual temperature turtles are exposed to while 
foraging but high-resolution bottom temperature data were not available for the spatial and 
temporal range of this study. This relationship, whether true or not, is likely the driving factor for 
lower suitably being predicted for Kemp’s ridley turtles in the months of August and September, 
which are the warmest months in the Bay. 

Of concern for loggerheads are the shipping channels being highlighted as suitable/important 
habitat. These channels are dredged regularly, and loggerheads are the primary species 
identified to be affected by dredging operations in the Bay (Mansfield and Musick 2003; NMFS 
2018). If loggerheads do use these areas regularly, they are at increased risk from dredging 
operations and ship strike from the shipping and naval vessel traffic using these deep-water 
channels. The importance of depth to the loggerhead habitat model could be the reason that 
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these areas are highlighted (e.g., an artifact of the model) but the relationship merits further 
investigation given the potential conservation implications.  

It is worth noting that loggerheads may be recorded as the primary species impacted by 
dredges because they are larger and more likely to be reported. The Kemp’s ridleys using river 
habitat may be susceptible to dredging in rivers. The Department of Defense regularly dredges 
the York River to ensure access to the Cheatham Annex and York River Weapons Depots naval 
facilities. 

Comparing the selected Kemp’s ridley and loggerhead models, we saw evidence that these 
species may be partitioning their habitat. We posit that this is driven by the distribution of the 
preferred prey of each species, blue crabs for Kemp’s ridleys, compared with horseshoe crabs 
and other benthic invertebrates for loggerheads (Barco et al. 2015). In the Bay, blue crabs are 
found primarily in shallow, vegetated areas. 

This habitat partitioning complicates conservation efforts as area closures or restrictions 
targeting one species may shift risks to the other. We recommend that any mitigation or 
conservation measures be applied to the entire southern Bay and southern rivers, as these will 
be the most effective for protection efforts of both species. Area closures that shift impacts into 
other areas of the Bay should be avoided based on the evidence that these species are 
partitioning habitat. The exception would be conservation measures that shift impacts to the 
northern areas of the Bay, where turtles do not appear to be present and where little suitable 
habitat exists. Given the economic importance of the region it is unlikely that conservation 
efforts that include outright closures will be reasonable. The timing of any restrictions should 
cover the core months of the foraging seasonal for both species (June–September). Of 
particular concern are the shipping channels into and out of the Bay which loggerheads may be 
utilizing as habitat.  
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