ABSTRACT
As part of the U.S. Navy’s Integrated Comprehensive Monitoring Program in support of Atlantic Fleet Testing and Training, we are monitoring the occurrence, distribution and density of cetaceans at three offshore sites along the U.S. Atlantic coast. We are using an identical suite of survey methods (line transect surveys, photo-identification, biopsy sampling and passive acoustic monitoring) at each 500m² reference site. Surveys began in Onslow Bay, NC in 2007, Jacksonville, FL in 2009 and Cape Hatteras, NC in 2011. To date we have conducted 4867km4, 6068km4, and 14213km4 of aerial surveys with 6883km4, 3422km4 and 2443km4 of vessel surveys and 1201 days, 1264 days and 28 days of high-frequency Acoustic Recording Package (HARP) recordings at Onslow, Jacksonville and Cape Hatteras, respectively. In both Onslow and Jacksonville, the cetacean fauna is dominated by Tursiops truncatus, with densities of 0.034/km² and 0.025/km² respectively and Stenella frontalis, with densities of 0.027/km² and 0.045/km² respectively. S. frontalis was encountered exclusively over the continental shelf. Grampus griseus and Globicephala macrorhynchus were the most commonly encountered pelagic odontocetes at these two sites. Species richness is much greater at Cape Hatteras than at the two southern sites (with 18 species sighted at Cape Hatteras, 10 at Jacksonville and 9 at Onslow), with the inclusion of several boreal species during colder months and the common occurrence of several deep-diving odontocetes, including Physeter macrocephalus, Ziphius cavirostris and Mesopodion spp. Mysticetes, including Balaeonoptera acutorostrata, B. physalus, Eubalaena glacialis, and Megaptera novaeangliae, were encountered only during winter at all three sites. In addition, we have detected the calls of two species on bottom-mounted HARPS that were not observed during visual surveys, including B. musculus and likely B. borealis. We highlight the particularly high diversity of cetaceans at the Cape Hatteras shelf break and suggest that this is a hotspot of species richness in the North Atlantic.

Distribution and Abundance of *Stenella frontalis* and *Tursiops truncatus*

<table>
<thead>
<tr>
<th>Site</th>
<th>Study Areas</th>
<th>Distribution</th>
<th>Demography</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cape Hatteras</td>
<td>• Hatteras surveyed from 2011</td>
<td>• Bottlezene dolphins and Atlantic spotted dolphins dominate the cetacean fauna in both Onslow Bay and Jacksonville</td>
<td>• Biopsy sampling of bottlenose dolphins at all three sites reveals that this species is represented exclusively by the offshore ecotype, even over shelf waters (see Swaim et al. poster)</td>
</tr>
<tr>
<td></td>
<td>• Jacksonville surveyed from 2009</td>
<td>• Both species also occur in Hatteras, although the diversity of cetacean fauna at this site is much greater (see below)</td>
<td>• In Onslow and Jacksonville, spotted dolphins appear to be exclusively the relatively large-bodied form; in Hatteras the small-bodied, pelagic form of this species also occurs</td>
</tr>
<tr>
<td></td>
<td>• Onslow Bay surveyed from 2007</td>
<td>• In Jacksonville and Onslow (the two southern sites), spotted dolphins are found exclusively over the continental shelf; in Hatteras this species is found over both shelf and more pelagic waters</td>
<td>• Estimates of density of the two species are similar in Onslow and Jacksonville, but higher in Hatteras</td>
</tr>
<tr>
<td></td>
<td>• Effort at each site has included monthly aerial line transect surveys, vessel line transect surveys, biopsy sampling and photo-ID</td>
<td>• At all three sites bottlenose dolphins are cosmopolitan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Monthly aerial surveys, photo-ID and biopsy sampling are ongoing in Cape Hatteras and Jacksonville</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Jacksonville site is offshore of North Atlantic right whale (Eubalaena glacialis) nursery grounds (Foley et al. 2011) and is the site of the US Navy’s planned Undersea Warfare Training Range</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Placement in deeper waters may have influenced species detected</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Acoustic Detections vs. Visual Detections

Cape Hatteras, NC
- Results from a single HARP deployment (28 days)
- HARP detected subset of species observed by other platforms, and frequently detected beaked and sperm whales (see Stanistreet et al. poster)
- Placement in deeper waters may have influenced species detected

Onslow Bay, NC
- Multiple shallow and deep water deployments (1201 days)
- HARP detected subset of species observed by other platforms and detected five cetacean species not observed by other platforms
- Winter detections of several species of mysticete whales

Jacksonville, FL
- Multiple shallow and deep water deployments (1264 days)
- Acoustic detections of two mysticete species not observed by other platforms but not North Atlantic right whales
- Significant background noise at the shallow water site may account for low species detection

Future Directions

Future baseline monitoring efforts will focus on the Jacksonville and Hatteras sites. Jacksonville is the US Navy’s planned location for its Undersea Warfare Training Range. Intensive aerial, vessel and acoustic monitoring of this site will occur through the construction and implementation phases. Monitoring will also continue at Cape Hatteras, because of its high levels of cetacean density and diversity. Seasonal monitoring efforts will also continue in Onslow Bay to better understand patterns of residency and population structure of spotted and bottlenose dolphins.

Comparative Cetacean Discovery Curves

In the first year of surveys, three times more species were observed at the Cape Hatteras site than at any other site.

Acknowledgements: For the aerial surveys, we thank Onslow Aviation, especially Ed Coffman, and pilots Bob Scike, Sam Garrett, Stan Headle. Ron Shrek. John Eske. Vessel surveys were made possible by Captains Dale Britt and Alan Scialab of the FV Sensation and Captains Alex Loer and John Moul of Crossworks Group, Inc. Thanks to Tim Boynton, Chris Gerhols, Ryan Groseid, John Hildebrand, Melissa Saldivas, Steve Wiggins, Ryan Groseid, and crews of RV Cape Fear, RV Cape Hatteras, RV Starwagam, and dive boat Olymphs for help with HARPS. For assistance in field work we would like to thank Doug Johnson, Anna-Meda Leary, Jennifer Dunn, Peter Nixon, Richard Harder, and Richard Jeff. This research was conducted under NOAA Scientific Permit (No. 341 1002-00) and (No. 1477) held by UNC and is General Authorization from the National Marine Fisheries Service (DA11 No. 918 7176) and (DA11 No. 116) to Duke. Funding provided by the US Fleet Force Command.

Onslow Bay, NC

1 McLellan, W., 1McAlarney, R., 1Cummings, E., 2Foley, H., 2Swaim, Z., 2Hodge, L., 2Stanistreet, J., 2Urian, K., 2Waples, D., 3Paxton, C. 1Pabst, D., 1Bell, J., and 2Read, A.

1UNC Wilmington, 2Duke University, 3University of St Andrews, 4NavFac Atlantic