Protected Species Monitoring in the Onslow Bay,
 Jacksonville, and Cape Hatteras Sites
 Onslow Bay, NC
 Jacksonville, FL
 Cape Hatteras, NC

Final Report (July 2010 - December 2011)
March 20, 2012

Executive Summary

This is the fourth progress report of a monitoring program for protected marine species in waters offshore Onslow Bay and Cape Hatteras, North Carolina and Jacksonville, Florida. The results of aerial surveys, vessel-based line transect and photo-ID surveys and passive acoustic monitoring are reported for the period from July 2010 through December 2011. Density estimates for marine mammals and sea turtles were generated from data collected during aerial and vessel-based line transect surveys. In Onslow Bay, continued monitoring has yielded a comprehensive picture of the density, distribution and abundance of marine mammals and sea turtles and of the distribution and relative abundance of seabirds. Three years of monitoring in Jacksonville has similarly provided information on the density and distribution of marine mammals and sea turtles in this area. In Cape Hatteras, focused monthly monitoring surveys began in May 2011, and have provided preliminary information on the distribution and diversity of the marine mammals and sea turtles in this highly productive area.

Study Areas

The study area in Onslow Bay encompasses the region that had previously been proposed by the Navy as an Undersea Warfare Training Range (USWTR). The survey area is 25 $\mathrm{nm}(46 \mathrm{~km})$ long and 20 nm (37 km) wide (approximately $1700 \mathrm{~km}^{2}$) and extends 20 nm in each direction past the proposed boundaries of the original USWTR. Ten transect lines $40 \mathrm{~nm}(74 \mathrm{~km})$ in length and spaced approximately 5 nm (9.3 km) apart cross the survey area, oriented parallel to the short axis of the proposed USWTR boundaries and perpendicular to the shelf break and flow of the Gulf Stream (Figure 1-a). This design yields a total of $400 \mathrm{~nm}(\sim 740 \mathrm{~km})$ of track line that has been surveyed by both aerial and shipboard platforms.

The study area off Jacksonville, Florida encompasses the proposed Jacksonville (JAX) USWTR site and, like that in Onslow Bay, is 25 nm (46 km) long and 20 nm (37 km) wide (approximately $1700 \mathrm{~km}^{2}$). The survey area straddles the continental shelf and Blake Plateau and includes neritic, shelf waters and pelagic, offshore waters (Figure 1-b). The ten survey tracklines in JAX are longer (86 km) than those in Onslow Bay to allow
complementary survey coverage in the USWTR area with that of the Early Warning (EWS) aerial surveys for North Atlantic right whales (Eubalaena glacialis).

The site off Cape Hatteras, North Carolina is subsumed within the Navy's Atlantic Fleet Active Sonar Training (AFAST) Monitoring Program. The survey area encompasses approximately $16,000 \mathrm{~km}^{2}$ and includes continental shelf waters and deeper waters beyond the shelf break (Figure 1-c). Twenty six tracklines ranging from 40-44 nm (73.5 - 81.5 km) long, and orientated perpendicular to the coastline, transect the survey area. The survey area includes a large portion of the Cape Hatteras Special Research Area (CHSRA), designated by NOAA Fisheries to address interactions between short-finned pilot whales (Globicephala macrorhynchus) and the pelagic longline fisheries. The survey area excludes coastal waters to minimize survey effort in areas where the spatial distribution and relative abundance of coastal bottlenose dolphins is reasonably well understood (Torres et al. 2003; Torres et al. 2005).

Figure 1. Maps depicting the survey areas and tracklines used for vessel and aerial surveys: (a) Onslow Bay, NC; (b) Jacksonville, FL; and (c) Cape Hatteras, NC.

Vessel-Based Surveys for Cetaceans and Sea Turtles - Onslow Bay

Researchers from Duke University conducted line-transect and photo-id/biopsy shipboard surveys for marine mammals and sea turtles in the Onslow Bay survey site. Five tracklines (333.4 km) and 420.6 km of photo-id/biopsy effort were surveyed, totaling approximately 52 hours of survey effort. Most line-transect (65\%) and photo-id/biopsy
(91\%) effort occurred in Beaufort Sea States (BSS) 1 and BSS 2-3, respectively. Sixteen cetacean sightings (14 on effort, two off effort) of two species were observed during vessel surveys: bottlenose dolphins (seven sightings) and Atlantic spotted dolphins (nine sightings). As in previous years, bottlenose dolphins were observed in both shallow and deep waters across the continental shelf break, whereas spotted dolphins were observed only in shallow waters over the continental shelf. Three sightings of loggerhead sea turtles were recorded during vessel surveys (two on effort, one off effort). Over 1480 digital images were taken for species identification and individual recognition. Analysis of these photographic images resulted in re-sightings of seven bottlenose dolphins and two spotted dolphins during the four years of surveys in Onslow Bay. Approximately 6\% of bottlenose dolphins (7 of 112) and 3\% (2 of 68) of spotted dolphins identified in Onslow Bay have now been resighted, despite limited sampling effort. Several of these re-sightings span periods of a year or more, suggesting some degree of residency in the study area.

Passive Acoustic Monitoring - Onslow Bay

Researchers from Duke University conducted vessel-based and fixed passive acoustic monitoring in the Onslow Bay survey site. During two vessel-based surveys, a fourelement hydrophone array was towed behind the vessel, resulting in 7.93 hours of passive acoustic monitoring. Two groups of cetaceans detected with the hydrophone array were positively identified by visual observers (one group of bottlenose dolphins and one group of Atlantic spotted dolphins). These hydrophone recordings will help identify species in vocalizations recorded on bottom-mounted acoustic recording devices (High Frequency Acoustic Recording Packages; HARPs). Two HARP deployments occurred in Year Four. Two instruments were deployed and recovered southeast of the center of the survey area, close to the 200 m shelf break. The current deployment is located at a new, deeper site, and is expected to be retrieved in the spring of 2012. In all deployments, the instruments were programmed to record at a sample rate of 200 kHz for five-minute periods, separated by an inactive interval of five minutes. Analysis of the HARP recordings for odontocete vocalizations revealed that Risso's dolphins and sperm whales showed nocturnal increases in click occurrence, Kogia spp. showed no significant diel variation in click occurrence, and unidentified delphinids showed either an increase in click events at
dawn or at night, depending on the time of year and location. Analysis for mysticete vocalizations revealed that fin, minke, and, possibly, sei whales were recorded throughout the winter months, when they are expected to be on breeding grounds.

Aerial Survey for Cetaceans and Sea Turtles - Onslow Bay

Researchers from the University of North Carolina Wilmington (UNCW) conducted aerial surveys in Onslow Bay. Surveys were flown monthly between June 2010 and April 2011. The goal was to survey the entire survey area (10 tracklines) at least once per month. This goal was accomplished for seven of ten months. For both February and April a single survey day was flown after which weather conditions prevented a complete set of ten tracklines from being flown. In December 2010, unfavorable weather prevented any tracklines from being surveyed. A total of 41 cetacean sightings, of 1127 individuals were observed while on effort in the study area. Five cetacean species were observed in the survey site while on effort, including bottlenose dolphins (Tursiops truncatus; 21 sightings of 679 individuals), Atlantic spotted dolphins (Stenella frontalis; ten sightings of 411 individuals), Risso's dolphins (Grampus griseus; two sightings of 12 individuals), humpback whales (Megaptera novaeangliae; one sighting of two individuals) and minke whales (Balaenoptera acutorostrata; one sighting of three individuals). In five sightings (20 individual animals) it was not possible to determine the specific identity with certainty. Three of these sightings were "unidentified delphinids" and the other two were not small delphinids and were reported as "unidentified cetaceans." A total of 234 sea turtles were observed during the study period. Of these, 181 were identified as loggerhead sea turtles (Caretta caretta) and the remaining 53 were recorded as "unidentified sea turtles". Encounter rates dropped dramatically as Beaufort Sea State (BSS) increased. For example, as BSS increased from 1 to 3 , cetacean sighting rates decreased from 12.77 to 3.31 per 1000 km surveyed, and sea turtle sighting rates decreased from 70.23 to 19.49 per 1000 km surveyed. In addition to cetaceans and sea turtles, other pelagic marine vertebrates, including sharks, manta rays, and ocean sunfish, were observed. Most vessels encountered in the survey area were recreational fishing vessels, which were predominantly observed shoreward of the 200 m isobath.

During the current reporting period a limited amount of additional effort was conducted in offshore waters outside the survey site in Onslow Bay to examine the distribution of cetacean species in deeper water habitats. Analysis of passive acoustic monitoring records within the Onslow Bay site (see below) suggests that pelagic cetaceans, such as sperm whales (Physeter macrocephalus), are likely present near the outer boundaries of the area. Four 74 km tracklines were placed at 18.5 km increments in a NE - SW orientation. The outer trackline extended beyond the 2000 m shelf break (Figure 1-b, Figure 1 in Appendix H). Three lines were flown between July 2010 and April 2011. Five cetacean sightings were collected during this effort, which included one sighting of bottlenose dolphins (Tursiops truncatus) and four sightings of beaked whales (Mesoplodon spp.). All beaked whale sightings occurred between the 1000 and 2000 m isobaths.

Vessel-Based Surveys for Cetaceans and Sea Turtles - Jacksonville

Researchers from Duke University and UNCW conducted vessel-based surveys in the Jacksonville, Florida survey area. Thirteen tracklines were surveyed in approximately 52 hours of survey effort. The majority of survey effort (82\%) occurred in BSS 2-3. A total of 28 groups of cetaceans were sighted during vessel surveys (26 on effort, 2 off effort) and two species were observed: bottlenose dolphins (10 sightings) and Atlantic spotted dolphins (17 sightings). In addition, one sighting of unidentified delphinids was made. Bottlenose dolphins were observed in deeper and slightly cooler waters than Atlantic spotted dolphins. Forty sea turtle sightings were recorded during vessel surveys (37 on effort, 3 off effort) and two species were observed: loggerhead sea turtles (25sightings) and leatherback sea turtles (7 sightings). Eight turtle sightings were not identified to species. Approximately 4930 digital images were taken for the purposes of species identification and individual recognition. Analysis of these photographs resulted in resightings of two Atlantic spotted dolphins in the Jacksonville survey area.

Passive Acoustic Monitoring - Jacksonville

Researchers from Duke University and UNCW conducted vessel-based and fixed passive acoustic monitoring in the Jacksonville, Florida survey area. During three surveys, a fourelement hydrophone array was towed behind the vessel, resulting in 1.52 hours of passive
acoustic monitoring. Two groups of cetaceans were detected with the hydrophone array and identified by visual observers (one group of bottlenose dolphins and one group of Atlantic spotted dolphins). Recordings from the hydrophone array will help identify species vocalizations recorded on bottom-mounted HARPs. Between 1 July 2010 and 31 December 2011, three HARP recoveries and two re-deployments occurred at two sites in the JAX survey area. Analysis of the HARP data for odontocetes was completed for deployments JAX01A, JAX03A, and JAX04B. Delphinid clicks were detected in 19.6\%, 30.9\%, and 5.2\% hours of recording during JAX01A, JAX03A, and JAX04B, respectively. Delphinid whistles were detected in $2.0 \%, 4.9 \%$, and 1.4% hours of recording during JAX01A, JAX03A, and JAX04B, respectively. For all deployments analyzed to date both odontocete whistle and click events were detected more frequently during the day at the shallow site and more frequently at night at the deeper site. This may reflect differences in call usage or detectability and may reflect site-specific, seasonspecific, or species-specific differences.

Aerial Surveys for Cetaceans and Sea Turtles - Jacksonville

Researchers from Duke University and UNCW conducted aerial surveys off Jacksonville, Florida. Surveys were flown monthly between July 2010 and December 2011. The goal was to survey the entire site (10 tracklines) twice per calendar month. During the months of March, November and December of 2011 no surveys were conducted due to unfavorable weather conditions. At least one complete set of tracklines was flown for the remaining nine months of this reporting period. Thus, a total of 248 tracklines (20998 km) were surveyed during the reporting period. A total of 241 sightings of 3198 cetaceans were recorded while on effort in the study area. Seven species of cetaceans were observed including bottlenose dolphins (111 sightings of 928 individuals), Atlantic spotted dolphins (88 sightings of 1671 individuals), rough-toothed dolphins (three sightings of 114 individuals), Risso’s dolphins (16 sightings of 282 individuals), shortfinned pilot whales (eight sightings of 173 individuals), minke whales (three sightings of five individuals), and a humpback whale (one sighting of a single individual). In ten sightings (23 individual dolphins) the species identity could not be established with certainty (i.e. "unidentified delphinids"). On one occasion a single animal, clearly not a delphinid, was observed but not identified to species; this sighting was reported as an
"unidentified cetacean". There was also an off effort sighting of a single North Atlantic right whale (Eubalaena glacialis) approximately 20 km off the coast made while in transit to the survey area. The number of cetacean sightings varied by month; the highest number of encounters occurred in December 2010 and August 2011. A total of 1,149 sea turtles were recorded during the study period. Of these, 906 were identified as loggerheads, 45 as leatherbacks, two as Kemp’s Ridley (Lepidochelys kempii), and 196 as "unidentified sea turtles". Sea turtles were observed during each month surveyed, with highest numbers recorded in July 2010 and February 2011. Sighting rates dropped dramatically as the Beaufort Sea State increased. As BSS increased from 0 to 3, cetacean sighting rates decreased from 16.53 to 6.86 per 1000 km , and sea turtle sighting rates decreased from 113.31 to 13.57 per 1000 km . In addition to cetaceans and sea turtles, other pelagic marine vertebrates (e.g. multiple species of sharks, manta rays, and ocean sunfish) were observed. Commercial, Navy and recreational vessels were also encountered in the survey area.

Vessel-Based Surveys for Cetaceans and Sea Turtles - Cape Hatteras

In May-June 2011, researchers at Duke University conducted vessel-based surveys in conjunction with a pilot whale behavioral response study off Cape Hatteras. During 13 field days, 82 sightings of seven species were recorded, including: short-finned pilot whales, bottlenose dolphins, common dolphins, Atlantic spotted dolphins, Risso's dolphins, Cuvier's beaked whales, and sperm whales. Twenty-four biopsy samples were obtained from bottlenose dolphins (14), Atlantic spotted dolphins (6) and short-finned pilot whales (4), plus an additional skin sample from a pilot whale from the suction cup of a Digital Acoustic Tag (DTAG). Controlled exposure playbacks were conducted with six short-finned pilot whales equipped with DTAGs and five additional four-hour focal follows were conducted with pilot whales with DTAGs. The deployment of these 11 DTAGs yielded an enormous quantity of data on the diving and foraging behavior of pilot whales, which will be useful in future modeling work aimed at estimating the availability of these animals to vessel and aerial survey platforms.

Researchers from the University of North Carolina Wilmington (UNCW) conducted aerial surveys off Cape Hatteras. Surveys were flown monthly between May 2011 and December 2011. The goal of each survey month was to conduct two days of effort, covering a subset of the 26 tracklines that cover the area. This goal was achieved for five of eight months. During the three remaining months (August, September and December 2011) unfavorable weather conditions precluded any survey effort. A total of 64 tracklines (5027 km) were covered in this area. Survey conditions were dominated by Beaufort Sea State (BSS) 3, but some effort occurred in both BSS 4 and 5. The rate of cetacean sightings dropped from 29.42 to 5.69 per 1000 km as BSS increased from 2 to a 5. A total of 66 sightings of 1270 cetaceans were encountered while on effort. Thirteen species of cetaceans were documented, including short-finned pilot whales; 17 sightings of 327 individuals), bottlenose dolphins (13 sightings of 272 individuals), sperm whales (10 sightings of 18 individuals), Atlantic spotted dolphins (three sightings of 84 individuals), mesoplodont beaked whales (three sightings of four individuals), Cuvier's beaked whales (Ziphius cavirostris; two sightings of five individuals), spinner dolphins (Stenella longirostris; one sighting of 70 individuals), Clymene dolphins (Stenella clymene; one sighting of 70 individuals), rough-toothed dolphins (Steno bredanensis; one sighting for four individuals), Fraser's dolphins (Lagenodelphis hosei; one sighting of 75 individuals), common dolphins (Delphinus delphis; one sighting of 300 individuals), dwarf or pygmy sperm whales (Kogia spp; one sighting of one individual) and fin whales (Balaenoptera physalus; one sighting of one individual). In seven sightings (37 individuals) the species identity could not be established with certainty. Four of these sightings were of animals of considerable size and were recorded as "unidentified cetaceans". The remaining three sightings were recorded as "unidentified delphinids". A total of 39 sea turtle sightings were recorded during this survey period, including 29 loggerhead (Caretta caretta) and three leatherback (Dermochelys coriacea) sea turtles. The remaining seven sightings could not be identified to the species level and were recorded as "unidentified sea turtles". In addition to cetaceans and sea turtles, other pelagic marine vertebrates (e.g. a small number of shark species, manta rays and ocean sunfish) were observed. Commercial, Coast Guard and recreational vessels were also encountered in the survey area.

Density Estimation

Analysis of data from aerial and shipboard surveys of Onslow Bay site from June 2007 to April 2011 was conducted by researchers from the University of St. Andrews. This analysis generated spatial representations of the density of bottlenose dolphins, spotted dolphins, pilot and beaked whales (combined) and loggerhead turtles. In addition to estimating abundance, the statistical models also provided insight into some environmental correlates of animal distributions. To generate an estimated density map for each taxon of interest the data were analyzed by first estimating the probability of detection associated with each sighting and then estimating abundance per segment of realized trackline within the truncation distance. Estimated density maps were obtained from a two stage modeling process of these segments: firstly, probability of presence was modeled [as a logistic generalized additive model (GAM)] and secondly, estimated density within a segment, given that animals were present, was modeled. Predictions were obtained from these two models for the region of interest and the product of these two prediction surfaces gave an estimated relative density map of the region. Abundance was obtained by numerically integrating under this density surface. The resulting abundances were relative (rather than absolute) because they do not take into account imperfect detection on the trackline and the amount of time animals are submerged (and therefore unavailable for detection). Estimates of variance for the predicted abundances were obtained from bootstrapping. Detection functions were estimated from the multiplatform, multi-year Onslow Bay surveys described above, together with additional data from the UNCW right whale surveys, the 1998/1999 UNCW aerial surveys of Wallop Island and additional sightings data from vessel surveys from Cape Hatteras in 2009. Detection functions were fitted separately to the aerial sightings and the shipboard sightings but were not fitted to all of the detected species owing to a paucity of data. Instead detection functions were fitted to the species groups, dolphins and whales. Due to the shape of the perpendicular distance distributions for turtles and the lack of sightings of whales from the shipboard surveys, detection was assumed to be certain and constant (i.e. a strip transect) in these cases. For the two-stage modeling process of segments, the variables considered for inclusion as explanatory variables in the models were longitude, latitude, depth, year, day of year and survey platform (e.g. vessel or plane). If survey platform was selected in the model, then predicted values were obtained for a vessel as
the availability of animals at the surface should be higher for vessel-based surveys than aerial surveys. Estimates of species abundance were obtained for the core USWTR region and an outer region. Depending on the spatial models chosen, estimates were obtained either as an average for the entire time period or for each month (September 1998 to July 1999 and June 2007 to April 2011).

Estimated numbers of bottlenose dolphins varied between 203 (95\% CI: 70 - 500, July 2007) and 1384 (275-3,800, April 2011) for the core USWTR region and from 543 (160 - 1170, July 2007) to 3,605 (760-9010, April 2011) for the outer region. Spotted dolphins were not detected in 1998/1999 but from 2007 numbers varied from 15 ($0-52$, June 2007) to 1229 (100 - 4860, January 2011) in the core region and from 31 (0-110, June 2007) to 2455 (215-8690, January 2011) in the outer region. Estimated loggerhead turtle numbers varied from 14 (8-30 July 2007) to 895 (530-1320; March 2011) in the core USWTR region and from 27 (15-55; July 2007) to 1615 (980 - 2330; March 2011) in the outside region. Pilot and beaked whale abundance was estimated as an average for the entire time period and was estimated to be $4(1-7)$ in the inner region and $8(3-13)$ in the outer region. Small sample sizes result in very little power to detect trend in abundance but there was no evidence of a decline in any species and potential evidence for an increase in both the numbers of dolphins and sea turtles.

Analysis of data from aerial and shipboard surveys of the Jacksonville study area for the period June 2009 to June 2011 was also performed by researchers from the University of St. Andrews. There were sufficient numbers of detections of loggerhead turtles, all turtles combined, and all dolphins combined to estimate monthly abundance using density surface modeling techniques. Conventional distance sampling (CDS) methods were used to estimate monthly abundances for bottlenose dolphins and spotted dolphins using the aerial survey data. Estimates were obtained for the inner core (USWTR) region and the outer region. Density surface modeling (DSM) allows animal density to vary both temporally and spatially across the survey region. To generate an estimated density map for each species/taxa of interest the count method of Hedley et al. (2004) was used. Firstly, the probability of detection associated with each sighting was estimated from a detection function model and this was then used to estimate abundance in small sections,
or segments, of the trackline. These estimated abundances formed the response variable in a generalized additive model (GAM) with survey platform (i.e. aerial or vessel), location, habitat and temporal variables as potential explanatory variables. After model selection, the chosen model was used to estimate density for the region of interest and abundance was obtained by numerically integrating under the predicted density surface. If survey platform was included in the model, then predicted values were obtained assuming a vessel to minimize problems associated with availability bias and detection on the track line, as was done for the analysis described above for Onslow Bay. Resulting estimates of abundance were relative (rather than absolute) because they do not take into account imperfect detection on the transect line nor availability at the surface. Detection functions were fitted separately to the aerial and shipboard sightings and to different species or species group. Due to the shape of the perpendicular distance distributions for sea turtles detected during the aerial survey, detection was assumed to be constant and certain within a narrow strip. All the density surface models used to estimate abundance included terms for survey platform, month, location and depth. Average monthly abundance estimates using CDS estimates from the aerial survey data, and DSM estimates obtained from both the aerial and shipboard data, were generated. These estimates indicated seasonal patterns in abundance with dolphins being more abundant in spring and autumn than in summer or winter. The highest estimate of dolphins was 23,758 animals ($\mathrm{CV}=0.27$) in April and the lowest estimate was 4,144 animals (CV=0.35) in June. Sea turtles were more abundant in May (2856; CV=0.23) and least abundant in November (636 animals; $C V=0.36$). These seasonal patterns may be linked to sea surface temperature, which is highest between June and August and lowest in February. The spatial patterns observed in the density surface maps indicate that both dolphins and turtles were more abundant in shallower waters.

PROTECTED SPECIES MONITORING IN THE CHERRY POINT OPAREA ONSLOW BAY, NORTH CAROLINA
 JULY 2010 THROUGH DECEMBER 2011

Andrew Read Kim Urian
Danielle Waples
Lynne Williams Hodge
Jennifer Dunn
Heather Foley
Zach Swaim

Duke University Marine Laboratory
135 Duke Marine Lab Road
Beaufort, NC 28516

Submitted to:
The Department of the Navy
Norfolk, VA

Onslow Bay Vessel Surveys

Methodology

Study Area

The study area within the Cherry Point (CHPT) OPAREA consists of a box approximately 37\% larger than the original proposed USWTR; the USWTR area itself is 25 nm (46 km) long and 20 nm (37 km) wide (approximately from NW to SE; Figure 1). Tracklines were oriented parallel to the short axis of the USWTR boundaries and perpendicular to the prevailing bathymetric and oceanographic features influencing the study area. The transect lines are spaced approximately five nm (9.3 km) apart. This design yields a total of $400 \mathrm{~nm}(741 \mathrm{~km})$ of trackline available for surveys; all ten transect lines were surveyed by both aerial and shipboard platforms.

Figure 1. Map of the Onslow Bay survey area and proposed USWTR site (shaded box).

Vessel Survey Data Collection

Visual Surveys

Vessel-based survey platforms provide a greater probability of sighting deep-diving species than aerial surveys (Barlow and Gisiner 2006). Shipboard observers are also more likely to be able to confirm species identity, particularly for animals that are difficult to distinguish from the air. Additionally, vessel-based platforms allow for biopsy sampling and photographic identification.

To ensure maximum detection rates, we employed a traditional visual survey approach,

Figure 2. Vessel survey platforms, the F/V Sensation (a) and the R/V Cetus (b).
supplemented by passive acoustic monitoring using a towed hydrophone array. We conducted these surveys at a speed of approximately 10 knots.

Line Transect Surveys

Visual, line-transect surveys for cetaceans and other marine megafauna were conducted from two survey platforms: the F/V Sensation (Fig. 2a), a 16 m offshore fishing vessel and the R/V Cetus (Fig. 2b), a modified 12 m offshore fishing vessel.

Observations were made from the flying bridge (5.0 m and 4.2 m above waterline for the Sensation and Cetus, respectively) by naked eye and 7x50 binoculars. Two observers (one port and one starboard) scanned constantly from straight ahead to 90° abeam either side of the trackline. A center observer monitored the trackline, coordinated with the vessel skipper and acted as data recorder. Observations were conducted following standard distance sampling/line transect methods for cetaceans, similar to those described by Barlow and Gisiner (2006). The location, species and behavior of each cetacean group were recorded. If turtles were encountered, the location and species were recorded. Each observer estimated cetacean group size independently and individual estimates were averaged at the end of the survey to generate an overall estimate of group size. Environmental conditions (weather, sea state, depth and sea surface temperature) were recorded every 30 minutes, at each sighting and whenever sighting conditions changed. Sighting and environmental data were entered into an at-sea data collection system (VisSurvey, developed by Dr. Lance Garrison, NOAA/SEFSC) linked with the onboard GPS.

In addition, use of the Onslow Bay survey area by individual cetaceans was monitored using photo-identification techniques. This approach is feasible for sperm, beaked and humpback whales, bottlenose, spotted and Risso's dolphins, pilot whales and other species of odontocetes. Thus, whenever possible, photographs were obtained of cetaceans for individual photoidentification; we also use these photographs to confirm species identification at each sighting and to compare identification features with those used by the aerial survey team. Photographs were taken with Canon or Nikon digital SLRs (equipped with $100-300 \mathrm{~mm}$ zoom lenses) in 24bit color at a resolution of 3072 X 2048 pixels and saved in jpg format.

Shipboard line-transect survey methods transitioned to biopsy and photo-identification sampling at the end of April 2011. We are focusing on residency and population structure with our shipboard surveys because we are: (1) obtaining adequate data with which to estimate density from aerial line transect sampling; (2) interested in addressing questions of residency as photoidentification data from Onslow suggest considerable residency in that area despite minimal sampling; and (3) not observing a large number of deep-diving marine mammal species on either platform using line transect survey method in Onslow Bay that are likely to be missed during aerial surveys.

Photo-ID and biopsy surveys for cetaceans and other marine megafauna were conducted from 01 May 2011 to 31 December 2011 aboard the F/V Sensation (Fig. 2a). Survey methods were consistent with line-transect survey protocol, but effort was not confined to the established tracklines. Most survey effort was expended along the 200 m depth contour and occasionally around eddies and fronts generated by the Gulf Stream. The VisSurvey software program was not required for opportunistic visual sampling. Instead, sighting and environmental data were recorded using a combination of datasheets, an IPad tablet and GPS unit. Every effort was made to collect photo-identification images of as many individuals in a group as possible, and remote biopsy sampling methods were used to collect small skin and blubber samples using 27 kg - 68 kg pull crossbows equipped with a specialized 2.5 cm long corer-tipped bolts, typically from the stern of the vessel.

Passive Acoustic Monitoring

Passive acoustic data were collected in the Onslow Bay survey area using two methods: a towed hydrophone array and bottom-mounted recorders.

Towed Array

A four-element array was towed behind the survey vessel to allow acoustic detection of vocalizing cetaceans. The towed array (manufactured by Seiche Instruments, UK) consisted of four hydrophone elements with approximate linear sensitivity to frequencies between 1 kHz and 100 kHz . The array was towed 150 m behind the vessel and acoustic signals were routed to an analog-to-digital converter/mixer (MOTU Traveler, MOTU, Cambridge, MA) sampling at 192 kHz . These signals were then passed to two personal laptop computers equipped with software for real-time visualization/recording (Ishmael 1.0) and spatial localization (WhalTrak 2.0) of cetacean sounds. An acoustician (Dr. Lynne Williams Hodge) monitored the array and made recordings of all potential cetacean sounds detected and any other novel sounds.

Bottom-mounted Recorders

To collect time-series of acoustic data in the Onslow Bay survey area, autonomous Highfrequency Acoustic Recording Packages (HARPs; Wiggins and Hildebrand 2007) were utilized. The HARP data-logging system includes a 16-bit A/D converter, up to 1.9 TB of storage capacity, a hydrophone suspended 10 m above the seafloor, an acoustic release system, ballast weights, and flotation. The data-loggers are capable of sampling up to 200 kHz and can be set to record continuously or on a duty cycle to accommodate variable deployment durations. These instruments combine high and low frequency hydrophone elements to detect the vocalizations of
both odontocete and mysticete whales. The units sample at rates high enough to capture the clicks of many odontocetes.

Two HARPs were deployed on 29 July 2010. One instrument was returned to Site A (33.7932 and -76.5162, 171 m depth) and one was deployed at a new, deeper site (Site D: 33.5807 and 76.5502, 338 m depth) (Table 1; Figure 3). Both instruments were recovered on 10 June 2011. On 18 August 2011, we deployed one HARP at another new, deeper site (site E: 33.7779 and 75.9264, 952 m depth) (Table 1; Figure 3). This instrument is currently in the field and is expected to be retrieved sometime during the spring of 2012. For all deployments in Year Four the instruments were programmed to record at a sampling rate of 200 kHz for five-minute periods separated by an inactive interval of five minutes.

Table 1. Harp deployments in the Onslow Bay survey area during Years 1-4.

Site	Deployment Date	Retrieval Date	Latitude	Longitude	Depth (m)	Sampling Rate	Duty Cycle	Amount of data
1A	9-Oct-07	27-May-08	33.79138	-76.52382	162 m	200 kHz	5 min on/5 min off	2TB
2B	30-May-08	24-Nov-08	33.81107	-76.42829	232 m	200 kHz	5 min on/5 min off	2TB
3A	24-Apr-09	16-Sep-09	33.7895	-76.5192	174 m	200 kHz	$5-\mathrm{min}$ on/5-min off	2TB
4A	8-Nov-09	19-Jun-10	33.7873	-76.5241	171 m	200 kHz	5-min on/10-min off	1.2TB
4C	8-Nov-09	19-Jun-10	33.6778	-76.4769	335 m	200 kHz	5-min on/10-min off	2TB
5A	29-Jul-10	10-Jun-11	33.7932	-76.5162	171 m	200 kHz	5-min on/5-min off	$\sim 2 \mathrm{~TB}$
5D	29-Jul-10	10-Jun-11	33.5807	-76.5502	338 m	200 kHz	5-min on/5-min off	$\sim 2 \mathrm{~TB}$
6E	18-Aug-11		33.7779	-75.9264	952 m	200 kHz	5-min on/5-min off	

Figure 3. Location of HARP deployment sites in the Onslow Bay survey area.

Data Analysis

Vessel survey effort and sighting data were compiled and mapped using ArcGIS 10.0 to illustrate the location of effort and sightings within the study area. All sighting data (including radial distance and bearing estimates for each cue) were forwarded to Dr. Charles Paxton at CREEM at the University of St. Andrews, UK for density estimation. Vessel based survey tracks and sighting locations from July 2010 through December 2011 have been posted on the digital data repository OBIS-SEAMAP (http://seamap.env.duke.edu/).

Acoustic Analysis

Towed Array Analysis

Towed hydrophone array recordings were analyzed with custom programs written in MATLAB (Mathworks, Natick, MA). To extract whistle and click features for use in automated species classification algorithms, individual clicks and whistles must be detected. A custom MATLABbased spectral domain whistle and click detector was run on all towed array data. This detector had poor performance (high false alarm rates) due to high noise in the shallow water environment, possibly caused by snapping shrimp and proximity to the sea-surface. Raven 1.3 (Bioacoustics Research Program of the Cornell Lab of Ornithology, Ithaca, NY) is now being used to locate and save whistles from these towed array recordings. These whistles will be used to look for species-specific features in Atlantic delphinids in collaborative work with Dr. Julie Oswald (Bio-Waves, Inc.). Species-specific patterns in echolocation clicks, such as consistent peaks and notches, will also be examined, using techniques similar to those employed by Soldevilla et al. (2008). The Onslow Bay and JAX towed array recordings will be combined for
this analysis. Analysis of variance (ANOVA) will be used to determine if there are speciesspecific frequency differences in peaks and notches of echolocation clicks.

Whistle Analysis

The software program Raven 1.3 was used to locate whistles in spectrograms derived from the towed array recordings. Individual whistles were saved as separate files. Up to 35 good quality whistles were randomly selected from each recording session and the whistle contours were extracted using a MATLAB-based program called Beluga (written by Volker Deecke and Vincent Janik). To look for species-specificity in whistles, 22 variables, 10 of which have not been commonly reported, were measured for each whistle contour using customized routines in MATLAB (Mathworks, Natick, MA). These variables included: the maximum, minimum, start, end, first quartile, second quartile, third quartile, and mean frequencies (kHz) and slopes $(\mathrm{kHz} / \mathrm{s})$; the frequency and slope range; the start and end slope sign; the duration(s); and the number of inflection points (Figure 4).

Comparisons of each whistle variable were performed using Kruskal-Wallis tests followed by multiple comparison tests with Bonferroni corrections (using JMP software, SAS, Cary, NC) on the significant results to determine which species had significantly different whistle variables. In addition, Classification And Regression Trees (CARTs) were constructed in MATLAB using the 22 measured variables. This analysis provided the percentage of total whistles assigned to the correct species (the correct classification rate). To determine if these correct classification rates for individual species were greater than expected by chance (calculated by dividing 100% by the number of species), chi-square tests with $\alpha=0.05$ were performed.

Figure 4. Spectrogram of a whistle showing several of the extracted variables, including: (1) maximum frequency, (2) minimum frequency, (3) start frequency, (4) end frequency, (5) location of 1st quartile measurements, (6) location of 2nd quartile measurements, (7) location of 3rd quartile measurements, (8) duration, (9) example of an inflection point, (10) maximum slope, (11) minimum slope, (12) start slope, and (13) end slope.

Click Analysis

Customized routines in MATLAB were used to select clicks from the towed array recordings (see Soldevilla et al. 2008 for more details). Up to five clicks per click train were selected because trains could include clicks from multiple animals that were clicking at the same time (and thus had overlapping trains). Also, individual variation exists in the spectral structure of clicks depending on the animal's orientation to the hydrophone and thus the inclusion of more than one click from a train would likely capture such variation. The selected clicks were analyzed for species-specificity by determining the frequency values of consistent spectral peaks and notches in the frequency domain. For each species, histograms consisting of 750 Hz -wide bins were made showing the number of clicks with peaks or notches at each frequency value. These bins
were compared to a random uniform distribution using a one-tailed z-test. Bins that rose significantly above this uniform distribution indicated they occurred more often than expected by chance. Frequency bins that were significantly greater than the random uniform distribution and that had at least one adjacent frequency bin that was also significantly greater were considered consistent. To obtain the means and ranges for the consistent peaks and notches, a set of Gaussian curves was fit to each histogram that had consistent bands using Gaussian mixture models. The dominant Gaussian curve fit to each consistent peak or notch was used to obtain the mean and standard deviation for each peak or notch frequency value.

HARP Analysis

HARP data require processing prior to analysis, including backing up data in original format, converting data to wav format, decimating wav data by a factor of 100 to aid in baleen whale detection, and creating long-term spectral averages (LTSAs). Prior to addition of the new compression code, each HARP deployment resulted in approximately two terabytes (TB) of data. Starting with the deployments in Year Four, the compression code was implemented which allowed for greater than two TB of data to be collected after the raw data were decompressed. This amount of data is impractical to analyze manually, so these data were compressed for visual overview by creating LTSAs from the wav files, which allowed for rapid review of the data. LTSAs are effectively compressed spectrograms created using the Welch algorithm (Welch 1967) by coherently averaging 500 spectra created from 2000-point, 0%-overlapped, Hannwindowed data and displaying these averaged spectra sequentially over time. The resulting LTSAs had resolutions of 5 s in time and 100 Hz in frequency (for the original data) and 5 s in time and 1 Hz in frequency (for the data decimated by a factor of 100). Using LTSAs, high-
energy acoustic events can easily be distinguished from background noise (Wiggins and Hildebrand 2007), allowing for an efficient review of these large data sets.

LTSAs made using a MATLAB-based acoustic program called Triton (Hildebrand Lab at Scripps Institution of Oceanography, CA) were used to look for odontocete whistle and click events in the HARP data from the fourth deployment (Sites A and C). LTSAs were inspected for highenergy events representing whistles and clicks. The start and end time were noted for each odontocete vocal event. The vocal events were then sorted into one of four groups - Risso's dolphins, sperm whales, Kogia spp., and unidentified delphinids. The vocal events were then examined for diel patterns in occurrence by dividing the recordings into one-minute bins and assigning bins with vocalizations present a score of 1 and bins with vocalizations absent a score of 0 . Photoperiod status (dawn, day, dusk, and night) was assigned to each one-minute bin, based on data from the U.S. Naval Observatory (http://aa.usno.navy.mil). The overall duration of vocal events was corrected for effort by dividing by each photoperiod's recording effort for each date. Diel variation in this effort-corrected overall duration of vocal events (or occurrence) was examined using a Kruskal-Wallis test followed by multiple comparison tests with Bonferroni corrections (using JMP software) on the significant results.

LTSAs were also made for the decimated data to look for baleen whale calls. As described for the odontocetes, the start and end time were noted for baleen whale vocal events. Vocal events were sorted by call type and assigned to a species (when possible) using the characteristics of published call types. Daily vocal durations were calculated and seasonal trends were examined during each deployment period for each call type.

Data Storage

All acoustic, visual survey, and photographic data are archived on digital media and backed up on a Duke University network server.

Results

Line Transect Vessel Survey Effort

Between 01 July 2010 and 30 April 2011, five tracklines were surveyed (Table 2) covering 333.4 km during approximately 24.9 field hours (20.5 hours on effort, 4.4 hours off effort).

Surveys were conducted in Beaufort Sea States (BSS) 0 to 4. Most survey effort was conducted in optimal sighting conditions of BSS 1 (65\%), and the effort conducted in a BSS 3 or greater (26\%) occurred during a single survey on 07 July 2010 (Figure 5).

Table 2. Vessel effort in the Onslow Bay survey area. Number of tracklines completed per year. Year 1 includes June 2007 through June 2008. Year 2 includes July 2008 through June 2009.
Year 3 includes July 2009 through June 2010. Year 4 includes July 2010 - April 2011. Survey effort is rounded to the nearest integer.

Trackline	Year 1	Year 2	Year 3	Year 4
$\mathbf{1}$	1	1	2	0
$\mathbf{2}$	2	2	1	1
$\mathbf{3}$	3	3	2	0
$\mathbf{4}$	4	2	2	1
$\mathbf{5}$	4	4	1	1
$\mathbf{6}$	3	2	1	1
$\mathbf{7}$	4	1	4	0
$\mathbf{8}$	2	2	3	1
$\mathbf{9}$	3	4	2	0
$\mathbf{1 0}$	4	2	3	0
Total	$\mathbf{3 0}$	$\mathbf{2 3}$	$\mathbf{2 1}$	$\mathbf{5}$

Figure 5. Distribution of sea state conditions (\% of total on effort) for line-transect vessel surveys during Year Four in the Onslow Bay survey area.

Photo-ID and Biopsy Survey Effort

Between 01 May 2011 and 31 December 2011, 420.6 km were surveyed during approximately 26.7 hours of photo-ID and biopsy surveys. Surveys were conducted in Beaufort Sea States (BSS) 2 to 4. Most survey effort was conducted in BSS 2 to 3 (91\%); no effort was conducted in optimal (BSS 0 to 1) sighting conditions (Figure 6).

Figure 6. Distribution of sea state conditions (\% of total on effort) for photo-ID vessel surveys during Year Four in the Onslow Bay survey area.

Marine Mammal and Sea Turtle Line Transect Sightings

Eleven marine mammal sightings were observed during line-transect vessel surveys (nine on effort; two off effort) in Year Four (Table 3 and 4). Two species of cetaceans were detected visually in the study area: bottlenose dolphins (Tursiops truncatus, $n=6 ; 4$ on effort) and Atlantic spotted dolphins (Stenella frontalis, $\mathrm{n}=5$ on effort). No mixed-species groups were observed (Table 3). Overall, sightings per unit effort was highest in Beaufort Sea State 1 and
lowest in BSS 3 and 4, although only one sighting was recorded in BSS 4 during Year Four (Figure 7).

Two sightings of loggerhead sea turtles (Caretta caretta) were recorded during line-transect vessel surveys (one on effort; one off effort) in Year Four (Tables 3 and 5). No other turtle species were observed.

Photo-ID and Biopsy Survey Sightings

Five marine mammal sightings were recorded during photo-ID and biopsy surveys in Year Four (Table 3 and 4). Two species of cetaceans were observed: bottlenose dolphins ($\mathrm{n}=1$) and Atlantic spotted dolphins ($\mathrm{n}=4$). No mixed-species groups were observed (Table 3). Sightings per unit effort was highest in BSS 2, and there were no sightings recorded in conditions greater than BSS 3 (Figure 8).

One sighting of a loggerhead sea turtle (Caretta caretta) was recorded during these vessel surveys in Year Four (Tables 3 and 5).

Table 3. Vessel-based cetacean and sea turtle sightings made from line-transect and photo-ID vessel surveys in the Onslow Bay survey area during Year Four, July 2010 through December 2011.

Date	Time	Latitude	Longitude	Line	Depth (\mathbf{m})	Temp $\left({ }^{\circ} \mathbf{C}\right)$	Species	Group Size	Effort
7-Jul-10	$11: 11$	33.95380	-76.86047	5	35.3	29.4	Stenella frontalis	2	On
17-Aug-10	$12: 33$	33.90750	-76.66831	6	40.4	30.6	Tursiops truncatus	4	Off
23-Sep-10	$10: 10$	33.49621	-76.66118	2	295.5	30.1	Tursiops truncatus	21	On
23-Sep-10	$13: 13$	33.79537	-77.04566	2	35.6	29.9	Tursiops truncatus	4	On
24-Sep-10	$9: 59$	33.76561	-76.21007	8	561.6	30.2	Tursiops truncatus	2	On
24-Sep-10	$10: 13$	33.76164	-76.15542	8	542.6	30.4	Tursiops truncatus	22	Off
24-Sep-10	$12: 39$	33.97582	-76.48651	8	40.1	30.3	Stenella frontalis	15	On
24-Sep-10	$13: 30$	33.98877	-76.50209	8	39.7	29.3	Stenella frontalis	3	On
24-Sep-10	$13: 44$	34.00135	-76.51649	8	38.8	29.1	Caretta caretta	1	On
24-Sep-10	$13: 57$	34.02712	-76.55010	8	38.2	29.2	Stenella frontalis	4	On
24-Sep-10	$14: 09$	34.03299	-76.55619	8	38.2	29.1	Caretta caretta	1	Off
24-Sep-10	$15: 17$	34.16008	-76.72719	8	32.3	28.5	Stenella frontalis	4	On
10-Oct-10	$11: 00$	33.64702	-76.58209	4	245.1	28.9	Tursiops truncatus	6	On
22-May-11	$13: 17$	33.72524	-76.68037	na	98.8	26.2	Tursiops truncatus	35	On
22-May-11	$15: 13$	33.88683	-76.57582	na	46.5	25.9	Stenella frontalis	20	On
1-Jul-11	$14: 16$	33.99230	-76.41005	na	45.7	29.2	Stenella frontalis	10	On
12-Sep-11	$7: 30$	34.26344	-76.67474	na	30.2	26.9	Stenella frontalis	40	On
21-Nov-11	$8: 30$	33.78930	-76.83564	na	na	na	Stenella frontalis	5	On
21-Nov-11	$12: 52$	33.94693	-76.63520	na	41.3	25.1	Caretta caretta	1	On

Table 4. Number of sightings and mean group size for each species observed from Year 1 through Year 4 of line-transect and photo-ID vessel surveys in the Onslow Bay survey area.

						Sightings		Year 4 Species	Year 1	Year 2	Year 3	Year 4 Line Transect	Mean Group Photo-ID
Globicephala spp.	1	0	2	0	0	31.0							
Grampus griseus	3	0	3	0	0	30.5							
Stenella frontalis	6	17	17	5	4	16.5							
Tursiops truncatus	23	14	29	6	1	11.2							
Steno bredanensis	0	0	1	0	0	27.0							
Unid. delphinid	3	2	3	0	0	1.7							
Total:	$\mathbf{3 6}$	$\mathbf{3 3}$	$\mathbf{5 5}$	$\mathbf{1 1}$	$\mathbf{5}$								

Table 5. Number of sea turtle sightings for each species observed from Year 1 through Year 4 of line-transect and photo-ID vessel surveys in the Onslow Bay survey area.

	Sightings				
Species	Year 1	Year 2	Year 3	Year 4 Line Transect	Year 4 Photo-ID
Caretta caretta	19	49	47	2	1
Dermochelys coriacea	0	0	2	0	0
Unid. sea turtle	1	0	1	0	0
Total:	$\mathbf{2 0}$	$\mathbf{4 9}$	$\mathbf{5 0}$	$\mathbf{2}$	$\mathbf{1}$

Figure 7. Number of cetacean sightings from line-transect vessel surveys in the Onslow Bay survey area in Year Four corrected for hours on effort in each Beaufort Sea State.

Figure 8. Number of cetacean sightings from photo-ID vessel surveys in the Onslow Bay survey area in Year Four corrected for hours on effort in each Beaufort Sea State.

Descriptive statistics for bottlenose dolphin and spotted dolphin sightings are presented in Figures 9 and 10, respectively. In general, bottlenose dolphins were detected in deeper waters than spotted dolphins (mean water depth of 296.5 m versus 38.5 m , respectively) and in slightly warmer water (mean values of $29.5^{\circ} \mathrm{C}$ and $28.6^{\circ} \mathrm{C}$, respectively). Mean group size for bottlenose dolphins was greater than spotted dolphins (13.4 versus 11.4 individuals per group). Both species exhibited a bi-modal distribution of group size, with similar median values (bottlenose dolphins, 6 individuals; spotted dolphins, 5 individuals). Mean water depth and temperature for loggerhead sea turtles were 39.4 m and $27.8^{\circ} \mathrm{C}$, respectively (Figure 11).
Bottlenose dolphin (Tursiops truncatus)

Quantiles		
100.0%	maximum	561.6
99.5%		561.6
97.5%	561.6	
90.0%		561.6
75.0%	quartile	547.35
50.0%	median	270.3
25.0%	quartile	83
10.0%		35.6
2.5%		35.6
0.5%		35.6
0.0%	minimum	35.6

Moments	
Mean	296.53333
Std Dev	219.38107
Std Err Mean	89.561948
Upper 95\% Mean	526.75965
Lower 95\% Mean	66.307018

Temperature (C)

Quantiles
100.0% maximum $\quad 30.6$
99.5\% 30.6
97.5\% 30.6
$90.0 \% \quad 30.6$
75.0% quartile 30.4
50.0\% median 30.1
25.0% quartile 28.9
10.0\% 26.2
2.5\% 26.2
0.5\% 26.2
0.0% minimum 26.2

Moments	
Mean	29.471429
Std Dev	1.5424162
Std Err Mean	0.5829785
Upper 95\% Mean	30.897926
Lower 95\% Mean	28.044932
N	7

Group Size

Quantiles

100.0%	maximum	35
99.5%		35
97.5%		35
90.0%		35
75.0%	quartile	22
50.0%	median	6
25.0%	quartile	4
10.0%		2
2.5%		2
0.5%		2
0.0%	minimum	2

Moments

Mean	13.428571
Std Dev	12.647228
Std Err Mean	4.7802029
Upper 95\% Mean	25.125307
Lower 95\% Mean	1.7318362
N	7

Figure 9. Descriptive statistics for depth, sea surface temperature, and group size estimates for bottlenose dolphin sightings during line-transect and photo-ID vessel surveys in the Onslow Bay survey area (July 2010 through December 2011).
Atlantic spotted dolphin (Stenella frontalis)

Quantiles		
100.0\%	maximum	46.5
99.5\%		46.5
97.5\%		46.5
90.0\%		46.5
75.0\%	quartile	44.3
50.0\%	median	38.95
25.0\%	quartile	33.05
10.0\%		30.2
2.5\%		30.2
0.5\%		30.2
0.0\%	minimum	30.2

Moments	
Mean	38.5
Std Dev	5.8248237
Std Err Mean	2.0593862
Upper 95\% Mean	43.369674
Lower 95\% Mean	33.630326

Temperature (C)

Quantiles
100.0% maximum 30.3
$99.5 \% \quad 30.3$
97.5\% 30.3
90.0\% 30.3
75.0% quartile 29.375
50.0\% median 29.2
25.0\% quartile 27.3
10.0\% 25.9
$2.5 \% \quad 25.9$
0.5\% 25.9
0.0% minimum 25.9

Moments	
Mean	28.5875
Std Dev	1.4603693
Std Err Mean	0.5163185
Upper 95\% Mean	29.808399
Lower 95\% Mean	27.366601
N	8

Group Size

Quantiles		
100.0%	maximum	40
99.5%	40	
97.5%		40
90.0%		40
75.0%	quartile	17.5
50.0%	median	5
25.0%	quartile	3.5
10.0%		2
2.5%		2
0.5%		2
0.0%	minimum	2

Moments

Mean	11.444444
Std Dev	12.329954
Std Err Mean	4.1099848
Upper 95\% Mean	20.922086
Lower 95\% Mean	1.9668024
N	9

Figure 10. Descriptive statistics for depth, sea surface temperature, and group size estimates for Atlantic spotted dolphins sightings during line-transect and photo-ID vessel surveys in the Onslow Bay survey area (July 2010 through December 2011).

Quantiles		
100.0%	maximum	41.3
99.5%	41.3	
97.5%		41.3
90.0%		41.3
$\mathbf{7 5 . 0 \%}$	quartile	41.3
50.0%	median	38.8
25.0%	quartile	38.2
$\mathbf{1 0 . 0 \%}$		38.2
2.5%		38.2
0.5%		38.2
0.0%	minimum	38.2

Quantiles	
100.0% maximum	29.1
99.5%	29.1
97.5%	29.1
90.0%	
75.0%	quartile
50.0%	29.1
25.0%	median
quartile	29.1
10.0%	
2.5%	
0.5%	25.1
0.0%	minimum

Moments	
Mean	39.433333
Std Dev	1.6441817
Std Err Mean	0.9492687
Upper 95\% Mean	43.517707
Lower 95\% Mean	35.34896
N	3

Moments	
Mean	27.766667
Std Dev	2.3094011
Std Err Mean	1.3333333
Upper 95\% Mean	33.503537
Lower 95\% Mean	22.029796
N	3

Moments	
Mean	1
Std Dev	0
Std Err Mean	0
Upper 95\% Mean	1
Lower 95\% Mean	1
N	3

Figure 11. Descriptive statistics for depth, sea surface temperature, and group size estimates for loggerhead sea turtles sightings during line-transect and photo-ID vessel surveys in the Onslow Bay survey area (July 2010 through December 2011).

Distributions and Habitat Associations of Cetaceans and Sea Turtles

The distribution of marine mammal sightings, by species, is presented in Figures 12, 13, 15, and 16. As was the case in previous years, spotted dolphins were restricted to relatively shallow shelf waters, whereas bottlenose dolphins ranged over a larger area with several groups detected in deeper waters (this likely reflects the presence of both the coastal and offshore ecotypes of this species in the study area). This inter-specific pattern of distribution has been consistent in all years of the monitoring program. The distribution of sea turtle sightings is depicted in Figures 14 and 17.

Figure 12. Distribution of bottlenose dolphin sightings indicating group size made during vessel-based line-transect surveys in the Onslow Bay survey area, July 2010 - April 2011.

Figure 13. Distribution of Atlantic spotted dolphin sightings indicating group size made during vessel-based line-transect surveys in the Onslow Bay survey area, July 2010 - April 2011.

Figure 14. Distribution of loggerhead sea turtle sightings made during vessel-based line-transect surveys in the Onslow Bay survey area, July 2010 - April 2011.

Figure 15. Distribution of bottlenose dolphin sightings indicating group size made during vesselbased photo-ID surveys in the Onslow Bay survey area, May 2011 - December 2011.

Figure 16. Distribution of Atlantic spotted dolphin sightings indicating group size made during vessel-based photo-ID surveys in the Onslow Bay survey area, May 2011 - December 2011.

Figure 17. Distribution of loggerhead sea turtle sightings made during vessel-based photo-ID surveys in the Onslow Bay survey area, May 2011 - December 2011.

Seasonality of Effort and Sightings

Due to unfavorable survey conditions, (e.g. Hurricane Irene made landfall at Cape Lookout, NC on August 27, 2011) offshore surveys were unable to be conducted over several months and we had limited effort throughout Year Four. Trends in seasonality of cetacean and sea turtle sightings are, therefore, difficult to interpret (Figures 18-21). Despite optimal sea state conditions during most surveys, spotted and bottlenose dolphins were the only cetaceans observed, and loggerheads were the only sea turtle species observed.

Figure 18. Number of cetacean sightings by month and effort (km surveyed) during line-transect surveys in Year Four in the Onslow Bay survey area.

Figure 19. Number of sea turtle sightings by month displayed with effort (km surveyed) during line-transect surveys in Year Four in the Onslow Bay survey area.

Figure 20. Number of cetacean sightings by month and effort (km surveyed) during photo-ID surveys in Year Four in the Onslow Bay survey area.

Figure 21. Number of sea turtle sightings by month displayed with effort (km surveyed) during photo-ID surveys in Year Four in the Onlsow Bay survey area.

Biopsy Sampling

Two biopsy samples were collected from Atlantic spotted dolphins on 12 September 2011 during a photo-ID survey in Onslow Bay (Table 6). Two full skin and blubber samples were collected from the sighting, ZTS-11-18 and ZTS-11-19, and will be analyzed for sex determination and stock identity in the coming months. Voucher specimens of these samples will be archived with the Southeast Fisheries Science Center in Lafayette, LA.

Table 6. Biopsy samples taken from animals in the Onslow Bay survey area during photo-ID vessel surveys, May 2011- December 2011.

Date	Time	Sample \#	Species	Latitude	Longitude
12-Sep-11	$7: 51$	ZTS-11-18	Stenella frontalis	34.26987	-76.65175
12-Sep-11	8:00	ZTS-11-19	Stenella frontalis	34.27420	-76.64799

Photographic Effort

Approximately 1480 digital images were taken from 1 July 2010 - 31 December 2011 for species identification and individual recognition. Individuals were identified to species in all 16 encounters and images were obtained from all but one sighting of Atlantic spotted dolphins. Every attempt was made to photograph all animals encountered, both to validate species identification and to develop photo-identification catalogs for cetacean species in Onslow Bay.

Images of newly identified dolphins are added to existing photo-identification catalogs in Onslow Bay (Tables 7 and 8; Figure 22). Photo-identification analysis is now complete for all images taken through January 2012. Since the beginning of the monitoring program in 2007, seven bottlenose dolphins and two Atlantic spotted dolphins have been resighted; a biopsy sample was obtained from one of these spotted dolphins (Table 8). In total, approximately 6% of bottlenose dolphins (7 of 112) and 3\% (2 of 68) of spotted dolphins identified in Onslow Bay have been re-sighted, despite quite limited sampling effort. Interestingly, two bottlenose dolphins (7-015 and 8-009) were seen together in both April 2009 and 2010.

Two dolphins photographed in the January 2012 survey have also been matched to the catalog. One of these individuals (Tt 1-004) has now been photographed on three separate occasions. In addition, one spotted dolphin (ZTS-11-019) biopsied and photographed on 12 September 2011 was matched to an animal photographed on 28 June 2001 and on 24 June 2002 (Sf-8004) during surveys conducted in near-shore coastal waters of Onslow Bay (Figure 23). Taken as a whole, therefore, these re-sightings suggest some degree of residency in the study area (Table 8).

Matched genetic and photo-id data will be particularly useful for understanding population structure and site fidelity of odontocetes in Onslow Bay and other Navy OPAREAs.

To date, no other species photographed have been re-sighted, although the number of sightings and catalog sizes for these species are very small. Images of the dorsal fins of stranded cetaceans in North Carolina are compared regularly to our photo-identification catalogs for Onslow Bay, but to date there have been no matches. Photo-id and genetic sampling surveys in the AFAST OPAREAs off of NC and FL will continue in 2012.

Table 7. Number of individual identifications from images taken during vessel-based surveys in Onslow Bay.

Species	Images	Sightings	Catalog size	Number of Matches
Tursiops truncatus	458	7	112	7
Stenella frontalis	1023	9	68	2

Table 8. Sighting dates of photo-id matches of bottlenose and spotted dolphins.

Tursiops truncatus			
ID	First sighting	Second sighting	Third sighting
$1-004$	1-Oct-09	11-Apr-10	31-Jan-12
$4-002$	15-Sep-09	1-Oct-09	
$6-010$	23-Sep-07	31-Jan-12	
$6-018$	29-Apr-09	10-Oct-10	
$7-015^{*}$	28-Apr-09	20-Apr-10	
$8-009^{*}$	28-Apr-09	20-Apr-10	
$9-016$	25-Jul-08	17-Aug-09	
Stenella frontalis			
ID	First sighting	Second sighting	Third sighting
9-013	9-Aug-09	1-Oct-09	
Sf-8004 (ZTS-11-09)	28-Jun-01	24-Jun-02	12-Sep-11

*These two individuals were seen together on both dates.

Figure 22. Dorsal fin images of matched dolphins in the Onslow Bay survey area.

Figure 23. Photo-identification matches of dolphins in the Onslow Bay survey area.

Passive Acoustic Monitoring

Towed Array Analysis

During Year Four, two line-transect surveys were conducted with the towed hydrophone array in Onslow Bay, resulting in 7.93 hours of passive acoustic monitoring. During these two surveys, recordings were obtained from two groups of animals that were positively identified to species by the visual observers. One of these groups was identified as bottlenose dolphins and the other as Atlantic spotted dolphins (Table 9). Analysis of all of the towed hydrophone array data to date is described below in the whistle and click analysis sections. In addition, two groups were detected that were not visually confirmed to species.

Table 9. Number of recordings made using the towed hydrophone array in the Onslow Bay survey area, July 2010 - December 2011.

Species	Total \# of Days Detected	Total \# of Detections	Total Duration of Recordings (h:mm)
Stenella frontalis	1	1	$0: 18$
Tursiops truncatus	1	1	$0: 43$
Unidentified delphinid	1	2	$1: 32$

Whistle Analysis

Although only bottlenose and spotted dolphins were recorded during Year 4, for this anaylsis, all towed array recordings made between September 2007 and August 2010 were used to look for species-specificity in whistles of four species: Atlantic spotted dolphins, bottlenose dolphins, rough-toothed dolphins (Steno bredanensis), and short-finned pilot whales (Globicephala macrorhynchus). Risso's dolphins (Grampus griseus) were also recorded but no high quality
whistles were recorded in their presence, so this species was omitted from the analysis. A total of 624 whistles from 48 recording sessions were analyzed, with recordings from more than one recording session used for each species to examine species-specificity, except for rough-toothed dolphins, which were only sighted once (Table 10).

Table 11 summarizes the results of the species comparisons for each of the measured whistle contour variables. For two variables (minimum frequency and end frequency), the differences were statistically significant for every species pair-wise comparison, indicating that these variables could be useful for classifying the four species. In addition, nine additional variables exhibited statistically significant differences in all but one pair-wise comparison.

The optimal classification tree for interspecific comparisons examining all four species resulted in a correct classification rate of $74.2 \%(\mathrm{n}=624)$ and included seven of the 22 variables: duration, third quartile frequency, maximum frequency, third quartile slope, end slope, first quartile slope, and mean frequency. Three of the seven variables in the optimal tree were novel variables: third quartile frequency, third quartile slope, and first quartile slope. All correct classification rates for individual species were significantly greater than the 25% expected by chance (χ^{2} test, $\mathrm{p}<0.001$) and ranged from 40.0% for rough-toothed dolphins to 92.3% for bottlenose dolphins (Table 12).

More work on species-specificity for whistles of Atlantic coast odontocetes is about to begin with Dr. Julie Oswald taking the lead. Recordings from different species are being supplied by Dr. Sofie Van Parijs (Protected Species Branch, NMFS/NEFSC), Drs. Melissa Soldevilla and

Lance Garrison (Protected Resources and Biodiversity Division, NMFS/SEFSC), and Dr. Lynne Williams Hodge (Duke).

Table 10. Number of recording sessions and whistles analyzed for each species.

Species	\# Recording Sessions	\# Whistles Analyzed
Globicephala macrorhynchus	6	89
Stenella frontalis	14	162
Steno bredanensis	1	35
Tursiops truncatus	27	338

Table 11. Results of Kruskal-Wallis tests and comparisons of 22 measured whistle variables for all six pair-wise species combinations. In this table, $\mathrm{Gm}=$ Globicephala macrorhynchus, $\mathrm{Sf}=$ Stenella frontalis, $\mathrm{Sb}=$ Steno bredanensis, $\mathrm{Tt}=$ Tursiops truncatus, and $\mathrm{Q}=$ quartile. * Indicates significant differences for the Kruskal-Wallis tests. Shading indicates significant differences of the multiple comparison tests with Bonferroni corrections (family-wise error rate $\alpha=0.05$). Whistles for which there were missing values were not included.

	Kruskal-Wallis Results	Multiple Comparison Test Results with Bonferroni Corrections					
		Gm/Sf	Gm/Sb	$\mathrm{Gm} / \mathrm{Tt}$	Sf/Sb	Sf/Tt	Sb/Tt
Max Freq	p<0.001*						
Min Freq	$\mathrm{p}<0.001$ *						
Freq Range	$\mathrm{p}<0.001$ *						
Start Freq	$\mathrm{p}<0.001$ *						
End Freq	$\mathrm{p}<0.001$ *						
1st Q Freq	$\mathrm{p}<0.001$ *						
2nd Q Freq	$\mathrm{p}<0.001$ *						
3rd Q Freq	$\mathrm{p}<0.001$ *						
Mean Freq	$\mathrm{p}<0.001$ *						
Duration	p<0.001*						
\# Inflection Points	$\mathrm{p}<0.001$ *						
Max Slope	$\mathrm{p}<0.001$ *						
Min Slope	$\mathrm{p}<0.001$ *						
Slope Range	$\mathrm{p}<0.001$ *						
Start Slope	p<0.001*						
End Slope	$\mathrm{p}<0.001$ *						
1st Q Slope	$\mathrm{p}=0.300$	N/A	N/A	N/A	N/A	N/A	N/A
2nd Q Slope	$\mathrm{p}<0.001$ *						
3rd Q Slope	p<0.001*						
Mean Slope	$\mathrm{p}<0.001$ *						
Start Slope Sign	$\mathrm{p}<0.001$ *						
End Slope Sign	$\mathrm{p}<0.001$ *						

Table 12. Results of the eight terminal node classification tree examining interspecific differences in whistles of four species. The optimal tree was grown using seven variables (duration, third quartile frequency, maximum frequency, third quartile slope, end slope, first quartile slope, and mean frequency). The overall correct classification was $74.2 \%, n=624$ whistles. Individual correct classification rates are shown in bold. The percentage of correct classifications expected by chance is 25% for each species.

	\% Classified as			
Actual Species	G. macrorhynchus	S. frontalis	S. bredanensis	T. truncatus
G. macrorhynchus	$\mathbf{8 4 . 3}$	6.7	3.4	5.6
S. frontalis	10.5	$\mathbf{6 3 . 0}$	0.6	25.9
S. bredanensis	51.4	8.6	$\mathbf{4 0 . 0}$	0
T. truncatus	2.7	4.7	0.3	$\mathbf{9 2 . 3}$

Click Analysis

Clicks from five species recorded in Onslow Bay (Atlantic spotted dolphins, bottlenose dolphins, Risso's dolphins, rough-toothed dolphins, and short-finned pilot whales) were analyzed. Multiple recording sessions were included for each species to examine species-specificity except for rough-toothed dolphins, which were only sighted once (Table 13). Only Risso's dolphins were found to produce clicks with frequency values that consistently alternated between high (peaks) and low (notches) amplitudes (Figures 24c and 25c). For Risso's dolphins, the number of clicks that had peaks and notches at these frequency bands was greater than expected by chance. Peaks in this species' clicks appeared at $22.4(\pm 0.9), 26.0(\pm 0.9)$, and $32.6(\pm 1.5) \mathrm{kHz}$, while notches occurred at $20.4(\pm 1.6), 24.0(\pm 1.0), 26.8(\pm 1.4), 29.2(\pm 2.1)$, and $34.2(\pm 2.0) \mathrm{kHz}$ (Figure 26).

Table 13. Number of recording sessions, group size, and number of clicks analyzed for each species.

Species	\# Recording Sessions	Mean Group Size	Total \# Click Trains	\# Click Trains Selected	\# Clicks Selected
Globicephala macrorhynchus	4	28.5	590	134	670
Grampus griseus	3	25.3	392	102	510
Stenella frontalis	14	28.6	2168	524	2620
Steno bredanensis	1	27	496	54	270
Tursiops truncatus	24	10.8	3114	464	2320

(e)

Figure 24. Concatenated spectrograms (after spectral mean subtraction, left) and mean normalized spectral plots (right) of clicks using Hann-windowed data for (a) Atlantic spotted dolphins, (b) bottlenose dolphins, (c) Risso's dolphins, (d) rough-toothed dolphins, and (e) shortfinned pilot whales. For the figures on the left, oranges and yellows represent greater magnitudes. Frequency bands that alternate between high and low amplitudes are apparent between 20 and 35 kHz for Risso's dolphins. Breaks between recording sessions are indicated by black vertical lines. For the figures on the right, the solid line represents the mean normalized amplitude and the dotted lines represent one standard deviation.

Figure 25. Histograms showing frequencies (kHz) of spectral peaks (left) and notches (right) for (a) Atlantic spotted dolphins, (b) bottlenose dolphins, (c) Risso's dolphins, (d) rough-toothed dolphins, and (e) short-finned pilot whales. The red line represents the mean of the expected random uniform distribution. Black diamonds near the top indicate frequency bars that had counts that were significantly greater than the random uniform distribution (one-tailed z-test, $\alpha=$ 0.05). Groups (≥ 2) of consecutive black diamonds indicate frequencies that were considered to have consistent peaks and notches. Only peaks and notches with frequencies between $15-96 \mathrm{kHz}$ were considered consistent due to boat noise and whistles at lower frequencies.

Figure 26. Curves of Gaussian mixture model fit to the (a) peak and (b) notch histograms for Risso's dolphins. For (a), arrows indicate consistent peaks and for (b), arrows indicate consistent notches.

HARP Analysis - Odontocetes

Vocal events from Risso's dolphins, sperm whales (Physeter macrocephalus), Kogia spp., and unidentified delphinids were detected in the HARP data from the fourth deployment at Site A and at Site C (Figures 27-30). For Risso's dolphins, the sample size of click events at Site A was too small for statistical analysis, but there was significant diel variation in the occurrence of click events at Site C (Kruskal-Wallis: $\mathrm{p}=0.012$), with a significantly greater number of minutes with clicks at night that during dawn. For sperm whales, there was no significant diel variation found in click occurrence at Site A (Kruskal-Wallis: $\mathrm{p}=0.082$), but there was significant variation at Site C (Kruskal-Wallis: $\mathrm{p}=0.005$), with significantly more clicks occurring during night than during dawn and day. For Kogia spp., the sample size for Site A was too small for statistical analysis, but Site C showed no significant diel variation in click occurrence (Kruskal-Wallis: $p=0.246$). For unidentified delphinids, Site A showed significant variation in vocal event occurrence (Kruskal-Wallis: $\mathrm{p}=0.029$) with more events during night than day. Due to the apparent change in diel patterns in vocal events for this site (Figure 30a), the data also were divided into two parts - one part included data from November and December while the other part included data from January and February. When the data were divided into these two parts, two different patterns appeared: the November-December data had significantly more vocal events (Kruskal-Wallis: $\mathrm{p}<0.001$) during dawn than during day, dusk, or night, and the JanuaryFebruary data had significantly more vocal events (Kruskal-Wallis: p=0.003) during night than during dawn or day. Also for unidentified delphinids, Site C showed significant variation in the occurrence of vocal events (Kruskal-Wallis: $\mathrm{p}<0.001$), with more vocal events occurring during night than during dawn, day, and dusk.

When looking at all of the data analyzed to date for odontocetes, several patterns emerge. For example, when all Risso's click events were combined together, there were significantly more click events (Kruskal-Wallis: $\mathrm{p}<0.001$) during night than during dawn, day, or dusk and more click events during dusk than during dawn. When all of the sperm whale click events were combined, there were significantly more click events (Kruskal-Wallis: $\mathrm{p}<0.001$) during night than during dawn, day, or dusk. When all Kogia spp. click events were combined together, no significant variation was found among photoperiods (Kruskal-Wallis: p=0.075). Finally, for unidentified delphinids, the occurrence of vocal events was greatest either at dawn or at night. The first basic pattern (an increase at dawn) was seen in the first deployment (Site A) and the first part of the fourth deployment at Site A which occurred at the same site during similar months (late fall-winter), while the second basic pattern (a nocturnal increase) was seen for the second deployment (summer at Site B), third deployment (spring-summer at Site A), and fourth deployment at Site C (fall-spring) as well as the second part of the fourth deployment at Site A (winter) (Table 1). For the data showing an increase in vocal events at dawn, beginning in midNovember, a strong pulse of longer-duration and clustered vocal events was evident in the late night-dawn-early morning period which was not seen in any of the other datasets, including the recordings from the fourth deployment at Site C that was made during the same time period as the fourth deployment at Site A (Figure 30). This absence of a crepuscular pulse at Site C suggests that perhaps animals moved toward the shelf break area at that time.

Figure 27. Time of Risso's click events (left) and diel pattern of Risso's click events (right) for (a) the fourth deployment at Site A and (b) the fourth deployment at Site C. In figures on the left, black bars represent duration of click events and shading indicates periods of darkness, determined from the U.S. Naval Observatory (http://aa.usno.navy.mil). In figures on the right, the blue vertical bars represent the percentage of days with click events present by time of day (GMT), and the horizontal bar indicates periods of light (white), periods of darkness (black), and periods that may be light or dark depending on the time of year (gray).
(a)

(b)

Figure 28. Time of sperm whale click events (left) and diel pattern of sperm whale click events (right) for (a) the fourth deployment at Site A and (b) the fourth deployment at Site C. In figures on the left, black bars represent duration of click events and shading indicates periods of darkness, determined from the U.S. Naval Observatory (http://aa.usno.navy.mil). In figures on the right, the blue vertical bars represent the percentage of days with click events present by time of day (GMT), and the horizontal bar indicates periods of light (white), periods of darkness (black), and periods that may be light or dark depending on the time of year (gray).

Figure 29. Time of Kogia click events (left) and diel pattern of Kogia click events (right) for (a) the fourth deployment at Site A and (b) the fourth deployment at Site C. In figures on the left, black bars represent duration of click events and shading indicates periods of darkness, determined from the U.S. Naval Observatory (http://aa.usno.navy.mil). In figures on the right, the blue vertical bars represent the percentage of days with click events present by time of day (GMT), and the horizontal bar indicates periods of light (white), periods of darkness (black), and periods that may be light or dark depending on the time of year (gray).

Figure 30. Time of unidentified delphinid vocal events (left) and diel pattern of unidentified delphinid vocal events (right) for (a) the fourth deployment at Site A and (b) the fourth deployment at Site C. In figures on the left, black bars represent duration of vocal events and shading indicates periods of darkness, determined from the U.S. Naval Observatory (http://aa.usno.navy.mil). In figures on the right, the blue vertical bars represent the percentage of days with vocal events present by time of day (GMT), and the horizontal bar indicates periods of light (white), periods of darkness (black), and periods that may be light or dark depending on the time of year (gray).

HARP Analysis - Mysticetes

Analysis of the decimated HARP data from the first four deployments (including both instruments from the fourth deployment) has been completed. Sounds from fin (Balaenoptera physalus) (20-Hz pulses, Figure 31), minke (Balaenoptera acutorostrata) (pulse trains, Figure 32), humpback (Megaptera novaeangliae) (repetitive calls, Figure 33), and possibly sei (Balaenoptera borealis) (downsweeps, Figure 34) whales were recorded on three HARPs between November 2007 and April 2010 (Figures 35 - 38). Except for the humpback whale calls (which were detected only during the fourth deployment at Site C on 18 April 2010), these sounds were produced throughout the winter when these mysticetes are expected to be on their breeding grounds. Baleen whale calls were not heard on the two HARP deployments that occurred during the summer.

Figure 31. Spectrogram of eight 20-Hz pulses (FFT size 2048 samples, 90% overlap, Hann window).
(a)

(b)

(c)

Figure 32. Spectrograms of different types of pulse trains showing (a) slow-down (from minke whale), (b) speed-up (from minke whale), and (c) consistent (possibly from minke whale) pulse trains (FFT size 512 samples, 75\% overlap, Hann window).

Figure 33. Spectrogram of humpback whale calls detected on 18 April 2010, in the HARP data from the fourth deployment at Site C.
(a)

(b)

(c)

Figure 34. Spectrograms of downsweeps occurring as a (a) single, (b) pair, and (c) triplet (FFT size 512 samples, 75% overlap, Hann window).

Figure 35. Occurrence of fin whale $20-\mathrm{Hz}$ pulses detected in the (a) first deployment, (b) fourth deployment at Site A, and (c) fourth deployment at Site C. Black bars represent duration of vocal events and shading indicates periods of darkness, determined from the U.S. Naval Observatory (http://aa.usno.navy.mil).

Figure 36. Occurrence of minke whale pulse trains detected in the (a) first deployment, (b) fourth deployment at Site A, and (c) fourth deployment at Site C. Black bars represent duration of minke whale pulse trains (slow-down and speed-up) and red bars represent consistent pulse trains (possibly produced by minke whales). Shading indicates periods of darkness, determined from the U.S. Naval Observatory (http://aa.usno.navy.mil).

Figure 37. Occurrence of humpback whale calls detected in the fourth deployment located at Site C. Black bars represent duration of vocal events and shading indicates periods of darkness, determined from the U.S. Naval Observatory (http://aa.usno.navy.mil).

Figure 38. Occurrence of downsweeps, likely produced by sei whales, detected in the (a) first deployment, (b) fourth deployment at Site A, and (c) fourth deployment at Site C. Black bars represent duration of vocal events and shading indicates periods of darkness, determined from the U.S. Naval Observatory (http://aa.usno.navy.mil).

HARP Analysis - Current

Analysis of the data from the fifth HARP deployments at Sites A and D is currently underway. A cursory review of these datasets reveals vocal events from Risso's dolphins, pilot whales, sperm whales, fin whales, minke whales, and probable sei whales, as well as unidentified odontocetes.

Acknowledgements

We would like to thank Joel Bell (Naval Facilities Engineering Command Atlantic) for support and guidance. We are indebted to Keith Mullin and Kathy Foley, who allowed us to work under their biopsy permit (779-1633). Dr. Lance Garrison modified VisSurvey for our use. For assistance with HARPs we thank Dr. John Hildebrand, Chris Garsha, Tim Boynton, and the Captain and crew of the R/V Cape Fear. For the shipboard surveys, we thank Ryan McAlarney, Erin Cummings, Julia Burrows, Goldie Phillips, Corrie Curtice, Bethany Roberts, and Kristina Cammen. A special thanks goes to Captain Dale Britt and first mate Alan Scibal for their expertise and good nature on the F/V Sensation and Captains Matt Besch and Faith Purcell on the R/V Cetus. Surveys were conducted under NOAA Scientific Permit 948-1692-00 held by the University of North Carolina Wilmington and NOAA General Authorization 808-1798-01, 808-1798-02, and 16185 held by Duke University.

Literature Cited

Barlow, J. and R. Gisiner. 2006. Mitigating, monitoring and assessing the effects of anthropogenic sound on beaked whales. Journal of Cetacean Research and Management, 7: 239-249.

Wiggins, S.M. and J.A. Hildebrand. 2007. High-frequency Acoustic Recording Package (HARP) for broad-band, long-term marine mammal monitoring. International Symposium on Underwater Technology 2007 and Workshop on Scientific Use of Submarine Cables and Related Technologies 2007 (Institute of Electrical and Electronics Engineers, Tokyo, Japan), pp. 551557.

Soldevilla, M.S., Henderson, E.E., Campbell, G.S., Wiggins, S.M., Hildebrand, J.A., and M.A. Roch. 2008. Classification of Risso's and Pacific white-sided dolphins using spectral properties of echolocation clicks. Journal of the Acoustical Society of America, 124: 609-24.

Welch, P.D. 1967. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms: IEEE Transactions on Audio Electroacoustics, AU-15, pp. 70-73.

Acknowledgements

For collaborative efforts we thank our colleagues at the Duke University Marine Lab (Kim Urian, Jennifer Dunn, Lynne Williams, Dave Johnston, Danielle Waples, Zach Swaim and Andy Read) and St. Andrews University (Charles Paxton and David Borchers). For excellent flying and a high level of professionalism, we thank Ed Coffman, owner and operator of Orion Aviation, and his highly skilled pilots: Bob Sticle, Dave Huddle, Ron Shreck, and Wayne McKendry. We thank the JAX survey Team (Peter Nilsson, Heather Foley, Rachel Hardee and Richard Holt) for shared camaraderie. Furthermore, a great thank you to the "office ladies" at the Department of Biology and Marine Biology at the University of North Carolina Wilmington: Carol, Debbie, Lori, Tracy, and Eleanor. We thank Joel Bell for his support of this work. Surveys are conducted under NOAA Scientific Permit No. 948-1692-00, held by UNCW, and NOAA General Authorization Letters of Confirmation No. 808-1798-01 and No. 16185 held by Duke University.

Summary of Onslow Bay Aerial Surveys

This document is an annual progress report to the U.S. Department of the Navy on aerial surveys carried out in North Carolina and Florida between July 2010 and December 2011. This chapter describes the aerial surveys conducted in Onslow Bay, North Carolina, which occurred between July 2010 and April 2011. The goal was to survey the entire survey site (ten tracklines) at least once per month. This goal was accomplished in seven of the ten months. In both February and April 2011 a single survey day was conducted, after which weather conditions prevented a complete set of ten tracklines from being flown. Unfavorable weather prevented any tracklines from being surveyed in December 2010. A total of 41 cetacean sightings of 1127 individuals (Table 1, Fig. 1) were observed while on effort in the study site No right whales (Eubalaena glacialis) were encountered within this site. Five cetacean species were observed in the survey site while on effort including: bottlenose dolphins (Tursiops truncatus; 21 sightings of 679 individuals), Atlantic spotted dolphins (Stenella frontalis; ten sightings of 411 individuals), Risso’s dolphins (Grampus griseus; two sighting of 12 individuals), humpback whales (Megaptera novaeangliae; one sighting of two individuals), and minke whales (Balaenoptera acutorostrata; one sighting of three individuals). There were five sightings totaling 20 individual animals where species identity could not be established with 100% certainty. Two of these sightings were of animals that were not small delphinids, and are listed here as "unidentified cetaceans". The remaining three sightings are listed as "unidentified delphinids".

A total of 234 sea turtles were observed during the study period. Of these, 181 were identified as loggerhead sea turtles (Caretta caretta); the remaining 53 are recorded as "unidentified sea turtles" (Tables 9, Fig. 11).

As previously demonstrated in other aerial survey studies, sightings drop off dramatically as the Beaufort Sea State (BSS) increases (e.g. Gómez de Segura et al. 2006, DeMaster et al. 2001). In the present study, as the BSS increased from one to three, cetacean sightings decreased from 12.77 to 3.31 per 1000 km surveyed, whereas sea turtle sightings decreased from 70.23 to 19.49 per 1000 km surveyed (Fig. 4b and 12b).

In addition to cetaceans and sea turtles, other pelagic marine vertebrates, including sharks, manta rays, and ocean sunfish, are reported here (Tables 10-12 and Fig. 13). The majority of vessels encountered in the survey range were recreational fishing vessels, which were predominantly observed shoreward of the 100 fathom depth contour (Table 13-15 and Fig. 14-16).
Table 1. Total number of sightings and individuals for each species by month from July 2010 - April 2011 for Onslow Bay, North Carolina.

		2010						2011				Total
		July	Augus	September	October	November	December	January	February	March	April	
Tursiops truncatus	Sightings				1	9			7	3		21
	\# of individuals		8		18	180			383	90		679
Stenella frontalis	Sightings			2				7	1			10
	\# of individuals			39				343	29			411
Grampus griseus	Sightings				2							2
	\# of individuals				12							12
Megaptera novaeangliae	Sightings									1		1
	\# of individuals									2		2
Balaenoptera acutorostrata	Sightings								2			2
	\# of individuals								3			3
Unidentified delphinid	Sightings		1	1				1				3
	\# of individuals		8	1				2				11
Unidentified cetacean	Sightings		1						1			2
	\# of individuals		7						2			9
	Total sightings	0	3	3	3	9	0	8	11	4	0	41
	Total individuals	0	23	40	30	180	0	345	417	92	0	1127

Figure 1. All Cetacean sightings during the 2010-2011 aerial surveys of Onslow Bay, North Carolina.

Methodology

Survey design and logistics

The University of North Carolina Wilmington (UNCW) provided experienced aerial observers and contracted Orion Aviation, Siler City, NC, to provide planes and certified pilots. Surveys were conducted using NOAA - SER Minimum Aircraft and Crew Provisions Guidelines, which require that aircraft are CFR Part 135 certified and that pilots have demonstrated experience working below 1000 ft in support of biological observational studies. Surveys were flown in a Cessna 337 Skymaster, at 305 m altitude and $185 \mathrm{~km} / \mathrm{hr}$ speed, with a pilot, co-pilot and two observers. Each observer wore a Nomex \circledR^{\circledR} fire retardant suit, a Switlik ${ }^{\circledR}$ inflatable life jacket, a personal Emergency Positioning Beacon (EPIRB), as well as additional safety equipment. An inflatable liferaft, plane EPIRB, and satellite phone were also onboard at all times.

The survey site consisted of ten 74 km long track-lines spaced 6.5 km apart, which covers a roughly $4300 \mathrm{~km}^{2}$ area of Onslow Bay (Fig. 2 and Table 2). Survey dates were chosen based upon weather and sea conditions, and access to restricted military areas within the site. Because the primary objective of the surveys was to locate and identify to species cetaceans and sea turtles, the sea state and consequent sighting conditions during surveys were key factors that dictated when to initiate and, if necessary, to abort surveys. Low sea states (i.e. winds preferably $5-10$ knots, but no more than 15 knots and seas maximum 4 feet) were selected to optimize sighting conditions. Sighting rates of small cetaceans drop off to near zero in a Beaufort Sea State (BSS) of four or higher, as demonstrated by several previous aerial survey studies (e.g. Gómez de Segura et al. 2006, DeMaster et al. 2001). Once an appropriate weather window was identified, observers from UNCW and Orion Aviation pilots would coordinate to meet at a Fixed-base Operator (FBO) at the Wilmington, NC airport, from which all the surveys originated.

Table 2. Coordinates for trackline end points of the Onslow Bay, North Carolina survey site.

	Western Way Point		Eastern Way Point	
Transect Line	Latitude	Longitude	Latitude	Longitude
$\mathbf{1}$	33.8119	-77.1926	33.3596	$\mathbf{- 7 6 . 6 0 1 7}$
$\mathbf{2}$	33.8620	-77.1249	33.4074	-76.5370
$\mathbf{3}$	33.9146	-77.0666	33.4575	-76.4724
$\mathbf{4}$	33.9671	-77.0020	33.5149	-76.4047
$\mathbf{5}$	34.0148	-76.9342	33.5626	-76.3399
$\mathbf{6}$	34.0673	-76.8726	33.6152	-76.2783
$\mathbf{7}$	34.1198	-76.8017	33.6653	-76.2104
$\mathbf{8}$	34.1723	-76.7431	33.7154	-76.1456
$\mathbf{9}$	34.2119	-76.6721	33.7679	-76.0870
$\mathbf{1 0}$	34.2724	-76.6104	33.8157	-76.0252

Figure 2. Survey tracklines 1-10 that cover Onslow Bay, North Carolina.

Data collection

Each side of the plane was monitored by one observer with his or her own GPS unit, data sheet (see Appendix A), and binoculars, and each side was considered an independent strip transect. The start and end of transect lines, changes in environmental variables (i.e. cloud cover, BSS, visibility, and glare), and sightings of marine mammals, sea turtles and vessels in the survey site were recorded by each observer throughout the survey (see Appendix B for sighting codes). When a sighting cue was observed, horizontal and vertical angles between the plane and the sighting cue were recorded. Observers would then record a break track point and go off effort from the survey line to investigate the sighting. The plane would close on the sighting location and circle above the animal(s) to obtain photographic evidence of species. Initial and final locations of the sighting were recorded so that an approximation of the distance of the initial sighting from the track line, and any general movements of animal(s), could be calculated. During a marine mammal encounter, the observer on the left side of the plane was the designated data recorder and the right observer took digital photographs to confirm species identification. The camera used was a Canon 40D with a $100-400 \mathrm{~mm}$ image stabilizer lens. The minimum and maximum numbers of animals in each sighting were estimated by both observers in the field and recorded. After photographic and sighting data were collected, the plane returned to the initial sighting location on the trackline, taking another waypoint marking the return to on effort surveys. All data collected during a sighting were recorded on the Sighting Data Sheet (Appendix C).

The plane did not break track for sightings of sea turtles, other marine vertebrates (e.g. sharks and rays) or vessels, however, these types of sightings were recorded and logged.

Data analysis

Upon completion of a daily survey, GPS waypoints were downloaded to a desktop computer utilizing the GPS Utility software program (GPS Utility Limited, UK) and subsequently transferred into Microsoft ${ }^{\circledR}$ Excel spread sheets. Observational data (e.g. start and stop track line, sightings, and weather conditions) were entered manually into the spread sheet for each GPS waypoint. All digital images collected during a survey were also downloaded and separated into individual folders for each sighting that day. The use of digital photography allowed for enlargement of images once in the lab, which enhanced the ability to identify animals to species. For each sighting, a group of best
images was selected based on visible diagnostic features. These images were used in conjunction with the preliminary species identification (ID) made in the field, based upon appearance, group size and behavior, to determine species identity. During the first year of surveys, observers from UNCW and Duke University met on two occasions to review sighting images and establish a clear set of diagnostic features to positively identify each cetacean species. These features were used by both teams during their photo analysis in the subsequent years. Unless the dolphin species identity could be unequivocally established, the designation "unidentified delphinids" was used. Unidentifiable species were often the result of high BSS conditions or low group size; both factors made relocation and photo documentation of the animals difficult. Images obtained during a sighting were similarly employed to calculate group numbers, and a best estimate of group size was established based on field observations and images.

Geographical Information System (GIS) maps of sightings of cetaceans, sea turtles, other marine vertebrates, and vessels within the survey site were created. Positional data were imported from Excel spread sheets into Arc GIS version 9.3 (ESRI ${ }^{\circledR}$, Redlands, CA), and used to plot sightings.

The distances between the break track waypoint (2.0) and the initial position of each sighting (2.4) was calculated in Excel using the Haversine formula to calculate distances between two geographical reference points and was obtained through the online resource Scripts Movable Type (http://www.movable-type.co.uk/scripts/latlong.html). Since there is a bias in estimating the location of a group of mobile marine mammals from a fast moving airplane, the distances calculated between break track and sighting were recorded to 0.1 km . All data obtained during a marine mammal sighting (e.g. observational notes, group size, GPS coordinates and image numbers) were summarized in the Sighting Summary Sheet (See Appendices E and F for example and explanation). When all surveys for a month were completed, tables (mirroring those presented here) with sightings and effort were included in the monthly progress report compiled and sent by UNCW to HDR and the US Navy.

Off effort sightings (i.e. "10.0" and sightings made on effort transits to and from the range) were not included in spread sheets used for data analysis.

Data storage

All data obtained during a flight (GPS coordinates and digital pictures) and transcribed notes (e.g. observations and sightings) were stored electronically in three separate places: on a networked computer hard drive (which is backed up twice a week), an external hard drive, and on separate CDRs or DVDs. Additionally, the original data sheets used in the plane [i.e. daily plane log (Appendix D), observer notes and sightings sheets] are stored in binders, as are electronically entered versions of the same, along with printed forms of all electronic files. All data are stored at UNCW. In addition, all survey data, once edited, are regularly posted online to OBIS SEAMAP (http://seamap.env.duke.edu/).

Results

One complete set of survey tracklines were flown in all months from July 2010 to April 2011, except the months of December 2010 (no surveys flown due to weather), February 2011 (8 tracklines), and April 2011 (6 tracklines) for a total of 6713 km (Table 3). Survey conditions ranged from a Beaufort Sea State (BSS) 1 to 4, with the majority of the surveys flown in a BSS 2 or 3 [BSS 1: 469.9 km (7.0\%), BSS 2: 2470 km (36.8\%), BSS 3: 2719.2 km (40.5 \%), BSS 4: 1054.2 km (15.7\%)(Fig. 3a and 3b)]. An average BSS value was calculated each survey month to compare conditions across months. This process was done by taking the distance flown at each sea state multiplied by the BSS number (i.e. BSS 1 distances would be multiplied by 1); these values were then summed and divided by the total distance flown that month (Fig. 3c). Survey effort was terminated at BSS greater than 4. Cetacean sighting rates dropped off dramatically as BSS increased beyond a BSS 2, with 6 sightings made in a BSS 1 (12.77 sightings/1000 km flown), 26 in a BSS 2 (10.53 sightings/1000 km flown), 9 in a BSS 3 (3.31 sightings/1000 km flown) and no sightings in a BSS 4 (Fig. 4a - c). Summaries of sightings and survey conditions by day are complied in Appendix G. Additional survey effort conducted offshore of the Onslow Bay survey site is summarized in Appendix H.

Table 3. Tracklines and km flown during aerial surveys of Onslow Bay, North Carolina between July 2010 and April 2011. Trackline numbers listed in the order in which they were flown.

Date	Tracklines flown AM	Tracklines flown PM	Total km flown W/O offshore
8-Jul-2010	1 to 6	7 to 10	742.7
20-Aug-2010	1, offshore, 10 to 8		295.0
21-Aug-2010	7 to 2		441.3
14-Sep-2010	6 to 10, 5		463.3
15-Sep-2010	4 to 1,5 to 6		445.5
21-Oct-2010	10 to 8,3 to 1	4 to 7	729.6
22-Oct-2010	1,2		148.6
19-Nov-2010		10 to 7	296.3
20-Nov-2010	1 to 6,	1B, B, 10B	511.4
14-Jan-2011	10 to 5	4 to 1	734.1
24-Feb-2011	1 to 4	5 to 8	572.9
17-Mar-2011	1 to 4	5 to 10	741.3
18-Mar-2011	1, offshore, 10		147.9
20-Apr-2011	5 to 10		443.4
[6713.3			

Figure 3a. Total distance surveyed per Beaufort Sea State during the July 2010 - April 2011 aerial surveys in Onslow Bay, North Carolina.

Figure 3b. Effort by Beaufort Sea State for each day during the July 2010 April 2011 aerial surveys in Onslow Bay, North Carolina.

Figure 3c. Average Beaufort Sea State for each month during the July 2010 - April 2011 aerial surveys in Onslow Bay, North Carolina. Values were calculated using the formula AvgBSS = [(Distance @ BSS 1*1)+(Distance @ BSS 2*2)+.../Total distance flown that day]

Figure 4a. Total number of cetacean sightings per Beaufort Sea State during the July 2010 - April 2011 aerial surveys in Onslow Bay, North Carolina.

Figure 4b. Cetacean sightings per 1000 km flown by Beaufort Sea State during the July 2010 - April 2011 aerial surveys in Onslow Bay, North Carolina.

Figure $4 c$. Cetacean sightings per 1000 km surveyed and the average Beaufort Sea State per month during the July 2010 - April 2011 aerial surveys in Onslow Bay, North Carolina.

The mean sighting distance for all cetacean sightings was 0.7 km from the trackline and most sightings were made within 1.2 km of the plane (Fig.5a). The mean sighting distance from the trackline was slightly higher in a BSS 2 than in BSS 1 and 3, which had identical mean sighting distances (Fig. 5b). Average sighting distances were calculated after removing outliers. An outlier was defined as a value in excess of three standard deviations from the mean. This year, a single sighting was removed from these calculations as an outlier (i.e. sighting distance calculated as 2.1 km from the trackline). There were also three sightings for which only an assumed location was collected; these sightings were also omitted from our calculations.

Figure 5a. Sighting distances by Beaufort Sea State for all cetacean sightings during the July 2010 - April 2011 aerial surveys in Onslow Bay, North Carolina.

Figure 5b. Mean sighting distances by Beaufort Sea State for all cetacean sightings during the July 2010 - April 2011 aerial surveys in Onslow Bay, North Carolina. Error bars denote standard deviation for each category.

Marine Mammal Sightings

During this survey period, two baleen whale species were encountered that had not previously been observed at the Onslow Bay survey site. On March 17, 2011 a pair of adult humpback whales (Megaptera novaeangliae) was observed on trackline six. These animals remained relatively stationary, coming to the surface regularly for 13 minutes before they dove out of site and were not relocated. On February 24, 2011 a minke whale (Balaenoptera acutorostrata) mom/calf pair was observed on trackline four, traveling just below the surface. No neonatal characteristics were observed on the calf, but its length (approximately 50\% of the mother) suggests that it was likely a young of the year. Both animals surfaced together with the calf having an additional surfacing between each of its mother's breaths. Both animals remained at shallow depth throughout the encounter, and were easily visible beneath the surface due to their white pectoral fin coloration. The encounter lasted 25 minutes, through three surfacing events, before the team returned to the trackline. That same day, on trackline six, a single adult
minke whale was sighted. The animal surfaced once before diving from sight. The animal was not re-sighted after 18 minutes of searching. All identified species sighted are listed below in order of decreasing number of sightings (i.e. most commonly sighted species first). Total number of individuals is based upon the best estimate of group size. On two occasions animals were encountered for which no definitive species identification could be made. The animals were classified as unidentified cetaceans, as it was determined that they were not small delphinids. The first sighting occurred on August 21, 2010. Seven dark-bodied animals, traveling slowly in a tightly packed group, were encountered as they began a deep dive. The appearance of the animals is suggestive of short-finned pilot whales, which have been observed in that area during previous years. On February 24, 2010 an approximately 4 m light grey animal with a robust body appearance and rounded head was observed just below the surface. Submerged approximately 10 m below the surface was a second, much larger and darker animal, in close proximity to the first. No further observations were made as both animals dove away from the surface. The characteristics noted for these animals suggest that they were a species not yet observed during our surveys, and a definitive identification could not be made.

Bottlenose dolphins (Tursiops truncatus) (Table 4, Fig. 6)

The bottlenose dolphin was the most commonly observed cetacean species during the present study, based upon number of sightings and number of individuals. This species was observed 21 times for a total of 679 individuals. Group size ranged between 4-230 individuals (mean=14). Bottlenose dolphins were observed in August, October, November, February, and March of the current reporting period. Calves (defined as an individual less than or equal to one-half the total length of the associated adult) were observed in November and March. Based on the distance from shore (i.e. greater than 34 km), these bottlenose dolphins were most likely the offshore ecotype (Torres et al. 2003). As in previous years, many more sightings occurred offshore of the shelf break than over the continental shelf, and while smaller groups were encountered throughout the survey site, larger groups were seen more frequently in offshore waters. This spatial pattern and the abundance of this species have remained consistent with the preceding three years of survey effort (Pabst et al. 2008, McAlarney et al. 2009, McAlarney et al. 2010). The current best estimate of offshore bottlenose dolphin in the Western Atlantic Ocean,
between central Florida and Canada, is 81588 (CV=0.17) (Waring et al. 2008). The status of the offshore bottlenose dolphins stock in the Northwest Atlantic is unknown.

Table 4. All bottlenose dolphin (Tursiops truncatus) sightings in Onslow Bay, North Carolina for surveys conducted from July 2010 April 2011.

$\begin{aligned} & \text { き } \\ & \stackrel{0}{0} \end{aligned}$	$\stackrel{\otimes}{\underset{\equiv}{E}}$		$$						$\#$ $\#$ \# ¢
21-Aug-10	11:18	20	33.649193	-76.570275	NW	4	2	90°	8
21-Oct-10	11:28	36	33.638377	-76.701693	NW	3	2	60°	18
20-Nov-10	9:05	10	33.561044	-76.736932	NW	2	2	45°	16
20-Nov-10	9:15	14	33.594334	-76.784286	NW	2	1	45°	12
20-Nov-10	9:50	26	33.617344	-76.672677	SE	3	1	90°	25
20-Nov-10	10:05	32	33.527289	-76.419771	NW	4	3	90°	50
20-Nov-10	10:20	36	33.645909	-76.575034	NW	4	2	60°	4
20-Nov-10	10:56	48	33.743850	-76.588069	SE	5	3	90°	28
20-Nov-10	13:45	68	33.454015	-76.708844	SE	1	3	90°	15
20-Nov-10	14:00	72	33.371993	-76.616156	SE	1	2	60°	9
20-Nov-10	15:17	96	33.984226	-76.224449	NW	10	2	90°	21
24-Feb-11	9:22	10	33.482840	-76.753731	SE	1	3	90°	32
24-Feb-11	9:41	17	33.492367	-76.654561	NW	2	3	90°	4
24-Feb-11	10:23	34	33.574638	-76,622563	SE	3	3	90°	18
24-Feb-11	10:31	39	33.511343	-76.545763	SE	3	1	90°	10
24-Feb-11	10:46	45	33.614701	-76.525724	NW	4	1	45°	79
24-Feb-11	11:23	54	33.788800	-76.776595	NW	4	2	90°	10
24-Feb-11	14:00	75	33.690618	-76.487107	SE	5	2	60°	230
17-Mar-11	13:47	34	33.710799	-76.537303	NW	5	2	90°	12
17-Mar-11	14:10	42	33.748012	-76.463278	SE	6	2	45°	33
17-Mar-11	14:44	51	34.051842	-76.857337	SE	6	2	45°	45

Figure 6. Bottlenose dolphin (Tursiops truncatus) sightings indicating group size.

Atlantic spotted dolphins (Stenella frontalis) (Table 5, Fig. 7)

The Atlantic spotted dolphin was the second most commonly encountered species in the survey site, both by number of sightings and number of individuals. Groups of spotted dolphins were sighted 10 times for a total of 411 individuals. This species was encountered in September, January, and February of the current reporting period. Group size ranged between two and 180 (mean=19). At least one calf was observed in both January and February. There are two distinct forms, or ecotypes, of the Atlantic spotted dolphin in the western North Atlantic: a heavily spotted, larger form that typically occurs on the continental shelf and is most often encountered around the 200 m isobath or shallower water, and a less spotted and smaller form which occurs further offshore and around islands (Perrin et al. 1987, 1994). It is likely, based upon the sighting pattern observed, that the Atlantic spotted dolphins observed during the present study belong to the continental shelf form. Atlantic spotted dolphins were not recorded during the 1998/1999 aerial surveys, although the lines flown did not extend as far west as in the current surveys (McLellan et al. 1999). This species has, though, been observed in every year of the current Onslow bay surveys. The abundance estimate for S. frontalis (both inshore and offshore ecotypes) in the western North Atlantic is 50978; the status of the stock(s) is/are unknown (Waring et al. 2007).

Table 5. All spotted dolphin (Stenella frontalis) sightings in Onslow Bay, North Carolina for surveys conducted from July 2010 - April 2011.

$\begin{aligned} & \mathbb{0} \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$	$\stackrel{\underset{E}{E}}{\underline{E}}$							응 0 0 0 0 0 0	\# \# D 0
15-Sep-10	14:24	20	33.623457	-76.938743	NW	1	3	100°	37
15-Sep-10	14:58	26	33.954389	-76.849868	SE	5	1	60°	2
14-Jan-11	8:56	5	34.165669	-76.482446	SE	10	1	90°	22
14-Jan-11	9:05	10	34.086145	-76.365575	SE	10	2	90°	26
14-Jan-11	10:35	27	34.070243	-76.725518	NW	7	2	90°	25
14-Jan-11	10:51	34	34.035643	-76.822912	SE	6	1	90°	50
14-Jan-11	11:31	48	33.833874	-76.663780	NW	5	3	90°	180
14-Jan-11	11:51	55	33.980883	-76.883005	NW	5	2	90°	25
14-Jan-11	13:55	63	33.921761	-76.936736	SE	4	3	60°	15
24-Feb-11	11:34	59	33.953879	-76.990195	NW	4	3	90°	29

Figure 7. Spotted dolphin (Stenella frontalis) sightings indicating group size.

Risso's dolphins (Grampus griseus) (Table 6, Fig. 8)
There were two sightings of Risso's dolphins both occurring in the offshore waters of the site on October 21, 2010. Group sizes were two and ten individuals. Neither group sighted this year was observed with a calf present. This species has been recorded in the site in each of the preceding years, although they are seen less frequently, and in smaller groups, than both Tursiops and Stenella frontalis (Pabst et al. 2008, McAlarney et al. 2009, McAlarney et al. 2010).

All encounters occurred in offshore waters along the mid-Atlantic continental shelf edge, where Risso's dolphins have been found to reside year round, with some movement north during spring, summer and fall, and into the mid-Atlantic Bight during winter (Waring et al. 2007). The best available estimate for Risso’s dolphins, based upon results from two US Atlantic surveys conducted in 2004, is 20479 (CV=0.59); the status of this stock is unknown (Waring et al. 2010).

Table 6. All Risso's dolphin (Grampus griseus) sightings in Onslow Bay, North Carolina for surveys conducted from July 2010 - April 2011.

$\begin{gathered} 9 \\ 0 \\ 0 \end{gathered}$	$\stackrel{\oplus}{\stackrel{e}{E}}$	등 0 $\frac{1}{7}$ 3	$\begin{aligned} & \text { © } \\ & \text { O} \\ & \text { N } \\ & \hline \end{aligned}$						\# \# ¢ ¢
21-Oct-10	9:39	10	33.813908	-76.141887	NW	9	3	90°	10
21-Oct-10	11:14	32	33.568532	-76.625898	NW	3	2	90°	2

Figure 8. Risso's dolphin (Grampus griseus) sightings.

Minke whale (Balaenoptera acutorostrata) (Table 7, Fig. 9)
Two sightings of minke whales were recorded during this survey period and represent the first sightings of this species during our current effort in Onslow Bay. A mom/calf pair and a separate sighting of an adult individual were observed just off the shelf break. Minke whales inhabiting waters off the U.S. east coast are considered part of the Canadian East Coast stock, which occurs from to the western portion of the Davis Strait $\left(45^{\circ} \mathrm{W}\right)$ south to the Gulf of Mexico. The best available abundance estimate for this stock is 8987 (CV=0.32)(Waring et al. 2010).

Table 7. Minke whale (Balaenoptera acutorostrata) sightings in Onslow Bay, North Carolina for surveys conducted from July 2010 April 2011.

$\begin{aligned} & \stackrel{y}{\pi} \\ & 0 \\ & \hline \end{aligned}$	$\stackrel{\stackrel{\otimes}{E}}{\underline{E}}$	든 0 0 $\frac{\pi}{3}$ 3						$\begin{array}{\|l\|} \hline \text { 믕 } \\ \text { N } \\ 0 \\ 0 \\ 0 \\ \hline \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$	
24-Feb-11	10:55	49	33.684479	-76.620831	NW	4	2	90°	2
24-Feb-11	14:19	82	33.748897	-76.455229	NW	6	1	90°	1

Figure 9. Minke whale (Balaenoptera acutorostrata) sightings.

Humpback whale (Megaptera novaeangliae) (Table 8, Fig. 10)
A pair of adult humpback whales was sighted over the continental shelf water of the survey site. While this species has been sighting in the coastal waters of Onslow Bay (unpublished data, UNCW), this is the first time it has been recorded during our current survey effort in this offshore site. Currently, humpback whales in the Western North Atlantic are treated as a single stock, despite genetic evidence identifying smaller sub stocks (Waring et al. 2010). Population estimates vary depending upon methods utilized, and range between 7698 (genetic tagging methods) and 11570 (photographic markrecapture methods) (reviewed in Waring et al. 2010). This species is listed as endangered under the Endangered Species Act.

Table 8. Humpback whale (Megaptera novaeangliae) sighting in Onslow Bay, North Carolina for surveys conducted from July 2010 April 2011.

$\begin{aligned} & \text { 凹 } \\ & \hline 0 \\ & \hline \end{aligned}$	$\stackrel{\otimes}{i}$	등 0 त त 3						Degree Forward	\# W 0 0
17-Mar-11	14:23	47	33.906008	-76.669755	SE	6	3	45°	2

Figure 10. Humpback whale (Megaptera novaeangliae) sighting.

Sea Turtles (Table 9, Figs. 11 and 12a-c)
The most common sea turtle off the North Carolina coast is the loggerhead sea turtle (Caretta caretta), and fall into the Northwest Atlantic Ocean distinct population segment (DPS) which is separated into five separate recovery units (NOAA 2011). The northern recovery unit (defined as loggerheads originating from nests between southern VA through the FL/GA border) is listed as threatened under the US Endangered Species Act (National Marine Fisheries Service and U.S. Fish and Wildlife Service 2008). Other sea turtle species present in the mid-Atlantic are the green (Chelonia mydas), leatherback (Dermochelys coriacea), hawksbill (Eretmochelys imbricata), and Kemp’s Ridley (Lepidochelys kempii) (National Marine Fisheries Service and U.S. Fish and Wildlife Service 1991, 1992a, 1992b, 1993, 2008). Two hundred and thirty four sea turtles were seen in the survey site from July 2010 - April 2011. Of these, 181 were identified as loggerhead sea turtles, and 53 were recorded as "unidentified sea turtles".

Sea turtles were observed in seven of the nine months surveyed in this reporting period, although abundance fluctuated throughout the year. The lowest densities were observed in June, August, September and April (0, 0, 4.40 and 6.77 sea turtles/ 1000 km respectively), and the highest densities occurred in January, February and March (64.02, 122.19 and 70.86 sea turtles/ 1000 km respectively). The majority of sea turtles were observed shoreward of the continental shelf break. As expected, sea turtle sightings were strongly correlated with Beaufort Sea State.

Table 9．All loggerhead sea turtle（Caretta caretta） sightings in Onslow Bay，North Carolina for surveys conducted from July 2010 －April 2011.

$\begin{gathered} \stackrel{y}{0} \\ \hline \end{gathered}$	$\stackrel{\oplus}{\stackrel{\rightharpoonup}{E}}$	$\begin{array}{\|l} \text { 등 } \\ \text { n } \\ \text { n } \\ \text { In } \\ \hline \end{array}$					$\begin{array}{\|l} \hline ⿳ 亠 二 口 斤 口 ~ \\ 0 \\ \frac{0}{O} \\ \frac{5}{4} \\ \hline \end{array}$		\＃
14－Sep－10	9：38	6	33.638513	－76．441811	NW	5	2	90°	1
14－Sep－10	10：19	13	34.045289	－76．572782	SE	8	2	90°	1
14－Sep－10	11：08	24	34.175098	－76．481502	SE	10	1	90°	1
15－Sep－10	13：26	12	33.803430	－77．045227	SE	2	2	90°	1
21－Oct－10	9：12	3	34.208447	－76．528420	SE	10	2	60°	1
21－Oct－10	9：15	4	34.142273	－76．442742	SE	10	2	90°	1
21－Oct－10	9：22	4	33.986115	－76．241765	SE	10	2	90°	1
21－Oct－10	9：23	5	33.967972	－76．219487	SE	10	3	90°	1
21－Oct－10	9：27	6	33.881302	－76．109208	SE	10	3	90°	1
21－Oct－10	9：52	13	33.871335	－76．220558	NW	9	2	75°	1
21－Oct－10	10：12	15	34.150538	－76．581982	NW	9	1	90°	1
21－Oct－10	10：14	18	34.192168	－76．636515	NW	9	1	90°	1
21－Oct－10	10：26	22	34.037172	－76．565180	SE	8	1	60°	1
21－Oct－10	10：28	19	33.986482	－76．498170	SE	8	2	90°	1
22－Oct－10	9：20	4	33.609331	－76．927399	SE	1	2	90°	1
20－Nov－10	9：22	19	33.653403	－76．852100	NW	2	1	90°	1
20－Nov－10	9：22	16	33.648191	－76．845233	NW	2	2	90°	1
20－Nov－10	9：22	17	33.660726	－76．862223	NW	2	2	60°	3
20－Nov－10	9：23	20	33.683106	－76．891586	NW	2	2	90°	1
20－Nov－10	9：27	18	33.763246	－76．995835	NW	2	1	90°	4
20－Nov－10	9：35	21	33.897747	－77．046757	SE	3	1	90°	1
20－Nov－10	9：37	23	33.859642	－76．995668	SE	3	2	90°	1
20－Nov－10	10：29	35	33.768939	－76．737900	NW	4	1	90°	1
20－Nov－10	10：32	41	33.824522	－76．811327	NW	4	1	90°	1
20－Nov－10	10：33	37	33.848291	－76．842858	NW	4	1	60°	2
20－Nov－10	10：34	43	33.874004	－76．877642	NW	4	1	90°	1
20－Nov－10	10：37	44	33.925695	－76．945830	NW	4	1	90°	1
20－Nov－10	10：39	38	33.966552	－76．998827	NW	4	2	90°	1
20－Nov－10	10：45	41	33.943750	－76．841153	SE	5	3	90°	4
20－Nov－10	10：50	42	33.839999	－76．704574	SE	5	2	90°	3
20－Nov－10	10：50	43	33.830325	－76．691503	SE	5	1	90°	1
20－Nov－10	11：24	52	33.843880	－76．576572	NW	6	2	90°	1
20－Nov－10	13：31	59	33.733173	－77．090335	SE	1	1	90°	1
20－Nov－10	13：38	65	33.559905	－76．863509	SE	1	2	90°	1
14－Jan－11	9：40	15	34.063839	－76．477720	NW	9	2	60°	1
14－Jan－11	9：42	16	34.111119	－76．541089	NW	9	1	90°	3
14－Jan－11	9：45	16	34.164724	－76．612029	NW	9	1	90°	1
14－Jan－11	9：51	19	34.147125	－76．713873	SE	8	1	90°	2
14－Jan－11	9：58	20	33.983754	－76．492322	SE	8	1	90°	2
14－Jan－11	10：32	24	34.036183	－76．694704	NW	7	1	90°	1
14－Jan－11	10：33	25	34.059413	－76．724498	NW	7	1	90°	1
14－Jan－11	10：44	30	34.097414	－76．775415	NW	7	1	60°	1
14－Jan－11	10：55	37	34.008381	－76．791485	SE	6	2	90°	2
14－Jan－11	10：55	35	34.002353	－76．784055	SE	6	2	90°	1
14－Jan－11	10：57	38	33.962465	－76．732330	SE	6	，	75°	2
14－Jan－11	11：02	41	33.850397	－76．584250	SE	6	1	90°	3
14－Jan－11	11：27	40	33.772420	－76．616253	NW	5	，	90°	1
14－Jan－11	11：40	51	33.899045	－76．782669	NW	5	2	60°	3
14－Jan－11	11：41	43	33.919890	－76．811349	NW	5	2	90°	2

Table 9 (Continued). All loggerhead sea turtle (Caretta caretta) sightings in Onslow Bay, North Carolina for surveys conducted from July 2010 - April 2011.

$\begin{gathered} \pm \\ \stackrel{y}{0} \\ \hline \end{gathered}$	$\stackrel{\oplus}{\underset{\mid}{E}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\bar{\circ}} \\ & \text { n } \\ & \sqrt{\pi} \\ & 3 \\ & \hline \end{aligned}$	$$	$\begin{aligned} & \overline{\mathrm{j}} \\ & \stackrel{0}{3} \\ & \underline{0} \\ & \hline \mathbf{0} \\ & \hline \end{aligned}$				0 0 0 0 0 0 0 0 0 0	$$
14-Jan-11	14:36	65	33.696255	-76.782737	NW	3	1	90°	1
14-Jan-11	14:36	66	33.711718	-76.803939	N	3	2	90°	4
14-Jan-11	14:45	67	33.896123	-77.043701	NW	3	2	60°	1
14-Jan-11	14:53	73	33.768162	-77.000595	SE	2	1	90°	2
14-Jan-11	14:56	70	33.701709	-76.914640	SE	2		90°	1
14-Jan-11	15:25	77	33.617809	-76.939637	NW	1		60°	1
24-Feb-11	9:13	4	33.646569	-76.974561	SE	1	1	110°	1
24-Feb-11	9:14	5	33.618935	-76.938437	SE	1	2	90°	2
24-Feb-11	9:15	7	33.597017	-76.909920	SE	1	2	90°	4
24-Feb-11	9:54	18	33.675894	-76.884657	NW	2	2	90°	4
24-Feb-11	9:56	20	33.737374	-76.964016	NW	2	2	60°	3
24-Feb-11	9:58	24	33.767216	-77.002908	N	2	3	60°	3
24-Feb-11	9:58	21	33.780268	-77.019627	NW	2	1	90°	3
24-Feb-11	10:12	27	33.777383	-76.885820	SE	3	2	45°	2
24-Feb-11	10:13	29	33.738566	-76.834942	SE	3	3	90°	4
24-Feb-11	10:14	30	33.722991	-76.814817	SE	3	3	90°	7
24-Feb-11	11:27	45	33.823472	-76.811523	NW	4	1	90°	3
24-Feb-11	11:30	47	33.909657	-76.926834	NW	4	2	90°	3
24-Feb-11	11:32	48	33.936554	-76.962420	NW	4	1	90°	2
24-Feb-11	14:45	70	33.939406	-76.704795	NW	6	2	90°	2
24-Feb-11	14:49	72	34.027767	-76.821492	NW	6	2	90°	2
17-Mar-11	10:43	11	33.894761	-77.045043	NW	3	2	90°	1
17-Mar-11	10:50	14	33.760309	-76.869333	SE	3	2	90°	1
17-Mar-11	11:21	17	33.755109	-76.720625	SE	4	1	90°	1
17-Mar-11	11:22	18	33.781783	-76.754548	SE	4	1	90°	1
17-Mar-11	11:26	20	33.863079	-76.863503	NW	4	2	90°	1
17-Mar-11	11:28	20	33.890740	-76.904585	SE	4	2	90°	2
17-Mar-11	13:32	26	33.981530	-76.883782	NW	5	2	90°	3
17-Mar-11	13:34	28	33.933650	-76.821523	NW	5	2	90°	4
17-Mar-11	13:36	30	33.902461	-76.783902	NW	5	2	90°	4
17-Mar-11	13:39	31	33.849383	-76.716858	NW	5	1	90°	4
17-Mar-11	13:40	32	33.818611	-76.678426	NW	5	2	90°	3
17-Mar-11	14:20	45	33.865390	-76.606475	SE	6	2	45°	3
17-Mar-11	14:53	56	34.096856	-76.767596	N	7	2	90°	3
17-Mar-11	14:57	58	34.024504	-76.674396	NW	7	2	90°	3
17-Mar-11	14:58	59	34.008353	-76.654004	NW	7	1	90°	3
17-Mar-11	14:59	60	33.991532	-76.632180	NW	7	2	45°	5
17-Mar-11	15:00	61	33.965575	-76.598819	NW	7	2	90°	3
17-Mar-11	15:47	67	34.170745	-76.615344	NW	9	2	90°	7
17-Mar-11	16:27	60	34.231002	-76.557888	NW	10	2	45°	3

Figure 11. Loggerhead (Caretta caretta) sea turtle sightings.

Figure 12a. Total number of sea turtle sightings by Beaufort Sea State in Onslow Bay, North Carolina from July 2010 - April 2011.

Figure 12b. Sea turtle sightings per 1000 km flown by Beaufort Sea State in Onslow Bay, North Carolina from July 2010 - April 2011.

Figure 12c. Sea turtle sightings per 1000 km surveyed and the average Beaufort Sea State per month in Onslow Bay, North Carolina from July 2010 - April 2011.

Other Marine Vertebrate Sightings (Tables 10-12, Fig. 13)
Cartilaginous fishes
Eleven sharks were observed throughout the survey period; hammerhead sharks (Sphyrna spp.) accounted for ten of these sightings ($\mathrm{n}=6$) (Table 10). Seventeen manta rays (Manta birostris) were observed during the survey period (Table 11).

Other fishes
Ocean sunfish (Mola mola) were encountered eight times with no discernable spatial or temporal trends (Table 12).

Table 10. All shark sightings in Onslow Bay, North Carolina for surveys conducted from July 2010 - April 2011.

$\begin{gathered} \text { 巳 } \\ 0 \\ 0 \end{gathered}$	$\stackrel{\oplus}{\underline{j}}$								$$	0 0 0
21-Oct-10	10:36	24	33.825020	-76.287405	SE	8	2	100°	1	Hammerhead
21-Oct-10	10:37	25	33.809123	-76.267057	SE	8	2	90°	1	Hammerhead
21-Oct-10	10:39	26	33.757493	-76.200292	SE	8	1	90°	1	Hammerhead
19-Nov-10	13:28	8	33.910782	-76.272922	NW	9	1	90°	1	Hammerhead
20-Nov-10	8:33	4	33.783835	-77.156892	SE	1	1	90°	1	Hammerhead
20-Nov-10	10:31	36	33.803754	-76.783356	NW	4	1	90°	1	Hammerhead
14-Jan-11	10:27	24	33.940773	-76.570494	NW	7	3	90°	1	Hammerhead
14-Jan-11	11:05	37	33.806472	-76.526353	SE	6	2	90°	1	
14-Jan-11	11:12	42	33.637597	-76.304722	SE	6	1	90°	1	Hammerhead
24-Feb-11	10:16	31	33.686083	-76.766711	SE	3	2	90°	1	Hammerhead
17-Mar-11	10:28	8	33.631662	-76.824928	SE	2	1	90°	1	Hammerhead

Table 11. All manta ray (Manta birostris) sightings in Onslow Bay, North Carolina for surveys conducted from July 2010 April 2011.

$\begin{gathered} \text { 凹 } \\ \stackrel{0}{0} \\ \hline \end{gathered}$	$\stackrel{\underset{\mid}{E}}{\underline{E}}$							Degree Forward	\# \# ¢ ¢
15-Sep-10	13:09	8	33.693220	-76.780754	NW	3	1	90°	3
21-Oct-10	9:54	14	33.912738	-76.273632	NW	9	3	90°	1
21-Oct-10	10:33	23	33.887020	-76.368562	SE	8	1	90°	1
21-Oct-10	16:07	53	33.808680	-76.525500	NW	6	1	90°	1
19-Nov-10	13:14	5	33.934087	-76.176768	SE	10	2	110°	1
20-Nov-10	8:48	6	33.460365	-76.733371	SE	1	2	90°	1
20-Nov-10	9:01	10	33.504706	-76.661242	NW	2	1	60°	1
24-Feb-11	9:19	8	33.518459	-76.807212	SE	1	2	90°	1
24-Feb-11	9:31	13	33.408864	-76.664466	SE	1	1	90°	1
24-Feb-11	9:52	17	33.650542	-76.851981	NW	2	2	90°	1
24-Feb-11	9:54	19	33.695428	-76.909585	NW	2	3	90°	1
24-Feb-11	10:19	32	33.618848	-76.679533	SE	3	1	90°	1
24-Feb-11	10:29	37	33.512415	-76.541591	SE	3	1	90°	1
17-Mar-11	10:11	8	33.394346	-76.648536	SE	1	1	90°	1
20-Apr-11	10:28	7	33.735835	-76.429228	NW	6	2	90°	1

Table 12. All ocean sunfish (Mola mola) sightings in Onslow Bay, North Carolina for surveys conducted from July 2010April 2011.

$\begin{aligned} & \pm \\ & \stackrel{y}{0} \\ & \hline \end{aligned}$	$\underset{\underset{i}{\otimes}}{\substack{0}}$	$\begin{aligned} & \text { 등 } \\ & 0 \\ & \text { n } \\ & \text { त } \\ & 3 \end{aligned}$					$\begin{aligned} & \stackrel{\rightharpoonup}{J} \\ & 0 \\ & \frac{0}{0} \\ & \frac{1}{4} \\ & \hline \end{aligned}$		
14-Jan-11	10:58	39	33.947028	-76.710266	SE	6	1	90°	1
14-Jan-11	11:23	45	33.696766	-76.516908	NW	5	2	60°	1
24-Feb-11	9:29	10	33.465931	-76.744455	SE	1	2	90°	1
24-Feb-11	9:31	11	33.410923	-76.667128	SE	1	3	90°	1
24-Feb-11	10:10	25	33.813568	-76.932616	SE	3	2	90°	1
24-Feb-11	14:07	78	33.640495	-76.439886	SE	5	2	90°	2
17-Mar-11	15:11	62	33.756267	-76.325650	NW	7	1	90°	1
17-Mar-11	16:10	58	34.052056	-76.324417	NW	10	1	90°	1

Figure 13. Manta ray (Manta birostris), ocean sunfish (Mola mola) and unidentified sharks.

Vessel Sightings

Commercial (Table 13, Fig. 14)
A total of 55 commercial vessels were seen during the study. This category includes tankers, container/cargo vessels, and car carriers.

Table 13. All commercial vessel sightings in Onslow Bay, North Carolina for surveys conducted from July 2010 - April 2011.

$\stackrel{\text { ® }}{\text { ®. }}$										0 0 E 0 0
8-Jul-10	11:07	10	33.663388	-76.739410	SE	3	2	60°	.	Commercial fishing vessel
8-Jul-10	11:29	13	33.713336	-76.665421	NW	4	2	90°	1	Commercial fishing vessel
8-Jul-10	15:15	35	34.014656	-76.535270	NW	8	2	45°	1	Cargo vessel
8-Jul-10	15:31	40	34.095723	-76.518877	SE	9	2	60°	1	Cargo vessel
8-Jul-10	15:41	39	33.871460	-76.223572	SE	9	2	45°	1	Japanese vessel
8-Jul-10	16:03	45	34.114270	-76.406300	NW	10	3	45°	1	Container vessel
20-Aug-10	13:04	5	33.433464	-76.697932	SE	1	2	45°	1	Container vessel
20-Aug-10	14:35	19	34.168995	-76.476519	NW	10	3	60°	1	Tug and barge
20-Aug-10	15:12	27	33.802402	-76.257983	NW	8	3	45°	1	Cargo vessel
20-Aug-10	15:26	29	34.090001	-76.634209	NW	8	2	45°	2	Tug and barge
21-Aug-10	10:31	10	33.799092	-76.518309	NW	6	4	90°	1	Cargo vessel
21-Aug-10	10:37	7	33.946792	-76.712741	NW	6	4	60°	1	Container vessel
21-Aug-10	10:57	11	33.808392	-76.633743	SE	5	2	90°	1	Container vessel
21-Aug-10	11:01	13	33.700130	-76.520260	SE	5	1	90°	1	Car carrier
21-Aug-10	11:11	17	33.522672	-76.413697	NW	4	3	90°	1	Research vessel
21-Aug-10	11:34	25	33.825775	-76.813473	NW	4	3	60°	1	Cargo vessel
21-Aug-10	11:34	26	33.841103	-76.834517	NW	4	3	60°	1	Cargo vessel
21-Aug-10	11:47	21	33.816419	-76.938654	SE	3	1	90°	1	Container vessel
21-Aug-10	12:09	25	33.426334	-76.559513	NW	2	3	90°	1	Tanker
15-Sep-10	13:05	9	33.618595	-76.684220	NW	3	3	45°	1	Cargo vessel
15-Sep-10	13:54	14	33.629855	-76.819773	SE	2	1	45°	1	Tanker
21-Oct-10	9:18	5	34.061140	-76.338605	SE	10	2	60°	1	Cargo vessel
21-Oct-10	9:27	6	33.872565	-76.097503	SE	10	1	60°	1	Large cargo vessel
21-Oct-10	11:37	30	33.748137	-76.849183	NW	3	3	60°	2	Tug and barge
21-Oct-10	15:15	53	33.818748	-76.677693	NW	5	3	45°	1	Container vessel
21-Oct-10	15:50	50	33.849820	-76.449015	SE	7	1	90°	1	Cargo vessel
22-Oct-10	9:13	4	33.765998	-77.131975	SE	1	4	60°	1	Cargo vessel
22-Oct-10	9:29	5	33.424180	-76.685477	SE	1	3	60°	1	Cargo vessel
20-Nov-10	9:20	17	33.613308	-76.801781	NW	2	2	45°	1	Cargo vessel
20-Nov-10	10:04	29	33.521454	-76.415298	NW	4	4	90°	1	Cargo vessel
20-Nov-10	10:25	34	33.682313	-76.623688	NW	4	3	60°	1	Cargo vessel
14-Jan-11	9:35	14	33.951650	-76.330403	NW	9	4	90°	1	Container vessel
14-Jan-11	9:58	19	33.986068	-76.495420	SE	8	4	60°	1	Cargo vessel
14-Jan-11	10:22	23	33.840417	-76.438661	NW	7	4	60°	1	Cargo vessel
14-Jan-11	11:00	40	33.899719	-76.647574	SE	6	2	45°	1	Tanker
14-Jan-11	14:32	62	33.612438	-76.674459	NW		4	60°	2	Tug and barge
24-Feb-11	9:50	20	33.596377	-76.782237	NW	,	3	45°	1	Large cargo vessel
24-Feb-11	9:58	25	33.784197	-77.024714	NW	2	4	60°	2	Tug and barge
24-Feb-11	14:15	64	33.660306	-76.337050	NW		4	45°	1	Container vessel
24-Feb-11	14:44	69	33.914207	-76.671579	NW	6	2	45°	1	Tanker
24-Feb-11	14:46	71	33.951549	-76.720974	NW	6	4	45°	1	Tanker
17-Mar-11	9:55	4	33.730428	-77.086613	SE	1	3	45°	1	Cargo vessel
17-Mar-11	9:59	5	33.655630	-76.988891	SE	1	3	45°	1	Cargo vessel
17-Mar-11	10:02	6	33.583675	-76.893306	SE	1	4	45°	1	Cargo vessel
17-Mar-11	13:35	29	33.925152	-76.811418	NW	5	3	45°	1	Container vessel
17-Mar-11	16:22	59	34.167528	-76.478415	NW	10	3	60°	1	Cargo vessel
17-Mar-11	16:24	72	34.097652	-76.386396	SE	10	4	45°	1	Container vessel

Table 13 (Continued). All commercial vessel sightings in Onslow Bay, North Carolina for surveys conducted from July 2010 - April 2011.

$\frac{\otimes}{0}$	$\underset{\underset{i}{\underset{~}{E}}}{ }$	픙 0 3 3 3	$\stackrel{\otimes}{0}$						$\begin{aligned} & \# \\ & \stackrel{7}{\omega} \\ & \underset{\sim}{\otimes} \end{aligned}$	N 0 0 0 0
20-Apr-11	10:50	11	34.078941	-76.746680	SE	7	2	45	1	Container vessel
20-Apr-11	11:03	14	33.822118	-76.415834	SE	7	3	45°	1	Container vessel
20-Apr-11	11:09	16	33.697803	-76.256130	SE	7	4	45°	1	Container vessel
20-Apr-11	11:21	17	33.860110	-76.329869	NW	8	1	45	1	Container vessel

Figure 14. Large commercial shipping vessel sightings.

Military (Table 14, Fig. 15)
Seventeen U.S. Military vessels were observed in the study site.

Table 14. All military vessel sightings in Onslow Bay, North Carolina for surveys conducted from July 2010 - April 2011.

$\begin{aligned} & \text { 凹 } \\ & \hline 0 \\ & \hline \end{aligned}$	$\stackrel{\oplus}{\underset{j}{E}}$	$\begin{aligned} & \text { 등 } \\ & 0 \\ & \text { n } \\ & \text { 而 } \end{aligned}$						pıemıoـ әәлБə๐	$\#$ $\#$ $\#$ 0 0 0	n 0 0 0 0 0
8-Jul-10	14:38	28	34.110666	-76.790627	SE	7	2	45°	1	Military vessel
8-Jul-10	15:04	32	33.763983	-76.208199	NW	8	4	90°	3	Military vessel
8-Jul-10	15:19	36	34.092153	-76.637110	NW	8	4	90°	1	Military vessel
8-Jul-10	15:28	39	34.155300	-76.597629	SE	9	2	60°	1	Military vessel
8-Jul-10	15:42	40	33.849685	-76.194416	SE	9	1	90°	1	Military vessel
8-Jul-10	15:52	45	33.885096	-76.113122	NW	10	2	90°	1	Military vessel
8-Jul-10	16:00	48	34.040589	-76.312013	NW	10	2	60°	1	Military vessel
8-Jul-10	16:08	46	34.218154	-76.540125	NW	10	3	30°	1	Military vessel
14-Sep-10	9:20	4	33.848144	-76.579384	SE	6	3	45°	1	Military vessel
14-Sep-10	10:55	20	34.119503	-76.544101	NW	9	2	60°	1	Coast guard vessel
21-Oct-10	10:05	14	34.024078	-76.417410	NW	9	2	60°	1	Military vessel
21-Oct-10	10:12	16	34.159062	-76.592772	NW	9	2	60°	1	Military vessel, frigate
21-Oct-10	10:13	17	34.171053	-76.608302	NW	9	4	90°	1	Warship
21-Oct-10	10:22	21	34.115440	-76.668157	SE	8	2	90°	1	Warship
24-Feb-11	11:20	41	33.755909	-76.723042	NW	4	3	45°	1	Resight of aircraft carrier

Figure 15. Military vessel sightings.

Recreational (Table 15, Fig. 16)
The most commonly sighted types of vessel in the survey site were recreational fishing vessels ($\mathrm{n}=94$), with the majority of sightings occurring at or shoreward of the continental shelf break.

Table 15. All other vessel sightings in Onslow Bay, North Carolina for surveys conducted from July 2010 - April 2011.

$\begin{aligned} & \text { 凹 } \\ & \text { O} \end{aligned}$	$\stackrel{\oplus}{\underline{E}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\overline{0}} \\ & 0 \\ & \text { n } \\ & \cdots \\ & 3 \\ & \hline \end{aligned}$							$\begin{aligned} & 7 \\ & \begin{array}{l} \# \\ \# \\ 0 \\ \hline \end{array} \end{aligned}$	
8-Jul-10	10:48	7	33.774973	-77.010900	NW	2	4	90°	1	fis
8-Jul-10	10:52	6	33.859873	-77.121421	NW	2	2	60°	1	Recreational fishing vessel
8-Jul-10	11:40	13	33.964217	-76.996774	NW	4	2	60°	1	Recreational fishing vessel
8-Jul-10	12:22	21	33.913250	-76.668804	SE	6	3	60°	2	Recreational fishing vessel
8-Jul-10	12:23	22	33.945935	-76.711722	SE	6	2	90°	1	Recreational fishing vessel
8-Jul-10	16:10	47	34.251800	-76.582975	NW	10	1	45°	1	Recreational fishing vessel
20-Aug-10	14:28	16	34.032884	-76.301813	NW	10	2	60°	1	Recreational fishing vessel
21-Aug-10	11:38	27	33.915350	-76.932314	NW	4	2	45°	1	Recreational fishing vessel
14-Sep-10	9:57	9	33.868878	-76.476736	NW	7	2	45°	1	Recreational fishing vessel
14-Sep-10	9:57	9	33.867282	-76.474611	NW	7	3	90°	1	Recreational fishing vessel
14-Sep-10	9:58	10	33.886748	-76.500131	NW	7	2	60°	1	Recreational fishing vessel
14-Sep-10	9:58	10	33.885761	-76.498801	NW	7	2	60°	1	Recreational fishing vessel
14-Sep-10	10:23	13	33.964601	-76.466827	SE	8	3	90°	1	Recreational fishing vessel
14-Sep-10	10:24	14	33.937610	-76.432084	SE	8	3	60°	1	Recreational fishing vessel
14-Sep-10	10:48	16	33.992361	-76.379358	NW	9	3	45°	1	Recreational fishing vessel
14-Sep-10	10:48	18	33.981576	-76.365523	NW	9	1	90°	1	Recreational fishing vessel
14-Sep-10	10:49	19	33.993923	-76.381309	NW	9	3	90°	1	Recreational fishing vessel
14-Sep-10	11:05	19	34.254665	-76.579002	SE	10	3	60°	1	Recreational fishing vessel
14-Sep-10	11:05	23	34.247981	-76.572055	SE	10	2	60°	1	Recreational fishing vessel
14-Sep-10	11:13	20	34.062070	-76,336080	SE	10	2	60°	1	Recreational fishing vessel
15-Sep-10	12:42	4	33.744215	-76.702639	SE	4	3	60°	1	Recreational fishing vessel
15-Sep-10	13:07	7	33.661745	-76.740072	NW	3	4	45°	1	Recreational fishing vessel
15-Sep-10	13:19	9	33.896886	-77.047003	NW	3	1	90°	1	Recreational fishing vessel
21-Oct-10	11:33	28	33.669902	-76.748297	NW	3	2	45°	1	Recreational fishing vessel
21-Oct-10	11:34	29	33.703298	-76.791032	NW	3	1	90°	1	Recreational fishing vessel
21-Oct-10	11:35	40	33.705280	-76.793777	NW	3	2	60°	1	Recreational fishing vessel
21-Oct-10	11:59	43	33.633382	-76.827898	SE	2	2	60°	1	Recreational fishing vessel
21-Oct-10	11:59	35	33.632787	-76.827158	SE	2	4	60°	1	Recreational fishing vessel
21-Oct-10	15:42	59	34.020528	-76.671258	SE	7	3	60°	1	Recreational fishing vessel
21-Oct-10	15:47	60	33.913182	-76.531590	SE	7	2	90°	1	Recreational fishing vessel
22-Oct-10	9:13	3	33.750922	-77.111977	SE	1	4	90°	1	Recreational fishing vessel
19-Nov-10	13:32	7	33.975158	-76.358223	NW	9	4	90°	1	Recreational fishing vessel
19-Nov-10	13:48	11	34.123447	-76.679240	SE	8	2	60°	1	Recreational fishing vessel
19-Nov-10	13:55	12	33.985447	-76.498332	SE	8	1	60°	1	Recreational fishing vessel
19-Nov-10	13:57	13	33.944840	-76.444598	SE	8	3	60°	2	Recreational fishing vessel
20-Nov-10	8:43	5	33.579261	-76.888163	SE	1	1	60°	2	Recreational fishing vessel
20-Nov-10	9:39	22	33.824717	-76.949694	SE	3	2	60°	1	Recreational fishing vessel
20-Nov-10	9:44	24	33.704213	-76.792278	SE	3	2	60°	1	Recreational fishing vessel
20-Nov-10	9:44	23	33.713201	-76.804338	SE	3	1	90°	1	Recreational fishing vessel
20-Nov-10	9:45	24	33.697659	-76.783860	SE	3	2	90°	2	Recreational fishing vessel
20-Nov-10	10:53	44	33.784223	-76.630147	SE	5	3	60°	3	Recreational fishing vessel
20-Nov-10	11:23	51	33.817008	-76.537971	NW	6	3	90°	10	Recreational fishing vessel
20-Nov-10	11:24	54	33.830687	-76.558592	NW	6	3	60°	3	Recreational fishing vessel
20-Nov-10	11:31	55	33.968518	-76.740924	NW	6	1	60°	1	Recreational fishing vessel
20-Nov-10	11:34	57	34.048925	-76.847810	NW	6	3	60°	1	Recreational fishing vessel
20-Nov-10	13:28	63	33.790042	-77.164559	SE	1	2	90°	1	Recreational fishing vessel
20-Nov-10	15:27	82	34,217285	-76.538351	NW	10	4	60°	3	Recreational fishing vessel

Table 15 (Continued). All other vessel sightings in Onslow Bay, North Carolina for surveys conducted from July 2010 - April 2011.

$\begin{gathered} \pm \\ \hline 0 \\ \hline \end{gathered}$	$\stackrel{\oplus}{\underset{\mid}{E}}$				$\begin{aligned} & \text { 읃 } \\ & \stackrel{\pi}{0} \\ & \text { 오 } \\ & \hline \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{亏} \\ & \hline \\ & \frac{0}{O} \\ & \frac{0}{4} \\ & \hline \end{aligned}$	Degree Forward	$\begin{aligned} & \# \\ & \stackrel{\#}{\otimes} \\ & \stackrel{W}{\infty} \end{aligned}$	
14-Jan-11	9:13	9	34.038861	-76.308109	SE	10	3	60°	2	Recreational fishing vessel
14-Jan-11	9:34	13	33.943363	-76.318944	NW	9	3	60°	1	Recreational fishing vessel
14-Jan-11	10:28	25	33.951370	-76.584254	NW	7	3	60°	1	Recreational fishing vessel
14-Jan-11	10:30	23	33.998320	-76.646747	NW	7	2	90°	1	Recreational fishing vessel
14-Jan-11	11:27	46	33.770648	-76.614015	NW	5	2	45°	1	Recreational fishing vessel
14-Jan-11	14:05	56	33.751468	-76.712889	SE	4	3	60°	2	Recreational fishing vessel
14-Jan-11	14:34	63	33.662519	-76.739156	NW	3	4	60°	4	Recreational fishing vessel
14-Jan-11	14:54	74	33.749286	-76.975855	SE	2	2	60°	1	Recreational fishing vessel
24-Feb-11	9:06	4	33.785393	-77.156925	SE	1	3	45°	1	Recreational fishing vessel
24-Feb-11	15:00	89	34.010434	-76.657268	SE	7	3	90°	1	Sailboat
17-Mar-11	13:34	27	33.945641	-76.836151	NW	5	3	60°	2	Recreational fishing vessel
17-Mar-11	14:56	57	34.046273	-76.700968	NW	7	1	45°	1	Recreational fishing vessel
17-Mar-11	15:38	65	34.115782	-76.670124	SE	8	1	90°	1	Recreational fishing vessel
17-Mar-11	15:45	52	34.180696	-76.627788	SE	9	3	60°	3	Recreational fishing vessel
17-Mar-11	15:48	68	34.142699	-76.579510	NW	9	4	90°	2	Recreational fishing vessel
17-Mar-11	16:21	71	34.045325	-76.316186	SE	10	1	45°	1	Recreational fishing vessel
18-Mar-11	9:01	5	33.603342	-76.922115	SE	1	4	90°	1	Recreational fishing vessel
18-Mar-11	10:27	14	34.245497	-76.575076	NW	10	3	90°	1	Recreational fishing vessel
20-Apr-11	11:44	23	34.126158	-76.555367	SE	9	3	90	2	Recreational fishing vessel
20-Apr-11	12:17	27	34.069236	-76.343362	NW	10	3	90	1	Sailboat

Figure 16. Other vessel sightings.

Literature Cited

DeMaster, D. P., Lowry, L. F., Frost, K. J., and R. A. Bengtsson. 2001. The effect of sea state on estimates of abundance for beluga whales (Delphinapterus leucas) in Norton Sound, Alaska. Fisheries Bulletin 99: 197-201.

Gómez de Segura, A., Crespo, E. A., Pedraza, S. N., Hammond., P. S., and J. A. Raga. 2006. Abundance of small cetaceans in waters of the central Spanish Mediterranean. Marine Biology, 150: 149-160.

McAlarney, R. J., Nilsson, P. B., Cummings, E. W., Pabst, D. A., McLellan, W.A., Aerial Surveys of the proposed Under Sea Warfare Training Range (USWTR) in Onslow Bay, North Carolina, June 2008 to June 2009. Submitted to The Department of the Navy Norfolk, VA. November 16, 2009.

McAlarney, R. J., Cummings, E. W., Pabst, D. A., McLellan, W.A., Aerial Surveys of the proposed Under Sea Warfare Training Range (USWTR) in Onslow Bay, North Carolina, July 2009 to June 2010. Submitted to The Department of the Navy Norfolk, VA. August 27, 2010.

McLellan, W. A., Barco, S. G., Meagher, E. M., Zvalaren, S. D., and A. D. Pabst. 1999. Offshore aerial surveys of two mid-Atlantic sites: Wallops Island and Onslow Bay. University of North Carolina Wilmington technical report.

National Marine Fisheries Service and U.S. Fish and Wildlife Service. 1991. Recovery Plan for U.S. Population of Atlantic Green Turtle. National Marine Fisheries Service, Washington, D.C.

National Marine Fisheries Service and U.S. Fish and Wildlife Service. 1992a. Recovery Plan for the Kemp’s Ridley Sea Turtle (Lepidochelys kempii). National Marine Fisheries Service, St. Petersburg, Florida.

National Marine Fisheries Service and U.S. Fish and Wildlife Service. 1992b. Recovery Plan for Leatherback Turtles in the U.S. Caribbean, Atlantic, and Gulf of Mexico. National Marine Fisheries Service, St. Petersburg, Florida.

National Marine Fisheries Service and U.S. Fish and Wildlife Service. 1993. Recovery Plan for Hawksbill Turtles in the U.S. Caribbean Sea, Atlantic Ocean, and Gulf of Mexico. National Marine Fisheries Service, St. Petersburg, Florida.

National Marine Fisheries Service and U.S. Fish and Wildlife Service. 2008. Draft Recovery Plan for the Northwest Atlantic Population of the Loggerhead Sea Turtle (Caretta caretta), Second Revision. National Marine Fisheries Service, Silver Spring, MD.

NOAA 2011. Endangered and Threatened Species; Determination of Nine Distinct population Segments of Loggerhead Sea Turtles as Endangered or Threatened. Federal Register. Vol. 76 No. 184.

Pabst, D.A., Nilsson, P.B., McAlarney, R.J., McLellan, W.A., Aerial Surveys of the proposed Under Sea Warfare Training Range (USWTR) in Onslow Bay, North Carolina, June 2007 to June 2008. Submitted to The Department of the Navy Norfolk, VA. October 1, 2008.

Perrin, W F., Mitchell, E. D., Mead, J. G., Caldwell, D. K., Caldwell, M. C., van Bree, P. J. H., and W. H. Dawbin. 1987. Revision of the spotted dolphins, Stenella sp. Marine Mammal Science 3(2): 99-170.

Perrin, W. F., Caldwell, D. K., and M. C. Caldwell. 1994. Atlantic spotted dolphin. pp. 173-190. In: S. H. Ridgeway and R. Harrison (eds). Handbook of marine mammals, Volume 5: The first book of dolphins. Academic Press, San Diego, 418 pp.

Torres, L. G., Rosel, P. E., D’Agrosa, D., and A. J. Read. 2003. Improving management of overlapping bottlenose dolphin ecotypes through spatial analysis and genetics. Marine Mammal Science, 19(3): 502-514.

Waring, G. T., Josephson, E., Fairfield-Walsh, C. P., and K. Maze-Foley, editors. 2007. U.S. Atlantic and Gulf of Mexico Marine Mammal Stock Assessments -- 2007. NOAA Tech Memo NMFS NE 205; 415 p.

Waring, G. T., Josephson, E., Fairfield-Walsh, C. P., and K. Maze-Foley, editors. 2009. U.S. Atlantic and Gulf of Mexico Marine Mammal Stock Assessments -- 2008. NOAA Tech Memo NMFS NE 210; 440 p.

Waring GT, Josephson E, Maze-Foley K, Rosel, PE, editors. 2011. U.S. Atlantic and Gulf of Mexico Marine Mammal Stock Assessments -- 2010. NOAA Tech Memo NMFS NE 219; 598 p. Available from: National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 02543-1026.

Analysis of the UNCW and Duke University aerial and shipboard surveys of the

USWTR on the Atlantic Coast of the USA for the period June 2007 to April 2011 (also

including the UNCW aerial survey data 1998 -1999)

M.L. Burt and C.G.M. Paxton, CREEM, University of St Andrews

The USWTR aerial and shipboard surveys for 2007 - 2011 were carried out by the University of North Carolina at Wilmington (UNCW) and Duke University, respectively. The aim of these surveys was to establish baseline data on the density of marine mammals in the USWTR region (Fig. 1). Analysis of these data, combined with that of aerial surveys for Onslow Bay in 1998 and 1999, allowed maps of animal density to be estimated. The species of interest were bottlenose dolphins (Tursiops truncatus), spotted dolphins (Stenella frontalis), pilot and beaked whales combined and loggerhead turtles (Caretta caretta). As well as estimating abundance, the statistical models developed also provided some evidence of the environmental conditions to explain the patterns in animal distribution.

To generate an estimated density map for each species/taxa of interest the data were analysed by first estimating the probability of detection associated with each sighting and then estimating abundance per segment of realised trackline within the truncation distance. The estimated density maps were obtained from a two stage modelling process of these segments: firstly, probability of presence was modelled (as a logistic generalized additive model (GAM)) and secondly, estimated density within a segment, given that animals were present, was modelled. Predictions were obtained from these two models for the region of interest and the product of these two prediction surfaces gave an estimated relative density map of the region. Abundance was obtained by numerically integrating under this density surface. Note that the resulting abundances were relative (rather than absolute) because they do not take into account imperfect detection on the trackline and the amount of time animals are submerged (and therefore unavailable for detection). Estimates of variance for the predicted abundances were obtained from bootstrapping.

Detection functions were estimated from the multi-year USWTR survey data with additional aerial sightings data from the UNCW right whale surveys and the 1998/1999 UNCW aerial surveys of Wallop Island and additional shipboard sightings data surveys that took place off Cape Hatteras. Detection functions were fitted separately to the aerial sightings and the shipboard sightings but were not fitted to all of the detected species owing to a paucity of data. Instead detection functions were fitted to the species groups, dolphins and whales (Table 1). Due to the shape of the perpendicular distance distributions for turtles and the lack of sightings of whales from the shipboard surveys, detection was assumed to be certain and constant (ie a strip transect) in these cases.

For the two stage modelling process of segments, the variables considered for inclusion as explanatory variables in the models were longitude, latitude, depth, year, day of year and survey platform (eg. ship or plane). If survey platform was selected in the model, then predicted values were obtained for a ship as it was thought that availability of animals at the surface would be higher for ship-based surveys than aerial surveys. Estimates of species abundance were obtained for the core USWTR region and an outer region.

Depending on the spatial models chosen, estimates were obtained either as an average for the entire time period or for each month (September 1998 to July 1999 and June 2007 to April 2011). Estimated bottlenose dolphin numbers varied between 203 (95% CI: $70-500$, July 2007) and 1,384 (275-3,800, April 2011) for the core USWTR region and from 543 (160-1,170, July 2007) to 3,605 (760-9,010, April 2011) for the outer region. Spotted dolphins were not detected in 1998/1999 but from 2007 numbers varied from 15 (0 52, June 2007) to 1,229 (100-4,860, January 2011) in the core region and from $31(0-110$, June 2007) to

Draft last updated 29/02/2012
2,455 (215-8,690, January 2011) in the outer region. Estimated loggerhead turtle numbers varied from 14 (8-30 July 2007) to 895 (530-1,320; March 2011) in the core USWTR region and from 27 (15-55; July 2007) to 1,615 (980 - 2,330; March 2011) in the outside region. Figure 2 shows the time series of abundance estimates for these species. Pilot and beaked whale abundance was estimated as an average for the entire time period and was estimated to be $4(1-7)$ in the inner region and $8(3-13)$ in the outer region.

Small sample sizes result in very little power to detect trend in abundance but there was no evidence of a decline in any species and may provide evidence for an increase in dolphin and turtle numbers.

Table 1 Numbers of groups for each species group detected within the truncation distance.

Species group	Aerial		Ship	
	Truncation distance (m)	No. of sightings	Truncation distance (m)	No. of sightings
Dolphins	1200	306	300	87
Whales	1500	40	200	7
Turtles	$200-400$	682	50	50

Figure 1. Realised effort segments for a) Aerial surveys, USWTR (grey) and Onslow 1998/1999 (green) and b) USWTR Shipboard surveys (grey). Individual points represent the midpoints of each segment. The boxes indicate the boundaries of the inner core USWTR region and the outer region and the blue line is the coast.

Figure 2. Estimated abundance of bottlenose dolphins, spotted dolphins and loggerhead turtles: a) inside core USWTR region (black) and immediately outside (red) (error bars are not shown for clarity); b) abundances inside core region with 95% confidence intervals (blue).

Bottlenose dolphins

b)

a)

Loggerhead turtles
a)

b)

PROTECTED SPECIES MONITORING IN THE JACKSONVILLE OPAREA OFF JACKSONVILLE, FLORIDA
 JULY 2010 THROUGH DECEMBER 2011

Andrew Read
Heather Foley
Melissa Soldevilla
Richard Holt

Lynne Williams Hodge
Zach Swaim
Peter Nilsson
Rachel Hardee

Duke University Marine Laboratory 135 Duke Marine Lab Road Beaufort, NC 28516

Department of Biology and Marine Biology
University of North Carolina Wilmington
601 South College Road, Wilmington, NC 28403
Submitted to:
The Department of the Navy
Norfolk, VA

Jacksonville Vessel Surveys

Methodology

Study Area

The study area within the Jacksonville OPAREA (JAX) consists of ten 39 nm (72.5 km) long tracklines, spaced four nm (7.4 km) apart, which cover approximately $2675 \mathrm{~nm}^{2}\left(4960 \mathrm{~km}^{2}\right)$. The survey area straddles the continental shelf and Blake Plateau and includes both neritic shelf waters and more pelagic offshore waters (Figure 1). Aerial survey tracklines in this study area were slightly longer (86 km) than those flown in Onslow Bay (74 km) to ensure contiguous coverage with the Early Warning System (EWS) aerial surveys for North Atlantic right whales (Eubalaena glacialis). Every effort was made to cover the extended 86 km tracklines during vessel-based surveys in Jacksonville.

Figure 1. Map of the Jacksonville, Florida survey area, depicting the extended tracklines (86 km) surveyed during shipboard surveys. The proposed USWTR is indicated by the shaded green box.

Vessel Survey Data Collection

Visual Surveys

Vessel-based survey platforms provide a greater probability of sighting deep-diving species than aerial surveys (Barlow and Gisiner 2006). Shipboard observers are also more likely to be able to confirm species identity, particularly for animals that are difficult to distinguish from the air. Vessel platforms also allow for the possibility of passive acoustic as well as visual monitoring. Additionally, vessel-based platforms allow for photographic identification and the use of remote biopsy sampling techniques for species and gender identification. To ensure maximum detection rates, we employed a traditional visual survey approach, supplemented by passive acoustic monitoring using a towed hydrophone array. Visual surveys for marine mammals and sea turtles were conducted at a speed of approximately 10 knots.

Line Transect Surveys

Visual line-transect surveys for cetaceans and other marine megafauna were conducted from the R/V Volute, a modified 13-m Duffy sport fishing vessel (Figure 2). Observations were made from the flying bridge (4.0 m above water line) by naked eye and 7 x 50 binoculars. Two observers (one port and one starboard) scanned constantly from straight ahead to 90° abeam either side of the trackline. A center observer monitored the trackline, coordinated with the vessel skipper and acted as data recorder. Observations were conducted following standard distance sampling methods for cetaceans, similar to those described in Barlow and Gisiner (2006). The location, species and behavior of each cetacean group were recorded. If turtles were encountered, the location and species were recorded. Each observer estimated cetacean group size independently and individual estimates were averaged at the end of the survey to generate an overall estimate of group size. Environmental conditions (weather, sea state, depth, and sea
surface temperature) were recorded every 30 minutes, at each sighting, or whenever sighting conditions changed. Sighting and environmental data were entered into an at-sea data collection system (VisSurvey, developed by Dr. Lance Garrison, NOAA/SEFSC), and linked with the onboard GPS.

In addition, we monitored use of the survey area by individual cetaceans using photoidentification techniques. This approach can identify individual sperm, beaked and humpback whales, bottlenose, spotted and Risso's dolphins, pilot whales, and other species of odontocetes. Thus, whenever possible, we obtained photographs of cetaceans for individual photoidentification; we also use these photographs to confirm species identification at each sighting and to compare identification features with those used by the aerial survey team. Photographs were taken with Canon or Nikon digital SLRs (equipped with 100-400 mm zoom lenses) in 24bit color at a resolution of 3072 X 2048 pixels and saved in .jpg format.

Figure 2. Vessel survey platform R/V Volute.

At the end of April 2011 we transitioned from conducting line-transect surveys to a focused effort on biopsy and photo-identification sampling for the remainder of the reporting period. We are focusing on residency and population structure with our shipboard surveys because we: (1) are obtaining adequate data with which to estimate density from aerial line transect sampling; (2) are interested in addressing questions of residency as photo-identification data from Onslow Bay and Jacksonville suggest some degree of residency in that area despite a low level of sampling; and (3) are not observing a large number of deep-diving marine mammal species during linetransect surveys in either Onslow Bay or Jacksonville that are likely to be missed during aerial surveys.

Vessel-based photo-ID and biopsy surveys began 01 May 2011 and extended through the reporting period. Survey methods were consistent with line-transect survey protocol, but survey effort was not confined to established tracklines. The use of the VisSurvey software program for data collection during line-transect surveys was no longer required for opportunistic visual sampling, and therefore, suspended. Instead sightings and environmental data were recorded using a combination of datasheets, an IPad tablet, and GPS unit. We made every effort to collect photo-identification images of as many individuals in a group as possible, and we used remote biopsy samples techniques to collect small skin and blubber samples using $27-68 \mathrm{~kg}$ pull crossbows equipped with specialized 2.5 cm long corer-tipped bolts.

Passive Acoustic Monitoring

Passive acoustic data were collected in the Jacksonville survey area using two methods: a towed hydrophone array and autonomous bottom-mounted recorders.

Towed Array

A four-element hydrophone array was towed behind the survey vessel whenever possible during line-transect surveys (July 2010 - April 2011) to allow acoustic detection of nearby cetaceans. The towed array (Seiche Instruments, UK) consisted of four hydrophone elements with approximate linear sensitivity to frequencies between 1 and 100 kHz (this is the same model of hydrophone array employed in Onslow Bay). The array was towed 150 m behind the vessel and acoustic signals were routed to an analog-to-digital converter/mixer (MOTU Traveler, MOTU, Cambridge, MA) sampling at 192 kHz . These signals were then passed to a personal computer outfitted with software (Ishmael 1.0) for real-time visualization/recording of cetacean sounds. Acoustic monitoring was conducted by members of the Jacksonville survey team as part of their on-board rotation. Survey team members monitored the array over half-hour periods and made recordings of all potential cetacean sounds detected, as well as other novel sounds.

Bottom-mounted Recorders

To collect time-series of acoustic data in the Jacksonville survey area, autonomous High Frequency Acoustic Recording Packages (HARPs; Wiggins and Hildebrand 2007) were utilized. The HARP moored data-logging system includes a 16-bit A/D converter, up to 1.9 TB of storage capacity, a hydrophone suspended 10 m above the seafloor, an acoustic release system, ballast weights and flotation. The data-loggers are capable of sampling up to 200 kHz and can be set to
record continuously or on a duty cycle to accommodate variable deployment durations. A combination of high and low frequency hydrophone elements allow detection of both odontocete and mysticete whale vocalizations and sample rates are high enough to capture the echolocation clicks of most odontocete species.

During this reporting period, HARPs were retrieved and deployed at two sites between lines 5 and 6 in the Jacksonville survey area (Table 1). The first Site (B) is located at 80.427 W and $30.258^{\prime} \mathrm{N}$ and 40 m depth and the second Site (A) is at $80.216^{\prime} \mathrm{W}$ and $30.280^{\prime} \mathrm{N}$ and 85 m depth (Figure 3). In all deployments, the instruments were programmed to record at a sample rate of 200 kHz for five-minute periods separated by an inactive interval of ten minutes, resulting in data with a $0.01-100 \mathrm{kHz}$ bandwidth and a $1 / 3$ duty cycle.

Table 1. HARP deployments in the Jacksonville, Florida survey area.

Site	Deployment Date	Retrieval Date	Latitude	Longitude	Depth (m)	Sampling Rate	Duty Cycle	Amount of Data
1A	30-Mar-09	16-Sep-09	30.2771	-80.2158	80	200 kHz	5 min on/10 min off	0.8 TB
1B	30-Mar-09	16-Sep-09	30.2582	-80.4282	40	200 kHz	5 min on/10 min off	2 TB
2A	16-Sep-09	21-Feb-10	30.2805	-80.2160	85	200 kHz	$5 \mathrm{~min} \mathrm{on/10} \mathrm{~min} \mathrm{off}$	1.3 TB
2B	23-Sep-09	21-Feb-10	30.2580	-80.4280	40	200 kHz	5 min on/10 min off	0 TB
3A	21-Feb-10	26-Aug-10	30.2811	-80.2153	90	200 kHz	5 min on/10 min off	2 TB
4B	9-Mar-10	26-Aug-10	30.2592	-80.4257	40	200 kHZ	5 min on/10 min off	2 TB
5A	26-Aug-10	1-Feb-11	30.2682	-80.2089	91	200 kHz	5 min on/10 min off	$\sim 2 \mathrm{~TB}$
5B	26-Aug-10	1-Feb-11	30.2571	-80.4327	37	200 kHz	5 min on/10 min off	$\sim 2 \mathrm{~TB}$
6A	1-Feb-11	14-Jul-11	30.2782	-80.2209	91	200 kHz	5 min on/10 min off	$\sim 2 \mathrm{~TB}$
6B	1-Feb-11	14-Jul-11	30.2577	-80.4278	37	200 kHz	5 min on/10 min off	$\sim 2 \mathrm{~TB}$

Figure 3. Location of HARP deployment sites in the Jacksonville, Florida survey area.

Data Analysis

Vessel survey effort and sighting data were compiled and mapped using ArcGIS 10.0 to illustrate the location of effort and sightings within the study area. All sighting data (including radial distance and bearing estimates for each cue) were forwarded to Dr. Charles Paxton at CREEM at the University of St. Andrews, UK for density estimation. Vessel based survey tracks and sighting locations from July 2010 through December 2011 have also been posted on the online data repository OBIS-SEAMAP (http://seamap.env.duke.edu/).

Acoustic Analysis

Towed Array Analysis

Towed hydrophone array recordings were analyzed with custom programs written in MATLAB (Mathworks, Natick, MA). To extract whistle and click features for use in automated species classification algorithms, individual clicks and whistles must be detected. A custom MATLABbased spectral domain whistle and click detector was run on all towed array data. This detector had poor performance (high false alarm rates) due to high noise in the shallow water environment, possibly caused by snapping shrimp and proximity to the sea-surface. Instead, Raven 1.3 (Bioacoustics Research Program of the Cornell Lab of Ornithology, Ithaca, NY) is now being used to locate and save whistles from these towed array recordings. These whistles will be examined for species-specific features in work about to begin with Dr. Julie Oswald. This work will also explore species-specific patterns, such as consistent peaks and notches, in echolocation clicks using techniques, similar to those described by Soldevilla et al. (2008). The Onslow Bay and JAX towed array recordings will be combined for this analysis. Analyses of
variance (ANOVAs) will be used to determine if there are species-specific frequency differences in peaks and notches of echolocation clicks.

HARP Analysis

HARP data require processing prior to analysis, including backing up all data in original format, converting data to wav format, decimating wav data by factors of 10 and 100 to aid in baleen whale detection and creating long-term spectral averages (LTSAs) (described below). Each HARP deployment results in approximately two terabytes (TB) of data, which are impractical to analyze manually in original form. Therefore, these data are compressed for visual inspection by creating LTSAs (Wiggins and Hildebrand 2007) from the wav files. LTSAs are compressed spectrograms created using the Welch algorithm (Welch 1967) by coherently averaging 500 spectra created from 2000-point, 0\%-overlapped, Hann-windowed data and displaying these averaged spectra sequentially over time. The resulting LTSAs had resolutions of 5 s in time and $100 \mathrm{~Hz}, 10 \mathrm{~Hz}$ and 1 Hz in frequency, for the original, decimation factor (df) 10 and df 100 data, respectively. High energy acoustic events can easily be distinguished from background noise using LTSAs (Wiggins and Hildebrand 2007), allowing efficient review of large data sets.

LTSAs made using a MATLAB-based acoustic program called Triton (Hildebrand Lab at Scripps Institution of Oceanography, CA) were used to review the HARP data from JAX01A, JAX03A, and JAX04B depoloyments. LTSAs were inspected for high-energy events representing odontocete whistles and clicks, shipping noise, sonar, and weather events (rain, wind, or waves). The start and end day and time were noted for each event. Diel and longer term trends in occurrence are presented for all acoustic events, and calling bout durations and inter-bout
intervals are presented for odontocete whistles and clicks. Ambient noise profiles were made for each deployment for high frequency (1-100 kHz, including JAX05A and JAX05B), midfrequency ($0.5-10 \mathrm{kHz}$), and low frequency ($0.01-1 \mathrm{kHz}$) bandwidths.

Data Storage

All acoustic, visual survey, and photographic data are archived on digital media, and backed up on a Duke University network server.

Results

Line Transect Vessel Survey Effort

Between 1 July 2010 and 30 April 2011, 13 vessel surveys were performed (858 km), totaling nearly 52 hours of marine mammal and sea turtle surveys (46 hrs on effort, 6 hours off effort) (Table 2). Vessel surveys were conducted in Beaufort Sea States (BSS) 1 to 4, with most effort (82\%) performed in a BSS 2 to 3 and 14% in optimal (BSS 0-1) sighting conditions (Figure 4).

Table 2. Tracklines and kilometers surveyed during line-transect vessel surveys in the Jacksonville, Florida survey area, July 2010 - April 2011.

Date	Trackline	Total (km)	Survey Time
6-Jul-10	8	60.8	$3: 40$
8-Jul-10	6	84.9	$5: 04$
12-Jul-10	4	79.3	$4: 22$
14-Aug-10	7	37.0	$2: 39$
10-Oct-10	2	64.0	$4: 14$
12-Oct-10	9	52.6	$3: 13$
13-Oct-10	7	57.4	$4: 01$
18-Dec-10	10	68.9	$3: 37$
20-Jan-11	8	67.9	$3: 47$
30-Jan-11	5	71.5	$3: 45$
14-Mar-11	9	70.6	$3: 42$
18-Mar-11	1	72.4	$4: 53$
19-Mar-11	3	70.5	$4: 46$

Figure 4. Total distance surveyed per Beaufort Sea State during line-transect vessel surveys in the Jacksonville, Florida survey area, July 2010 - April 2011.

Photo-ID and Biopsy Survey Effort

Between 01 May 2011 and 31 December 2011, no surveys using the new methodology focusing on photo-identification and biopsy sampling were conducted due to a combination of poor weather conditions and survey vessel availability.

Marine Mammal and Sea Turtle Line Transect Sightings

Twenty-eight cetacean sightings were made during line-transect surveys (26 on effort, 2 off effort) (Table 3). Two cetacean species were encountered: bottlenose dolphins (Tursiops truncatus; $\mathrm{n}=10$; all on effort) and Atlantic spotted dolphins (Stenella frontalis; $\mathrm{n}=17$; 15 on effort). In addition, unidentified delphinids were recorded on a single occasion while on effort. No mixed species groups were observed (Table 4). Sightings per unit effort were highest in a Beaufort Sea State of 2, with no sightings observed in BSS 4 (Figure 5).

Forty sea turtles were observed in the study area (37 on effort; 3 off effort) (Tables 3 and 5). Loggerhead sea turtles (Caretta caretta, $n=25 ; 23$ on effort) were most frequently recorded, followed by leatherbacks (Dermochelys coriacea; n=7; all on effort). In addition, eight unidentified sea turtles were recorded (seven on effort).

Table 3. Cetacean and sea turtle sightings from line-transect surveys in the Jacksonville, Florida survey area.

Date	Time	Latitude	Longitude	Line	Depth (m)	Temp (C°)	Common Name	Group Size	Effort
06-Jul-10	15:06	30.459210	-80.384780	8	40	27.3	Loggerhead sea turtle	1	On
06-Jul-10	15:59	30.457817	-80.521895	8	36	28.7	Bottlenose dolphin	7	On
06-Jul-10	16:21	30.448217	-80.562863	8	35	28.7	Atlantic spotted dolphin	15	Off
08-Jul-10	15:24	30.298120	-80.374713	6	43	28.1	Atlantic spotted dolphin	10	On
08-Jul-10	16:18	30.300952	-80.464900	6	38	28.4	Atlantic spotted dolphin	8	On
08-Jul-10	17:23	30.305677	-80.656960	6	33	28.7	Unidentified delphinid	2	On
12-Jul-10	15:26	30.150446	-80.390450	4	43	29.8	Atlantic spotted dolphin	17	On
14-Aug-10	13:28	30.364245	-80.587388	7	36	30.1	Leatherback sea turtle	1	On
10-Oct-10	14:23	30.031189	-80.295710	2	No data	No data	Atlantic spotted dolphin	55	On
10-Oct-10	15:00	30.023427	-80.406493	2	43	30.4	Leatherback sea turtle	1	On
10-Oct-10	15:14	30.019744	-80.449191	2	40	30.4	Unidentified sea turtle	1	On
10-Oct-10	15:16	30.019877	-80.452515	2	40	30.4	Loggerhead sea turtle	1	On
10-Oct-10	15:26	30.017871	-80.485715	2	40	30.2	Unidentified sea turtle	1	On
10-Oct-10	15:50	30.014441	-80.556888	2	40	29.9	Unidentified sea turtle	1	Off
10-Oct-10	16:06	30.014679	-80.590578	2	38	29	Atlantic spotted dolphin	32	On
10-Oct-10	16:24	30.013397	-80.621896	2	34	29.3	Unidentified sea turtle	1	On
10-Oct-10	16:27	30.013442	-80.629620	2	35	29.3	Leatherback sea turtle	1	On
10-Oct-10	16:28	30.013187	-80.631886	2	35	29.3	Leatherback sea turtle	1	On
12-Oct-10	13:07	30.508709	-80.153555	9	100	29.7	Loggerhead sea turtle	1	On
12-Oct-10	13:56	30.507399	-80.298600	9	44	29	Loggerhead sea turtle	1	On
12-Oct-10	15:11	30.505367	-80.507790	9	35	28.5	Atlantic spotted dolphin	4	On
13-Oct-10	13:19	30.384909	-80.017695	7	350	29.5	Bottlenose dolphin	10	On
13-Oct-10	14:56	30.369397	-80.281928	7	46	27.4	Atlantic spotted dolphin	11	On
13-Oct-10	15:13	30.366515	-80.298313	7	42	28	Atlantic spotted dolphin	1	On
13-Oct-10	15:36	30.365497	-80.346340	7	42	28	Atlantic spotted dolphin	28	On
13-Oct-10	15:44	30.367700	-80.367780	7	40	27.2	Unidentified sea turtle	1	On
13-Oct-10	16:37	30.368697	-80.521731	7	36	28.4	Atlantic spotted dolphin	4	On
13-Oct-10	17:02	30.365789	-80.570281	7	35	26.6	Bottlenose dolphin	3	On
13-Oct-10	17:11	30.364094	-80.593126	7	36	28.1	Bottlenose dolphin	2	On
18-Dec-10	15:20	30.570332	-80.249725	10	45	23.1	Loggerhead sea turtle	1	On
20-Jan-11	16:17	30.434164	-80.183160	8	90	No data	Loggerhead sea turtle	1	On
20-Jan-11	16:22	30.433147	-80.200943	8	66	No data	Loggerhead sea turtle	1	On
20-Jan-11	16:24	30.433960	-80.203440	8	63	No data	Loggerhead sea turtle	1	On
20-Jan-11	16:25	30.434349	-80.201185	8	64	No data	Bottlenose dolphin	7	On
20-Jan-11	16:40	30.432354	-80.228212	8	49	No data	Loggerhead sea turtle	1	Off
20-Jan-11	16:59	30.430939	-80.293312	8	41	No data	Unidentified sea turtle	1	On
20-Jan-11	17:04	30.431515	-80.311662	8	43	No data	Unidentified sea turtle	1	On

Date	Time	Latitude	Longitude	Line	Depth (m)	Temp (C°)	Common Name	Group Size	Effort
20-Jan-11	17:05	30.431569	-80.314342	8	43	No data	Loggerhead sea turtle	1	On
20-Jan-11	17:08	30.431864	-80.324618	8	43	No data	Loggerhead sea turtle	1	On
20-Jan-11	17:10	30.431629	-80.331010	8	42	No data	Unidentified sea turtle	1	On
20-Jan-11	17:24	30.430800	-80.380847	8	39	No data	Leatherback sea turtle	1	On
20-Jan-11	17:37	30.432569	-80.425163	8	37	No data	Leatherback sea turtle	1	On
20-Jan-11	17:44	30.433707	-80.447288	8	39	No data	Leatherback sea turtle	1	On
30-Jan-11	15:13	30.237409	-80.267497	5	51	21.2	Loggerhead sea turtle	1	On
30-Jan-11	15:57	30.229119	-80.392660	5	42	17.4	Bottlenose dolphin	3	On
30-Jan-11	16:06	30.230197	-80.423403	5	40	18.7	Loggerhead sea turtle	1	On
30-Jan-11	16:35	30.231654	-80.522741	5	36	18.4	Loggerhead sea turtle	1	On
14-Mar-11	14:02	30.504240	-80.201100	9	53	27	Loggerhead sea turtle	1	On
14-Mar-11	14:21	30.498642	-80.264958	9	45	25.2	Loggerhead sea turtle	1	On
14-Mar-11	14:33	30.500407	-80.307000	9	42	21.6	Loggerhead sea turtle	1	On
14-Mar-11	14:40	30.500929	-80.334462	9	41	20.8	Loggerhead sea turtle	1	On
14-Mar-11	15:19	30.497974	-80.463931	9	36	24	Loggerhead sea turtle	1	On
18-Mar-11	13:41	29.960266	-80.317640	1	49	22.9	Atlantic spotted dolphin	13	On
18-Mar-11	14:32	29.962617	-80.452758	1	40	23.3	Atlantic spotted dolphin	13	On
18-Mar-11	14:37	29.962946	-80.468815	1	40	22.9	Loggerhead sea turtle	1	On
18-Mar-11	14:47	29.959904	-80.471961	1	40	22.9	Bottlenose dolphin	2	On
18-Mar-11	15:28	29.962886	-80.569365	1	37	23.5	Loggerhead sea turtle	1	On
18-Mar-11	15:48	29.966482	-80.606741	1	37	23.1	Loggerhead sea turtle	1	Off
18-Mar-11	16:17	29.963524	-80.666746	1	36	22.1	Bottlenose dolphin	2	On
18-Mar-11	16:28	29.966926	-80.686155	1	34	21.9	Bottlenose dolphin	7	On
19-Mar-11	13:40	30.094966	-80.345900	3	40	23.5	Loggerhead sea turtle	1	On
19-Mar-11	14:12	30.094912	-80.427132	3	40	22.9	Atlantic spotted dolphin	10	On
19-Mar-11	14:36	30.091197	-80.459400	3	40	23.1	Atlantic spotted dolphin	3	On
19-Mar-11	14:55	30.090951	-80.479763	3	38	23.1	Atlantic spotted dolphin	11	Off
19-Mar-11	14:59	30.091822	-80.492740	3	40	10	Loggerhead sea turtle	1	On
19-Mar-11	15:17	30.098712	-80.522160	3	39	23.1	Bottlenose dolphin	15	On
19-Mar-11	15:48	30.098136	-80.620448	3	36	23.4	Loggerhead sea turtle	1	On
19-Mar-11	15:49	30.098734	-80.622369	3	40	23.4	Atlantic spotted dolphin	22	On

Table 4. Number of cetacean sightings and mean group size for each species observed during Year 1 (July 2009 - June 2010) and Year 2 (July 2010 - December 2011) of vessel surveys in the Jacksonville, Florida survey area.

	Sightings						
Species	Year 1	Year 2	Mean Group Size				
Stenella frontalis	24	17	9.4				
Tursiops truncatus	15	10	6.3				
Globicephala macrorhynchus	3	0	33.3				
Grampus griseus	2	0	21.5				
Unidentified delphinid	12	1	1.8				
Total:					$\mathbf{5 6}$	$\mathbf{2 8}$	

Table 5. Number of sea turtles observed by species during Year 1 (July 2009 - June 2010) and Year 2 (July 2010 - December 2011) of vessel surveys in the Jacksonville, Florida survey area.

		Sightings	
Species	Common Name	Year 1	Year 2
Caretta caretta	Loggerhead sea turtle	48	25
Dermochelys coriacea	Leatherback sea turtle	5	7
Lepidochelys kempii	Kemp's Ridley sea turtle	1	0
Unidentified sea turtle	Unidentified sea turtle	3	8
	Total:		$\mathbf{5 7}$

Figure 5. Number of cetacean sightings, corrected for hours on effort, observed in each Beaufort Sea State for line-transect vessel surveys in the Jacksonville, Florida survey area.

Descriptive statistics for bottlenose dolphins and spotted dolphins are presented in Figures 6 and 7, respectively. In general, bottlenose dolphins were found in deeper (mean water depth of 71.2 m versus 40.3 m$)$ and slightly cooler waters $\left(24.5^{\circ} \mathrm{C}\right.$ versus $\left.26.4^{\circ} \mathrm{C}\right)$ than Atlantic spotted dolphins. All spotted dolphins were encountered in 35-49 m depth. Mean group size of bottlenose dolphins was smaller than spotted dolphins (5.8 versus 15.1, respectively). Mean water depth and temperature for loggerhead sea turtles were 47.9 m and $23.3^{\circ} \mathrm{C}$, respectively (Figure 8).
Bottlenose dolphin (Tursiops truncatus)

Quantiles		
100.0%	maximum	350
99.5%	350	
97.5%		350
90.0%		321.4
75.0%	quartile	47.5
50.0%	median	37.5
25.0%	quartile	35.75
10.0%		34.1
2.5%		34
0.5%		34
0.0%	minimum	34

Moments	
Mean	71.2
Std Dev	98.35062
Std Err Mean	31.101197
Upper 95\% Mean	141.5558
Lower 95\% Mean	0.8442048

Temperature (C)

Quantiles
100.0\% maximum 29.5
99.5\% 29.5
97.5\% 29.5
$90.0 \% \quad 29.5$
75.0% quartile 28.4
50.0% median 23.1
25.0% quartile 22
10.0\% 17.4
2.5\% 17.4
$\begin{array}{lll}0.5 \% & & 17.4 \\ 0.0 \% & \text { minimum } & 17.4\end{array}$

Moments	
Mean	24.477778
Std Dev	3.991484
Std Err Mean	1.3304947
Upper 95\% Mean	27.545904
Lower 95\% Mean	21.409652
N	9

Group Size

Quantiles

100.0%	maximum	15
99.5%		15
97.5%		15
90.0%		14.5
75.0%	quartile	7.75
50.0%	median	5
25.0%	quartile	2
10.0%		2
2.5%		2
0.5%		2
0.0%	minimum	2

Moments

Mean	5.8
Std Dev	4.2895221
Std Err Mean	1.356466
Upper 95\% Mean	8.8685393
Lower 95\% Mean	2.7314607
N	10

Figure 6. Descriptive statistics for depth, sea surface temperature, and group size estimates for bottlenose dolphin sightings during vessel line-transect surveys in the Jacksonville, Florida survey area.
Atlantic spotted dolphin (Stenella frontalis)

100.0%	maximum	49
99.5%	49	
97.5%		49
90.0%		46.9
75.0%	quartile	42.75
50.0%	median	40
25.0%	quartile	38
10.0%		35
2.5%		35
0.5%		35
0.0%	minimum	35

Moments	
Mean	40.3125
Std Dev	3.8248094
Std Err Mean	0.9562023
Upper 95\% Mean	42.350597
Lower 95\% Mean	38.274403
N	16

Quantiles

Qun		
100.0\%	maximum	29.8
99.5%		29.8
97.5%		29.8
90.0%		29.24
75.0%	quartile	28.475
50.0%	median	28
25.0%	quartile	23.15
10.0%		22.9
2.5%		22.9
0.5%		22.9
0.0%	minimum	22.9

Moments	
Mean	26.4375
Std Dev	2.7067508
Std Err Mean	0.6766877
Upper 95\% Mean	27.879826
Lower 95\% Mean	24.995174
N	16

Group Size

Quantiles	
100.0% maximum	55
99.5%	55
97.5%	55
90.0%	
75.0%	quartile
50.0%	19.5
25.0%	median
10.0%	11
2.5%	6
0.5%	
0.0%	2.6
Momentile	1
mean	1
Std Dev	1
Std Err Mean	15.117647
Upper 95\% Mean	21.957718
Lower 95\% Mean	8.2775764
N	13.303582

Figure 7. Descriptive statistics for depth, sea surface temperature, and group size estimates for Atlantic spotted dolphin sightings during vessel line-transect surveys in the Jacksonville, Florida survey area.
Loggerhead sea turtle (Caretta caretta)

Quantiles		
100.0%	maximum	100
99.5%	100	
97.5%		100
90.0%		75.6
75.0%	quartile	50
50.0%	median	42
25.0%	quartile	40
10.0%		36
2.5%		36
0.5%		36
0.0%	minimum	36

Moments	
Mean	47.88
Std Dev	16.174362
Std Err Mean	3.2348725
Upper 95\% Mean	54.556449
Lower 95\% Mean	41.203551
N	25

Quantiles
100.0% maximum 30.4
99.5\% 30.4
97.5\% 30.4
90.0\% 29.7
75.0% quartile 27
50.0\% median 23.4
25.0% quartile 21.2
10.0\% 18.4
2.5\% 10
0.5\% 10
0.0% minimum 10

Moments	
Mean	23.305263
Std Dev	4.6761182
Std Err Mean	1.0727751
Upper 95\% Mean	25.55908
Lower 95\% Mean	21.051446
N	19

Group Size

Quantiles

$\mathbf{1 0 0 . 0 \%}$	maximum	1
99.5%		1
97.5%		1
90.0%		1
75.0%	quartile	1
50.0%	median	1
25.0%	quartile	1
10.0%		1
2.5%		1
0.5%		1
0.0%	minimum	1

Moments

Mean	1
Std Dev	0
Std Err Mean	0
Upper 95\% Mean	1
Lower 95\% Mean	1
N	25

Figure 8. Descriptive statistics for depth, sea surface temperature, and group size estimates for loggerhead sea turtle sightings during vessel line-transect surveys in the Jacksonville, Florida survey area.

Distributions and Habitat Associations of Cetaceans and Sea Turtles

The distribution of marine mammals and sea turtles are presented in Figures 9 through 12. Similar to previous years, Atlantic spotted dolphins were largely restricted to the relatively shallow shelf waters, whereas bottlenose dolphins were encountered throughout the survey area with some groups detected in deeper offshore waters. All sea turtles were observed in relatively shallow waters over the continental shelf.

Figure 9. Distribution of bottlenose dolphin sightings indicating group size made during linetransect vessel surveys in the Jacksonville, Florida survey area.

Figure 10. Distribution of Atlantic spotted dolphin sightings indicating group size made during line-transect vessel surveys in the Jacksonville, Florida survey area.

Figure 11. Distribution of unidentified delphinid sightings made during line-transect vessel surveys in the Jacksonville, Florida survey area.

Figure 12. Distribution of sea turtle sightings made during line-transect vessel surveys in the Jacksonville, Florida survey area.

Seasonality of Effort and Sightings

Due to unfavorable survey conditions, there was no line-transect survey effort in several months of the reporting period. It is difficult, therefore, to identify seasonal trends in cetacean or sea turtle distribution. The number of sightings is depicted below by species for both cetaceans and sea turtles during each month of line-transect surveys (Figure 13a and b).

Figure 13a. Number of cetacean sightings by month and effort (number of tracklines surveyed) for line-transect vessel surveys conducted in the Jacksonville, Florida survey area.

Figure 13b. Number of sea turtle sightings by month and effort (number of tracklines surveyed) for line-transect vessel surveys conducted in the Jacksonville, Florida survey area.

Photographic Effort

Approximately 4930 digital images were taken for species confirmation and individual identification during vessel surveys (Table 6). Photo-identification catalogues for Stenella frontalis and Tursiops truncatus currently consist of 41 and 21 individuals, respectively. Two individual spotted dolphins have been resighted within the Jacksonville survey area (Figure 14).

Sfr 3-001 was observed first on 10 October 2010 and again on 19 March 2011; Sfr 8-005 was photographed during surveys on two consecutive days: 18 March 2011 and 19 March 2011. Future efforts include developing a short-finned pilot whale (Globicephala macrorhynchus) catalogue and comparing photo-identification catalogues between survey areas in Onslow Bay, NC and Jacksonville, FL. Photo-id and biopsy sampling surveys will continue, so that we improve our understanding of the residency and movement patters of offshore delphinids in this region of the western North Atlantic.

Table 6. Number of images taken per species during vessel surveys in the Jacksonville, Florida survey area for Year 1 (July 2009 - June 2010) and Year 2 (July 2010 - December 2011).

Species	Year 1			Year 2		
	Images	Catalog Size	Matches	Images	Catalog Size	Matches
	779	0	0	332	21	0
Stenella frontalis	781	0	0	1267	41	2
Globicephala macrorhynchus	1368	0	0	0	0	0
Grampus griseus	405	0	0	0	0	0

Figure 14a. Locations of matched Stenella frontalis dolphins within the Jacksonville, Florida survey area.

Figure 14b. Dorsal fin images of re-sighted Stenella frontalis dolphins within the Jacksonville, Florida survey area.

Passive Acoustic Monitoring

Towed Array Analysis

Three line-transect surveys were conducted with the towed hydrophone array resulting in 1.52 hours of passive acoustic monitoring. During these three surveys, recordings were obtained from two groups of animals positively identified to species by visual observers. One of these groups was identified as Tursiops truncatus, and the other as Stenella frontalis (Table 7). Hardware issues with the towed array system prevented recordings being made during other surveys. Whistles and clicks obtained during these recordings will be used in future analyses of speciesspecific features, as described above.

Table 7. Number of confirmed species recordings made using the towed hydrophone array in the Jacksonville, Florida survey area, July 2010 - December 2011.

Species	Total \# of Days Detected	Total \# of Detections	Total Duration of Recordings (h:mm)
Stenella frontalis	1	1	$0: 10$
Tursiops truncatus	1	1	$0: 07$

HARP Analysis - High Frequency (1-100 kHz bandwidth) - General Occurrence Patterns

Table 8 summarizes the number of days of recordings and the proportion of time in which odontocete clicks and whistles were present. Both the total number of detections and the recording duration of whistles and clicks decreased by more than half compared to the HARP deployment one year earlier during the same seasons. The percentage of days with click bouts present did not change, but days with whistles present decreased by 15\%. This suggests that the daily occurrence of dolphins did not change from year to year, but that detectability did. The
decrease in detectability in spring-summer 2010 from spring-summer 2009 could be due to differences in the hydrophone used in the two deployments (a new hydrophone with different pre-amplifier settings was used to replace the one bitten by a shark), a decrease in the vocal behavior of animals, a slight change in spatial distribution such that animals are farther away from the HARP, or differences in acoustic propagation conditions. Concurrently, high frequency ($>2 \mathrm{kHz}$) noise from shipping decreased from 128.7 hours (3.4\%) to 91.8 hours (2.4\%) between the two deployments. This suggests that either the change in hydrophone or propagation conditions as the most parsimonious explanation for the decrease in detection of odontocete calls.

High-frequency (>2 kHz) noise from shipping was detected in 22 (2\%), 100 (5\%), and 182 (5\%) hours of recordings during JAX01A, JAX02A, and JAX03A deployments, respectively. Recording duration of shipping noise, delphinid clicks and whistles increased from JAX01A to JAX02A and JAX03A. JAX01A and JAX03A deployments were concurrent with JAX01B and JAX04B deployments and show an inverse trend which supports the prior suggestion that there may have been an offshore shift in both ship and delphinid distributions from spring-summer 2009 to spring-summer 2010 or an inverse change in propagation conditions between the two years. One important caveat is that recordings from JAX01A are assumed to have been collected on the expected schedule, but errors in header writing prevent us from knowing whether this actually occurred. It is possible that these errors could have led to a deviation from the expected schedule and differences in occurrence among the three deployments at site A are an artifact of this error. An analysis of the ambient noise variability (below) suggests that the assumption of normal data collection is reasonable.

Table 8. Number of days and hours recorded, total number of click and whistle bouts, number of days with, and number of hours with vocal events for HARPs analyzed in the Jacksonville survey area, July 2010 - December 2011.

	JAX01A	JAX02A	JAX03A	All A	JAX01B	JAX04B	All B
\# Days Recorded	54	91	159	304	161	164	325
\# Days with Click Detections	49	91	157	297	154	153	307
\# Days with Whistle Detections	31	79	139	250	146	125	271
Recording Effort (hrs)	1273	2152	3808	7233	3837	3907	7743
Click bout recordings (hrs)	250	631	1175	2056	475	203	678
Whistle bout recordings (hrs)	26	83	185	295	163	55	218
Total \# of Click Bouts	388	827	1669	2884	1401	886	2287
Total \# of Whistle Bouts	105	437	809	1351	687	397	1084

Temporal variability

The detailed timing of acoustic events, including delphinid whistles, delphinid echolocation clicks (unidentified dolphins, unidentified dolphins with 4-6 kHz peaks, unidentified dolphins with $18-20 \mathrm{kHz}$ peaks, and unidentified dolphins with low frequency ($<20 \mathrm{kHz}$) energy), shipping noise, sonar (including: mid-frequency active sonar; $12 \mathrm{kHz}, 28 \mathrm{kHz}$, and 50 kHz fishand depth-sounders; and 75 kHz ADCP sources), and weather events (rain, wind, or waves) are presented in Figures 15-19 as a function of date and time of day. The frequent occurrence of short duration whistle and echolocation click bouts is evident with overall greater acoustic
activity and longer duration click bouts evident at the offshore site. Weather activity has the potential to increase ambient noise resulting in a decrease in detectability of animal sounds and is presented for comparison in Figure 19.

A summary of diel occurrence of acoustic events suggests differences in occurrence patterns across call types and deployments (Figures 20 and 21). At the inshore site, whistles and clicks occur more frequently during the day than at night. At the offshore site whistles occur uniformly throughout the day and night with only a slight nocturnal increase, but clicks exhibit a strong nocturnal increase (Figures 20 and 21). These differences may represent differences in call usage or detectability (e.g. due to ambient noise masking) and may reflect site-specific, season-specific, or species-specific differences. Future work analyzing data from continuing deployments, species classification results and trends in ambient noise levels should provide insights into the causes of these diel differences.

Figure 15. Occurrence of unidentified delphinid whistle bouts from LTSA spectral analysis at (1) inshore Site B and (2) offshore Site A. Black lines represent timing of whistle bouts, gray shading represents night, and large periods without detections represent missing data. Whistle bouts from all HARP deployments analyzed to date are presented here.

Figure 16. Occurrence of unidentified delphinid click bouts from LTSA spectral analysis at (1) inshore Site B and (2) offshore Site A. Black lines represent timing of click bouts, gray shading represents night, and large periods without detections represent missing data. Click bouts from all HARP deployments analyzed to date are presented here.

Figure 17. Occurrence of all mid and high frequency sonar events (including mid-frequency active sonar, $12 \mathrm{kHz}, 28 \mathrm{kHz}$, and 50 kHz fish- and depth-sounders, and 75 kHz ADCP sources) from LTSA spectral analysis at (1) inshore Site B and (2) offshore Site A. Black lines represent timing of sonar events, gray shading represents night, and large periods without detections represent missing data. Analysis of mid-frequency active sonar is not complete. Sonar events from all HARP deployments analyzed to date are presented here.

Figure 18. Occurrence of vessel noise including higher frequency energy (greater than 2 kHz) from LTSA spectral analysis at (1) inshore Site B and (2) offshore Site A. Black lines represent timing of ship events, gray shading represents night, and large periods without detections represent missing data. Vessel noise from all HARP deployments analyzed to date are presented here.

Figure 19. Occurrence of weather events including higher energy caused by wind, waves, and rain from LTSA spectral analysis at (1) inshore Site B and (2) offshore Site A. Black lines represent timing of weather events, gray shading represents night, and large periods without detections represent data. Weather events from all HARP deployments analyzed to date are presented here.

Figure 20. Diel occurrence of unidentified delphinid whistles represented by percent of days with detections present per hour at (1) inshore Site B and (2) offshore Site A. Shading bar across top indicates night (black), day (white), and times that may be either day or night depending on season (gray). Whistle bouts from all HARP deployments analyzed to date are presented here.

Figure 21. Diel occurrence of unidentified delphinid clicks represented by percent of days with detections present per hour at (1) inshore Site B and (2) offshore Site A. Shading bar across top indicates night (black), day (white), and times that may be either day or night depending on season (gray). Click events from all HARP deployments analyzed to date are presented here.

Ambient Noise Analysis

To examine the ambient noise conditions and expected changes in call detectability, hourly median spectral values were calculated for the duration of each deployment. During JAX01B and JAX04B deployments, an overall increase in noise above 10 kHz is evident, with lower ambient noise during March through May and increasing noise from June through September (Figures 22 and 23). During the JAX05B deployment, noise decreases again at the end of September with lower overall ambient noise from October through January (Figure 24). This increase in noise corresponds with Florida's rainy season. Shorter duration ($\sim 1-2$ week) increases in noise are also seen which likely indicate storm events. At the lower frequency end (1-20 kHz), the ambient noise conditions generally show the opposite trend, with higher energy from October to May, though increases are also evident periodically throughout the remainder of the year. This frequency band typically corresponds to wind energy. Other features to note include a daily pattern of increased noise at night, including a strong noise band around $4-5 \mathrm{kHz}$. These daily, week-long and seasonal increases in noise will lead to decreased detectability of animal calls. One might expect: (1) fewer whistles and clicks to be detected at night, particularly whistles in the $4-5 \mathrm{kHz}$ range; (2) fewer clicks to be detected during summer/early fall; and (3) fewer whistles to be detected during fall-early spring. At the offshore site, the diel pattern of increasing noise at night is also evident, although frequently obscured by weather (Figures 25-28). The weather noise is sporadic and lower in energy as at the shallow site (Site B). No obvious seasonal trend is apparent in ambient noise at Site A. High energy at 2 kHz is apparent during the JAX01A and JAX03A deployments which indicate that the low-frequency hydrophone was probably failing at the beginning of this project.

Figure 22. Hourly median ambient noise levels throughout JAX01B (inshore) deployment from 2 April 2009-4 September 2009. Diel variability in ambient noise conditions is apparent with increased energy at night across frequencies, with a peak at approximately 5 kHz . Overall ambient noise levels increase during the summer and several louder weather events are evident.

Figure 23. Hourly median ambient noise levels throughout JAX04B (inshore) deployment from 10 March 2010-20 August 2010. Diel variability in ambient noise conditions is apparent with increased energy at night across frequencies, with a peak at approximately 5 kHz . Overall ambient noise levels increase during July and August. Note lower relative energy scale on this deployment which includes a new hydrophone with lower noise properties.

Figure 24. Hourly median ambient noise levels throughout JAX05B (inshore) deployment from 25 August 2010-30 January 30 2011. Diel variability in ambient noise conditions is apparent with increased energy at night across frequencies, with a peak at approximately 5 kHz . The 5 kHz energy is not evident after December 2010, though it may be masked by increase ambient noise from 2-20 kHz at this time. Overall ambient noise levels are highest during August and early September, and several louder weather events are evident which may represent precipitation. Energy at 2 kHz indicates failure of the low-frequency hydrophone which was discovered during recovery of this deployment.

Figure 25. Hourly median ambient noise levels throughout JAX01A (offshore) deployment from 2 April - 11 September 2009. This deployment included a defective memory chip resulting in bad timing information and eventually bad audio recordings. Timing information was manually set, assuming the set duty cycle with no errors which appears reasonable. Data appear useable up to May 25, 2009 after which the bits were completely stuck and no new data were recorded. Diel variability in ambient noise conditions is apparent with increased energy at night. Energy at 2 kHz may indicate improper working of the low-frequency hydrophone, as discovered during recovery of the JAX05B deployment.

Figure 26. Hourly median ambient noise levels throughout JAX02A (offshore) deployment from 17 September - 25 December 2009. Around 14 December 2009, a shark bit the hydrophone resulting in saltwater intrusion which eventually compromised the hydrophone. Diel variability in ambient noise conditions is apparent with increased energy at night.

Figure 27. Hourly median ambient noise levels throughout JAX03A (offshore) deployment from February 22 - July 20, 2010. Diel variability in ambient noise conditions is apparent with increased energy at night. Overall ambient noise levels are higher in the winter and spring. Energy at 2 kHz may indicate improper working of the low-frequency hydrophone, as discovered during recovery of the JAX05B deployment.

Figure 28. Hourly median ambient noise levels throughout JAX05A (offshore) deployment from Aug 25, 2010 to January 28, 2011. Diel variability in ambient noise conditions is apparent with increased energy at night though some of this variability appears masked by weather or tidal noise during some periods. Overall ambient noise levels appear consistent throughout the deployment. Note lower relative energy scale on this deployment which includes a new hydrophone with lower noise properties.

HARP Analysis - Mid and Low Frequency - Ambient Noise Analysis

To examine the ambient noise conditions and expected changes in call detectability, hourly median spectral values were calculated for decimated mid- and low frequency LTSAs for the JAX02A, JAX03A, JAX01B and JAX04B deployments. Results of the mid-frequency analysis show that a diel trend in increased energy centered at about 600 Hz is evident throughout the JAX02A deployment (Figure 29). Sporadic weather events are also evident with increasing noise from fall to winter. This noise decreases into spring and summer during the JAX03A deployment (Figure 30). The 600 Hz energy is not evident during this deployment; but the 2 kHz oscillation indicating a failing low-frequency hydrophone is present through most of the deployment. This suggests there is little, if any, quality low-frequency data available from this deployment. At Site B, the diel trend in $4-5 \mathrm{kHz}$ energy is evident as are sporadic weather events (Figures 31-32). Energy below 3 kHz is high during the JAX04B deployment and appears higher during spring than during summer (Figure 32). In the lower frequency range, a diel pattern is found at Site A for noise centering around 150 Hz which also appears to follow a monthly trend. Energy below 200 Hz is strong and a prior analysis suggested this was related to tidal flow (Figure 33). Data from JAX03A are relatively invariant, likely due to a non-functioning hydrophone (Figure 34). At Site B, diel patterns of increasing nocturnal noise continue to be seen in this frequency range with increased energy at about 200 Hz that may be related to fish calling. Noise below 100 Hz is generally high and appears stronger during spring than summer (Figures 35-36).

Figure 29. Hourly median ambient noise levels for mid-frequency data throughout JAX02A (offshore) deployment from September 17 - December 25, 2009. Around 14 December 2009, a shark bit the hydrophone resulting in saltwater intrusion which eventually compromised the hydrophone. Diel variability in ambient noise conditions is apparent with increased energy at night, with a peak at approximately 0.5 kHz . Overall energy appears to increase from fall to winter.

Figure 30. Hourly median ambient noise levels for mid-frequency data throughout JAX03A (offshore) deployment from February 22 - July 20, 2010. Diel variability in ambient noise conditions is apparent with increased energy at night. Overall ambient noise levels are higher in the winter and spring. Energy at 2 kHz may indicate improper working of the low-frequency hydrophone, as discovered during recovery of the JAX05B deployment. Red bar in early April represents missing data.

Figure 31. Hourly median ambient noise levels for mid-frequency data throughout JAX01B (inshore) deployment from April 2 - September 4, 2009. Diel variability in ambient noise conditions is apparent with increased energy at night across frequencies, with a peak at approximately $4-5 \mathrm{kHz}$. Low frequency ambient noise levels are higher during spring.

Figure 32. Hourly median ambient noise levels for mid-frequency data throughout JAX04B (inshore) deployment from March 10 - August 20, 2010. Diel variability in ambient noise conditions is apparent with increased energy at night across frequencies, with a peak at approximately $4-5 \mathrm{kHz}$. Low frequency ambient noise levels are higher during spring. Note lower relative energy scale on this deployment which includes a new hydrophone with lower noise properties.

Figure 33. Hourly median ambient noise levels for low-frequency data throughout JAX02A (offshore) deployment from September 17 - December 25, 2009. Around 14 December 2009, a shark bit the hydrophone resulting in saltwater intrusion which eventually compromised the hydrophone. Diel variability in ambient noise conditions is apparent with increased energy at night, with a peak at approximately 150 Hz (and harmonics) over some periods following a monthly cycle. Low-frequency energy appears to decrease from fall to winter.

Figure 34. Hourly median ambient noise levels for low-frequency data throughout JAX03A (offshore) deployment from February 22 - July 20, 2010. Diel variability in ambient noise conditions is apparent with increased energy at night, with a peak at approximately $150-200 \mathrm{~Hz}$ over some periods. Overall ambient noise levels exhibit low seasonal variability. Energy at 2 kHz in prior hourly LTSAs may indicate improper working of the low-frequency hydrophone, as discovered during recovery of the JAX05B deployment.

Figure 35. Hourly median ambient noise levels for low-frequency data throughout JAX01B (inshore) deployment from April 2 - September 4, 2009. Diel variability in ambient noise conditions is apparent with increased energy at night across frequencies, with a peak at approximately $150-200 \mathrm{~Hz}$. Low frequency ambient noise levels are higher during spring.

Figure 36. Hourly median ambient noise levels for low-frequency data throughout JAX04B (inshore) deployment from March 10 - August 20, 2010. Diel variability in ambient noise conditions is apparent with increased energy at night across frequencies, with a peak at approximately $150-200 \mathrm{~Hz}$. Low frequency ambient noise levels are higher during spring. Note lower relative energy scale on this deployment which includes a new hydrophone with lower noise properties.

Acknowledgements

We thank Joel Bell (Naval Facilities Engineering Command Atlantic) for support and guidance. Dr. Lance Garrison modified VisSurvey for our use. Dr. John Hildebrand and Chris Garsha were invaluable for assistance with the HARPs. Special thanks to captains Alex Loer and Matt Weingartner of Oceanworks Group, Inc. for camaraderie aboard the R/V Volute. We also thank Ryan McAlarney and Erin Cummings for their assistance with surveys. Surveys were conducted under NOAA Scientific Permit No. 948-1692-00, held by the University of North Carolina Wilmington, and a NOAA General Authorization 808-1798-01, 808-1798-02, and 16185 held by Duke University.

Literature Cited

Barlow, J. and R. Gisiner. 2006. Mitigating, monitoring and assessing the effects of anthropogenic sound on beaked whales. Journal of Cetacean Research and Management, 7: 239249.

Wiggins, S.M. and J.A. Hildebrand. 2007. High-frequency Acoustic Recording Package (HARP) for broad-band, long-term marine mammal monitoring. International Symposium on Underwater Technology 2007 and Workshop on Scientific Use of Submarine Cables and Related Technologies 2007 (Institute of Electrical and Electronics Engineers, Tokyo, Japan), pp. 551557.

Soldevilla, M. S., Henderson, E.E., Campbell, G.S., Wiggins, S.M., Hildebrand, J.A., and M.A. Roch. 2008. Classification of Risso's and Pacific white-sided dolphins using spectral properties of echolocation clicks. Journal of the Acoustical Society of America, 124: 609-24.

Welch, P.D. 1967. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms: IEEE Transactions on Audio Electroacoustics, AU-15, pp. 70-73.

Acknowledgements

For collaborative efforts we thank our colleagues at Duke University Marine Lab (Kim Urian, Andy Read, Dave Johnston, Heather Foley, Zach Swaim, Jennifer Dunn, Melissa Soldevilla) and St. Andrews University (Charles Paxton and David Borchers). We thank Ed Coffman, owner and operator of Orion Aviation, and his highly skilled pilots: Dave Huddle, Ryan Macgregor, Wayne McKendry, Collin Mendenhall, Ron Shreck and Bob Sticle, for excellent flying and a high level of professionalism. We thank Joel Bell for his support of this work. Surveys are conducted under NOAA Scientific Permit No. 948-1692-00, held by UNCW and NOAA General Authorization Letters of Confirmation No. 808-1798-01, 808-1798-02 and No. 16185 held by Duke University.

Summary of JAX Aerial Surveys

This document is an annual progress report to the U.S. Department of the Navy on aerial surveys conducted in the offshore waters of Jacksonville, Florida between July 2010 and December 2011. The goal was to survey the entire site (10 tracklines) twice per calendar month. During the months of March, November and December of 2011 no surveys were conducted due to unfavorable weather conditions. At least one complete set of tracklines were flown for the remaining nine months of the current reporting period. Thus, a total of 248 tracklines (20998 km) were surveyed during the reporting period.

A total of 241 sightings of 3198 cetaceans were recorded while on effort in the study area (Table 1, Fig. 1). Seven species of cetaceans were observed including: bottlenose dolphins (Tursiops truncatus; 111 sightings of 928 individuals), Atlantic spotted dolphins (Stenella frontalis; 88 sightings of 1671 individuals), rough-toothed dolphins (Steno bredanensis; three sightings of 114 individuals), Risso’s dolphins (Grampus griseus; 16 sightings of 282 individuals), short-finned pilot whales (Globicephala macrorhynchus; eight sightings of 173 individuals), minke whales (Balaenoptera acutorostrata; three sightings of five individuals), and humpback whales (Megaptera novaeangliae; one sighting of a single individual). There were ten sightings (23 individual dolphins) where species identity could not be established with 100 percent certainty (i.e. "unidentified delphinids"). On one occasion a single animal that was clearly not a delphinid was observed but not identified to species; this sighting is labeled here as an "unidentified cetacean". There was also an off effort sighting of a single North Atlantic right whale (Eubalaena glacialis) approximately 20 km off the coast that was made while transiting to and from the survey site. There were nine off effort cetacean sightings (Tursiops truncatus, $\mathrm{n}=6$; Grampus griseus, $\mathrm{n}=2$; and Globicephala macrorhynchus, $\mathrm{n}=1$) that were observed in or near the survey site. Off effort sighting data are not included in maps, tables or density calculations. The number of cetacean sightings varied by month; the highest number of encounters occurred in December 2010 and August 2011.

A total of 1149 sea turtles were recorded during the study period. Of these turtle sightings, 906 were identified as loggerheads (Caretta caretta), 45 as leatherbacks (Dermochelys coriacea), two as Kemp's Ridley (Lepidochelys kempii), and 196 as "unidentified sea turtles" (Tables 11-13, Fig. 13-15). Sea turtles were observed during each month surveyed, with highest abundances observed in July 2010 and February 2011 (Fig. 16a-c).

As previously demonstrated in other aerial survey studies, sightings drop off dramatically as the Beaufort Sea State increases (e.g. Gómez de Segura et al. 2006, DeMaster et al. 2001). In the present study, as BSS increased from 0 to 3, cetacean sightings decreased from 16.53 to 6.86 per 1000 km surveyed, and sea turtle sightings decreased from 113.31 to 13.57 per 1000 km surveyed (Fig. 4b \& 16b).

In addition to cetaceans and sea turtles, other pelagic marine vertebrates (e.g. multiple species of sharks, manta rays, and ocean sunfish) were observed (Tables 14-17, Fig. 17).
Commercial, Navy and recreational vessels were also encountered in the survey area (Tables 1820, Figs. 18-20).
Table 1. Total number of sightings and individuals for each species by month from July 2010 - December 2011 for the Jacksonville, Florida survey area.

Figure 1. All cetacean sightings during aerial surveys conducted in Jacksonville, Florida from July 2010 - December 2011.

Methodology

Survey design and logistics

The Jacksonville offshore survey area consists of ten 86 km long tracklines spaced 7.4 km apart covering $5727 \mathrm{~km}^{2}$. (Table 2, Fig. 2). The site is located offshore of the primary calving grounds for the highly endangered North Atlantic right whale (Eubalaena glacialis), which is located off the coast of the southeastern US (reviewed in Waring et al. 2010). Aerial Early Warning System (EWS) surveys have been conducted in northern Florida and southern Georgia for the past 15 years to warn mariners in real time about the presence of right whales in the region. These surveys are conducted on a daily basis, weather permitting, from December through March. Aerial survey effort in the Jacksonville offshore survey area provided additional coverage, both of the surrounding geographic region and during the months preceding and following the EWS surveys.

To establish safety and communication protocols for transits through EWS areas, the offshore survey team met with researchers from the Florida Wildlife Service prior to the start of EWS surveys. The protocols outlined: coordination between survey team leaders on the morning of a survey, plane to plane communication at the start of an aerial survey and the maintenance of a 1000 m altitude for the offshore survey plane while transiting through the EWS area between December and March. The protocols also established the 9.3 km "buffer zone" between the western margin of the offshore survey area and the eastern margin of the EWS surveys.

All aerial surveys were based out of the local Fixed-base Operator (FBO) in Fernandina Beach, Florida. Prior to an aerial survey, pilots with Orion aviation would contact SeaLord at FACFASJAX in Jacksonville, Florida, to get event codes for passage out of and into U.S. territorial waters.

From July 2010 - April 2011 aerial and vessel surveys were conducted by a single team based in Fernandina Beach, FL; beginning in May 2011 vessel and aerial effort were conducted by teams based in North Carolina. Except for the geographic and logistical details described above, the JAX offshore aerial surveys mirror those carried out at the Onslow Bay site. Please see the Methods section for a complete description of survey methods in the Onslow Bay, North Carolina site.

Table 2. Coordinates for trackline endpoints of the Jacksonville, Florida survey site.

	Western Way Point		Eastern Way Point	
Transect Line	Latitude	Longitude	Latitude	Longitude
1	29.9650110	-80.7000000	29.9650110	-79.8014160
2	30.0312638	-80.7000000	30.0312638	-79.8014160
3	30.0996944	-80.7000000	30.0996944	-79.8014160
4	30.1657638	-80.7000000	30.1657638	-79.8014160
5	30.2322277	-80.7000000	30.2322277	-79.8014160
6	30.2994770	-80.7000000	30.2994770	-79.8014160
7	30.3651528	-80.7000000	30.3651528	-79.8014160
8	30.4327972	-80.7000000	30.4327972	-79.8014160
9	30.4988666	-80.7000000	30.4988666	-79.8014160
10	30.5662330	-80.7000000	30.5662330	-79.8014160

Figure 2. Tracklines 1 - 10 that compose the Jacksonville, Florida survey site.

Results

A total of 248 tracklines comprising 20995 km were surveyed during the 18 month reporting period from July 2010 through December 2011. Minimum coverage of ten tracklines was achieved in 15 of 18 months; effort in the remaining three months was precluded by unfavorable survey conditions (Table 3). Twenty tracklines were flown during six of the 15 months surveyed, covering the full survey area twice.

An average Beaufort Sea State (BSS) value was calculated each survey month as a way to compare conditions across time. The average was calculated by taking the distance flown at each sea state multiplied by the BSS number (i.e. BSS 1 distances would be multiplied by 1). These values were summed and divided by the total distance flown that month. Survey effort was terminated when BSS values persisted above a 4. Survey conditions ranged from a BSS 0 to 5, with the majority of the surveys flown in a BSS 2 [BSS 0: 424 km (2\%), BSS 1: 4374 km (21\%), BSS 2: 8243 km (39\%), BSS 3: 6264 km (30\%), BSS 4: 1486 km (7\%), BSS 5: 207 km (1\%) (Fig. 3a-c)]. Cetacean sighting rates dropped off dramatically as BSS increased, with 16.53 sightings/1000 km surveyed in BSS 0, 20.81 sightings/1000 km surveyed in BB1, 12.13 sightings/1000 km surveyed in BSS 2, 6.86 sightings/1000 km surveyed in BSS 3, 1.35 sightings/1000 km surveyed in BSS 4 and no sightings being recorded in a BSS 5(Fig. 4a-c).

The mean sighting distance for all cetacean sightings was $0.68 \mathrm{~km}(\mathrm{SD}=0.36)$ and most sightings were made within 1.2 km of the plane (Fig.5a). The mean sighting distance varied less than 0.1 km across the BSS values recorded (Fig. 5b). Average sighting distances were calculated after removing outliers. An outlier was defined as a value in excess of three standard deviations from the mean. Three sighting distances were removed from these calculations as outliers (i.e. sighting distances calculated at 2.7, 2.9 and 5.6 km from the trackline).

Table 3. Tracklines and km flown during aerial surveys of the Jacksonville, Florida survey site from July 2010 to December 2011. Trackline numbers are listed in the order in which they were flown.

Date	Tracklines flown AM	Tracklines flown PM	Total km flown per day
28-Jul-2010		10 to 5	507.6
29-Jul-2010	1 to 6		513.7
3-Aug-2010		1 to 6	511.3
4-Aug-2010	10 to 5	4 to 1	849.7
5-Aug-2010	7 to 10		343.8
8-Sep-2010		1 to 4	291.7
9-Sep-2010	10 to 7	6 to 3	664.9
10-Sep-2010	10 to 5, 2,1		685.7
18-Oct-2010		1 to 4	329.9
19-Oct-2010	5 to 10	7 to 10	860.9
20-Oct-2010	10 to 7		344.4
18-Nov-10	10 to 5	4 to 1	860.1
21-Dec-10	10 to 5	4 to 3	683.1
29-Dec-10		1 to 6	513.5
30-Dec-10	10 to 7	6 to 3	675.6
15-Jan-11		10 to 5	516.2
16-Jan-11	1 to 4		344.1
31-Jan-11	10 to 5	4 to 1	836.5
22-Feb-11		1 to 4	345.5
26-Feb-11		5 to 8	337.5
27-Feb-11		1 to 4,8 to 9	500.2
8-Apr-11	1 to 4	5 to 8	685.3
9-Apr-11	10 to 5	4 to 1	855.9
19-May-11	1 to 6		513.3
20-May-11	10 to 5	4 to 1	820.4
21-Jun-11	10 to 7	1 to 2	512.4
22-Jun-11	1 to 6		517.2
20-Jul-11	10 to 5	4 to 1	860.9
21-Jul-11	1 to 6	7 to 10	853.4
17-Aug-11	10 to 5	4 to 1	856.9
18-Aug-11	1 to 6	7 to 10	794.0
29-Sep-11	1 to 6	7 to 10	853.5
30-Sep-11		10 to 5	509.5
17-Oct-11	1 to 6	7 to 10	846.7
Total 20995.0			

Figure 3a. Total distance surveyed per Beaufort Sea State during the July 2010 to December 2011 aerial surveys of the Jacksonville, Florida survey site.

Figure 3b. Effort by Beaufort Sea State for each survey day during the July 2010 to December 2011 aerial surveys of the Jacksonville, Florida survey site.

Figure 3c. Average Beaufort Sea State for each month during the July 2010 to December 2011 aerial surveys of the Jacksonville, Florida survey site. Values were calculated using the formula AvgBSS=\{(Distance @BSS1*1)+(Distance @ BSS2*2)+.../Total distance flown that day\}.

Figure 4a. Total number of cetacean sightings per Beaufort Sea State during aerial surveys conducted from July 2010 to December 2011 in the Jacksonville, Florida survey site.

Figure $4 b$. Cetacean sightings per 1000 km flown by Beaufort Sea State from July 2010 to December 2011 during aerial surveys in the Jacksonville, Florida survey site.

Figure 4c. Cetacean sightings per 1000 km surveyed and the average Beaufort Sea State per month from July 2010 to December 2011 during aerial surveys in the Jacksonville, Florida survey site.

Figure 5a. Sighting distances by Beaufort Sea State for cetacean sightings from July 2010 to December 2011 during aerial surveys in the Jacksonville, Florida survey site. Three outliers (distance > 3 standard deviations) were omitted from the calculations.

Figure 5b. Mean sighting distance by Beaufort Sea State of cetacean sightings from July 2010 to December 2011 in the Jacksonville, Florida survey site.

Marine Mammal Sightings

A total of 241 sightings of 3198 individual cetaceans, representing seven species were observed while on effort during the reporting period. The endangered humpback whale was sighted for the first time in the study area during this reporting period. All identified species sighted are listed below in order of decreasing number of sightings (i.e. most commonly sighted species first). Total number of individuals is based upon the best estimate of group size. Summaries for individual sightings are in Appendix K. Daily sightings are summarized in Appendix L.

Bottlenose dolphin (Tursiops truncatus) (Table 4, Fig. 6)

Bottlenose dolphins were the most frequently encountered cetaceans (111 sightings for a total of 928 individuals). Group size ranged from 1 to 43 (mean=8.36) and the most common group sizes encountered were three or four individuals ($\mathrm{n}=15$ sightings). Based on the distance from shore (e.g. greater than 34 km), the bottlenose dolphins observed in this study are most likely of the offshore ecotype (Torres et al. 2003). Bottlenose dolphins were encountered throughout the study area and showed no strong spatial or group size variation across the range. (Fig. 6). This species was encountered during each month surveyed except November 2010. The current best estimate of offshore bottlenose dolphins in the Western Atlantic Ocean, between central Florida and Canada, is 81588 (CV=0.17) (NOAA Stock Assessment Report; Waring et al. 2008). The status of the offshore bottlenose dolphins stock in the Northwest Atlantic is unknown (Waring et al. 2008).

Table 4. All bottlenose dolphin (Tursiops truncatus) sightings in the Jacksonville, Florida survey site for aerial surveys conducted from July 2010 to December 2011.

$\begin{gathered} \stackrel{y}{\sigma} \\ \hline \end{gathered}$	$\stackrel{\otimes}{\underline{j}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\bar{\prime}} \\ & \sum_{2}^{2} \\ & 3 \\ & 3 \end{aligned}$			$\begin{aligned} & \text { 음 } \\ & \text { 드 } \\ & \text { 오 } \end{aligned}$				
28-Jul-10	13:03	25	30.561963	-80.362140	E	10	3	120°	4
28-Jul-10	13:41	37	30.495012	-80.321756	W	9	2	90°	4
28-Jul-10	15:09	73	30.362017	-80.658427	W	7	1	90°	7
29-Jul-10	12:04	31	30.163065	-80.034489	W	4	1	90°	17
29-Jul-10	13:04	40	30.232059	-79.946156	E	5	1	90°	7
3-Aug-10	13:50	27	30.103074	-80.669104	E	3	2	90°	9
3-Aug-10	13:58	31	30.102898	-80.611146	E	3	2	110°	8
3-Aug-10	14:19	43	30.100609	-80.031909	E	3	2	100°	4
3-Aug-10	14:43	49	30.161981	-80.109361	W	4	2	140°	14
4-Aug-10	10:21	19	30.508844	-80.265349	W	9	1	90°	3
4-Aug-10	10:30	23	30.492811	-80.456700	W	9	1	100°	2
4-Aug-10	10:53	31	30.428820	-80.410074	E	8	2	120°	2
4-Aug-10	11:00	34	30.435945	-80.390245	E	8	1	90°	3
4-Aug-10	11:46	47	30.365388	-80.204530	W	7	2	90°	12
4-Aug-10	13:10	79	30.235185	-80.625116	W	5	1	110°	5
4-Aug-10	13:20	83	30.230547	-80.650354	W	5	1	95°	5
4-Aug-10	15:03	94	30.157833	-80.547499	E	4	2	90°	7
8-Sep-10	12:54	4	29.965209	-80.584939	E	1	1	110°	3
8-Sep-10	14:45	25	30.101518	-80.033725	E	3	2	75°	6
9-Sep-10	8:49	8	30.559272	-80.481691	E	10	1	110°	6
9-Sep-10	11:45	46	30.438106	-80.552150	E	8	2	85°	6
9-Sep-10	12:36	59	30.369277	-80.314187	W	7	3	90°	20
9-Sep-10	13:10	64	30.355374	-80.663553	W	7	2	120°	6
9-Sep-10	15:24	86	30.302525	-80.331754	E	6	2	45°	8
9-Sep-10	15:41	91	30.306444	-80.233738	E	,	2	120°	9
9-Sep-10	17:27	117	30.104426	-80.076755	W	3	3	90°	25
18-Oct-10	13:02	19	30.038068	-79.950917	W	2	3	90°	8
18-Oct-10	14:14	43	30.105502	-80.013435	E	-	1	90°	8
18-Oct-10	14:20	47	30.095035	-80.001863	E	3	1	110°	8
18-Oct-10	14:46	58	30.170842	-80.066972	W	4	1	90°	4
19-Oct-10	10:55	27	30.571964	-79.888432	W	10	3	20°	13
21-Dec-10	11:28	31	30.435426	-80.344608	E	8	1	90°	12
21-Dec-10	12:17	45	30.368144	-80.578741	W	7	2	120°	2
21-Dec-10	13:13	57	30.241160	-80.471661	W	5	3	90°	3
29-Dec-10	13:06	13	29.968734	-79.834176	E	1	2	100°	7
29-Dec-10	13:43	24	30.032205	-80.553900	W	2	3	90°	12
30-Dec-10	8:55	5	30.562893	-80.519634	E	10	2	120°	4
30-Dec-10	9:38	24	30.502363	-79.807404	W	9	3	90°	9
30-Dec-10	10:18	40	30.498913	-80.451449	W	9	2	90°	2
30-Dec-10	10:31	44	30.504672	-80.668439	W	9	1	100°	2
30-Dec-10	10:56	61	30.426356	-80.227854	E	8	2	130°	1
30-Dec-10	11:01	65	30.426861	-80.217773	E	8	2	120°	13
30-Dec-10	11:29	75	30.372719	-79.850767	W	7	3	90°	15
30-Dec-10	14:09	105	30.310022	-80.479380	E	6	3	110°	43
16-Jan-11	9:20	11	29.973825	-80.340072	E	1	1	90°	20
31-Jan-11	9:57	9	30.560639	-80.351907	E	10	2	100°	2
31-Jan-11	10:44	28	30.499485	-80.305212	W	9	1	90°	1
31-Jan-11	15:06	104	30.171833	-80.068726	E	4	2	90°	1
31-Jan-11	15:40	121	30.106392	-80.384853	W	3	3	120°	4

Table 4 (continued). All bottlenose dolphin (Tursiops truncatus) sightings in the Jacksonville, Florida survey site for aerial surveys conducted from July 2010 to December 2011.

$\stackrel{9}{0}$	$\stackrel{0}{\underline{E}}$	등 号 3		 苞 0 0 0			$\begin{aligned} & \frac{0}{0} \\ & \frac{5}{4} \\ & \frac{1}{0} \\ & \frac{0}{7} \\ & \frac{0}{2} \end{aligned}$		Best Estimate
31-Jan-11	16:32	155	30.026680	-80.011872	E	2	2	70°	5
22-Feb-11	15:06	33	30.031494	-80.568841	W	2	2	90°	3
26-Feb-11	14:29	23	30.239116	-80.631891	W	5	2	100°	6
26-Feb-11	15:05	39	30.311289	-80.305520	E	6	2	90°	2
26-Feb-11	15:17	46	30.301623	-80.067897	E	6	1	90°	9
26-Feb-11	15:55	57	30.358155	-80.447163	W	7	2	100°	7
27-Feb-11	13:30	7	29.967210	-80.530466	E	1	1	90°	3
27-Feb-11	14:18	26	30.033213	-80.476815	W	2	2	90°	6
27-Feb-11	15:31	59	30.174200	-80.040481	W	4	3	90°	16
27-Feb-11	15:40	63	30.162715	-80.157747	W	4	3	120°	1
27-Feb-11	16:35	84	30.440695	-80.475763	E	8	2	70°	3
27-Feb-11	16:47	89	30.433840	-80.438006	E	8	3	60°	4
8-Apr-11	10:36	14	30.007336	-79.783349	W	2	2	100°	17
8-Apr-11	11:49	41	30.102726	-80.094447	E	3	1	100°	4
8-Apr-11	16:02	100	30.366095	-80.599045	E	7	1	90°	3
8-Apr-11	16:38	114	30.359322	-79.859038	E	7	2	120°	7
8-Apr-11	16:57	120	30.434931	-80.053184	W	8	2	75°	4
9-Apr-11	14:28	64	30.162229	-79.922369	E	4	1	70°	3
9-Apr-11	15:16	80	30.029456	-80.529475	E	2	3	70°	2
19-May-11	13:23	10	29.974699	-80.003449	E	1	3	90°	4
20-May-11	9:00	24	30.499995	-80.212291	W	9	2	100°	4
20-May-11	9:28	34	30.434336	-80.554982	E	8	2	100°	4
20-May-11	10:03	48	30.444134	-79.822932	E	8	2	90°	20
20-May-11	13:22	106	30.153661	-80.434027	E	4	2	90°	20
21-Jun-11	14:53	21	29.962702	-80.256426	E	1	1	90°	3
20-Jul-11	9:57	24	30.366602	-80.105149	W	7	1	90°	23
20-Jul-11	13:54	62	30.100653	-79.847793	W	3	1	90°	11
20-Jul-11	14:16	67	30.092634	-80.431332	W	3	3	120°	3
20-Jul-11	15:25	83	29.954577	-80.651344	W	1	2	90°	8
21-Jul-11	10:00	15	30.160364	-80.130149	W	4	2	110°	14
21-Jul-11	10:45	21	30.229362	-79.981972	E	5	3	100°	6
21-Jul-11	13:46	43	30.438755	-80.505104	W	8	2	90°	3
17-Aug-11	8:54	4	30.567801	-80.653477	E	10	1	90°	15
17-Aug-11	9:11	13	30.574196	-80.472735	E	10	1	90°	15
17-Aug-11	10:01	28	30.491920	-80.271451	W	9	2	90°	2
17-Aug-11	10:21	36	30.499007	-80.685826	W	9	2	45°	1
17-Aug-11	13:59	70	30.171744	-80.678577	E	4	2	90°	4
17-Aug-11	14:07	74	30.168431	-80.535960	E	4	2	90°	9
17-Aug-11	14:32	78	30.161176	-80.024868	E	4	2	60°	6
17-Aug-11	15:34	92	30.025702	-80.486462	E	2	2	60°	3
17-Aug-11	15:58	100	30.029594	-80.027030	E	2	1	45°	4
17-Aug-11	16:19	106	29.967220	-80.009970	W	1	1	90°	10
18-Aug-11	9:44	17	30.029663	-80.070879	W	2	1	90°	24
18-Aug-11	10:42	38	30.110885	-80.022385	E	3	2	100°	10
18-Aug-11	15:08	89	30.500294	-80.498198	E	9	1	90°	3
18-Aug-11	15:16	94	30.497217	-80.309981	E	9	1	90°	16
18-Aug-11	15:54	106	30.562645	-80.494513	W	10	1	100°	8
18-Aug-11	16:02	110	30.557425	-80.547583	W	10	3	100°	18
29-Sep-11	13:38	44	30.366795	-79.972312	E	7	1	90°	1

Table 4 (continued). All bottlenose dolphin (Tursiops truncatus) sightings in the Jacksonville, Florida survey site for aerial surveys conducted from July 2010 to December 2011.

$\begin{aligned} & \text { 巳 } \\ & 0 \\ & \hline \end{aligned}$	$\stackrel{\oplus}{\underline{i}}$		$$	 0 0 0 0 0					
29-Sep-11	15:04	74	30.572807	-80.038414	W	10	3	90°	15
30-Sep-11	12:40	6	30.572877	-79.915296	W	10	3	90°	16
30-Sep-11	13:20	17	30.499540	-80.523346	E	9	1	90°	10
30-Sep-11	13:30	21	30.506798	-80.562044	E	9	2	45°	8
30-Sep-11	14:51	46	30.291755	-80.503113	E	6	2	45°	1
17-Oct-11	9:48	6	29.958840	-80.143059	E	1	2	90°	15
17-Oct-11	11:43	34	30.160961	-80.504487	W	4	3	90°	4
17-Oct-11	15:11	68	30.434682	-80.024715	W	8	1	90°	3
17-Oct-11	16:09	84	30.579420	-79.850618	W	10	3	100°	40

Figure 6. Bottlenose dolphin (Tursiops truncatus) sightings indicating group size.

Atlantic Spotted Dolphin (Stenella frontalis) (Table 5, Fig. 7)

The Atlantic spotted dolphin was the second most frequently sighted, and numerically most abundant, species encountered in the survey area (88 sightings for a total of 1671 individuals). Group size ranged from 1 to 75 (mean=18.98). Spotted dolphins were seen in every month surveyed except June 2011. This species was encountered exclusively in shallow water over the continental shelf (Fig. 7). There are two distinct forms, or ecotypes, of the Atlantic spotted dolphin in the western North Atlantic: a heavily spotted form that typically occurs on the continental shelf and is most often encountered around the 200 m isobath or in shallower water, and a less spotted, smaller form which occurs further offshore and around islands (Perrin et al. 1987, 1994). It is likely, based upon the features observed, that the spotted dolphins seen during the present study belong to the continental shelf variety. The abundance estimate for S. frontalis (both the inshore and the offshore forms) in the western North Atlantic is 50978 (CV=0.42); the status of the stock(s) is/are unknown (Waring et al. 2007).

Table 5. All Atlantic spotted dolphin (Stenella frontalis) sightings in the Jacksonville, Florida survey site for aerial surveys conducted from July 2010 to December 2011.

$\stackrel{y}{0}$	$\stackrel{\otimes}{\underline{E}}$	픙 ${ }_{3}^{\circ}$ 3					$\begin{aligned} & \frac{0}{0} \\ & \frac{5}{4} \\ & \overline{0} \\ & 0 \\ & \vdots \\ & \hline 1 \\ & \hline \end{aligned}$		
28-Jul-10	12:52	13	30.576911	-80.551686	E	10	3	90°	31
28-Jul-10	12:58	21	30.559232	-80.409551	E	10	2	90°	9
3-Aug-10	14:57	56	30.174048	-80.522888	W	4	3	45°	6
3-Aug-10	15:15	69	30.227607	-80.443721	E	5	3	90°	5
4-Aug-10	9:31	5	30.569290	-80.443675	E	10	1	90°	10
4-Aug-10	12:16	60	30.302515	-80.573540	E	6	1	90°	3
9-Sep-10	9:02	13	30.561181	-80.384668	E	10	2	75°	11
9-Sep-10	9:12	18	30.570181	-80.307318	E	10	1	90°	20
9-Sep-10	11:17	35	30.502875	-80.628567	W	9	3	90°	5
9-Sep-10	11:28	39	30.500845	-80.681718	W	9	2	60°	19
9-Sep-10	15:01	75	30.307905	-80.637999	E	6	3	110°	27
9-Sep-10	15:1	80	30	-80	E	6	2	130°	22
18-Oct-10	12:32	6	29.955300	-80.533353	E	1	3	100°	14
18-Oct-10	15:03	65	30.161994	-80.466740	W	4	2	120°	35
19-Oct-10	15:2	53	30.5695	-80.516943	W	10	1	30°	18
19-Oct-10	15:26	57	30.568212	-80.571374	W	10	2	90°	27
18-Nov-10	11:2	27	30.2347	-80.380993	W	5	2	75°	58
21-Dec-10	10:48	15	30.508612	-80.348717	W	9	2	120°	8
21-Dec-10	11:05	23	30.51051	-80.597130	W	9	2	90°	3
21-Dec-10	11:33	36	30.43643	-80.276994	E	8	2	110°	7
30-Dec-10	9:09	13	30.562619	-80.291194	E	10	2	130°	5
30-Dec-10	10:04	32	30.4987	-80.321313	W	9	1	90°	40
30-Dec-10	10:11	36	30.494795	-80.369824	W	9	3	90°	25
30-Dec-10	11:46	82	30.37246	-80.280112	W	7	2	90°	6
30-Dec-10	11:50	86	30.36503	-80.310898	W	7	2	90°	3
30-Dec-10	14:16	109	30.304107	-80.425841	E	6	3	90°	10
30-Dec-10	14:19	113	30.29797	-80.353320	E	6	1	90°	21
16-Jan-11	10:02	22	30.030912	-80.433461	W	2	2	120°	10
31-Jan-11	10:38	24	30.498119	-80.251884	W	9	1	90°	50
31-Jan-11	11:12	39	30.43197	-80.248953	E	8	2	90°	40
31-Jan-11	12:00	58	30.361811	-80.661452	W	7	1	90°	6
31-Jan-11	13:00	82	30.234102	-80.573657	W	5	3	90°	25
31-Jan-11	15:47	125	30.094753	-80.489454	W	3	1	110°	18
31-Jan-11	15:56	129	30.105711	-80.638341	W	3	2	90°	26
31-Jan-11	16:04	135	30.030698	-80.643081	E	2	1	90°	3
31-Jan-11	16:11	139	30.027308	-80.600764	E	2	1	90°	35
22-Feb-11	14:40	24	30.021563	-80.461713	W	2	2	90°	25
22-Feb-11	14:51	28	30.025984	-80.499021	W	2	2	140°	6
26-Feb-11	14:21	17	30.235706	-80.573331	W	5	1	95°	4
26-Feb-11	14:41	30	30.304738	-80.648357	E	6	2	100°	5
26-Feb-11	16:16	67	30.430237	-80.458247	E	8	2	90°	35
27-Feb-11	14:27	30	30.037012	-80.525749	W	2	1	110°	7
27-Feb-11	14:47	44	30.096030	-80.497417	E	3	1	45°	16
27-Feb-11	15:49	68	30.177897	-80.287122	W	4	3	140°	25
27-Feb-11	15:52	71	30.172691	-80.299677	W	4	2	90°	17
27-Feb-11	16:02	75	30.171754	-80.541038	W	4	2	90°	22
8-Apr-11	10:01	6	29.958717	-80.588615	E	1	2	110°	26
8-Apr-11	11:15	24	30.021469	-80.618234	W	2	2	100°	30
8-Apr-11	12:34	53	30.167375	-80.470162	W	4	2	60°	2

Table 5 (Continued). All Atlantic spotted dolphin (Stenella frontalis) sightings in the Jacksonville, Florida survey site for aerial surveys conducted from July 2010 to December 2011.

$\begin{gathered} \pm \\ \stackrel{y}{0} \\ \hline \end{gathered}$	$\stackrel{\otimes}{\underline{E}}$	$\begin{aligned} & \text { 등 } \\ & \text { 리 } \\ & 3 \\ & 3 \end{aligned}$							
8-Apr-11	14:43	71	30.236528	-80.682972	E	5	3	110°	8
8-Apr-11	15:45	91	30.311985	-80.528641	W	6	2	90°	4
8-Apr-11	16:21	108	30.373425	-80.289226	E	7	2	45°	75
8-Apr-11	17:12	125	30.427251	-80.267361	W	8	1	130°	40
8-Apr-11	17:28	131	30.434722	-80.684533	W	8	1	90°	25
9-Apr-11	10:03	11	30.494210	-80.415287	W	9	2	90°	40
9-Apr-11	10:20	17	30.487590	-80.647595	W	9	1	70°	5
9-Apr-11	10:30	23	30.439739	-80.629138	E	8	2	80°	11
9-Apr-11	12:22	49	30.226524	-80.578210	W	5	1	90°	9
9-Apr-11	14:58	71	30.102658	-80.502276	W	3	2	120°	27
19-May-11	12:49	4	29.964261	-80.666475	E	1	1	110°	50
20-May-11	8:09	5	30.569307	-80.694923	E	10	2	120°	7
20-May-11	8:17	9	30.564627	-80.653456	E	10	1	90°	21
20-May-11	10:34	63	30.364594	-80.446151	W	7	2	90°	30
20-May-11	10:49	72	30.309490	-80.560544	E	6	3	90°	7
20-May-11	10:56	78	30.302858	-80.429018	E	6	1	90°	30
20-May-11	11:36	89	30.224460	-80.424656	W	5	4	110°	32
20-Jul-11	9:02	11	30.505652	-80.426843	W	9	2	90°	13
20-Jul-11	10:27	33	30.367646	-80.322849	W	7	1	90°	13
21-Jul-11	13:03	32	30.350203	-80.247303	E	7	3	90°	35
21-Jul-11	14:51	54	30.571109	-80.463937	W	10	2	90°	35
17-Aug-11	9:04	9	30.566900	-80.599104	E	10	1	90°	17
17-Aug-11	11:23	51	30.357457	-80.446147	W	7	2	90°	16
18-Aug-11	10:01	24	30.033624	-80.477832	W	2	2	90°	17
18-Aug-11	12:18	60	30.302488	-80.525608	W	6	2	90°	12
18-Aug-11	14:12	70	30.391684	-80.202370	E	7	3	100°	28
18-Aug-11	14:40	79	30.436006	-80.331779	W	8	1	100°	10
18-Aug-11	16:09	115	30.567225	-80.592630	W	10	2	45°	8
29-Sep-11	11:29	31	30.303628	-80.631996	W	6	1	100°	16
29-Sep-11	14:08	52	30.433527	-80.356491	W	8	1	90°	1
29-Sep-11	14:20	56	30.433188	-80.549888	W	8	2	90°	7
29-Sep-11	15:20	83	30.563689	-80.303858	W	10	2	100°	1
29-Sep-11	15:25	87	30.569054	-80.391592	W	10	2	100°	35
29-Sep-11	15:34	91	30.566402	-80.602615	W	10	2	60°	15
30-Sep-11	13:10	13	30.497738	-80.463178	E	9	1	100°	4
30-Sep-11	13:46	30	30.434095	-80.526551	E	8	1	45°	18
30-Sep-11	13:51	36	30.443182	-80.393243	E	8	3	90°	10
17-Oct-11	10:45	21	30.097670	-80.452633	E	3	2	90°	50

Figure 7. Atlantic spotted dolphin (Stenella frontalis) sightings indicating group size.

Risso’s Dolphin (Grampus griseus) (Table 6, Fig. 8)

This species was encountered 16 times for a total of 282 individuals (Table 8). Group size in this species ranged from four to 45 individuals (mean=17.6). Risso's dolphins were recorded in eight of the 15 months surveyed, and have only been recorded in deeper, offshore waters. Risso's dolphin have been found to reside along the mid-Atlantic continental shelf edge year round, with some movement north during spring, summer and fall, and into the mid-Atlantic bight during winter (Waring et al. 2010). The best available estimate for Risso’s dolphins, based on results from two US Atlantic surveys conducted in 2004, is 20479 (CV=0.59) (Waring et al. 2010). The status of this species in the western Atlantic is unknown (Waring et al. 2010).

Table 6. All Risso's dolphin (Grampus griseus) sightings in the Jacksonville, Florida survey site for aerial surveys conducted from July 2010 to December 2011.

$\stackrel{y}{0}$	$\stackrel{0}{\underline{E}}$	$\begin{aligned} & \text { I드 } \\ & \frac{2}{2} \\ & \frac{\pi}{3} \end{aligned}$					$\frac{0}{0}$ $\frac{\square}{4}$ $\frac{\overline{1}}{0}$ $\frac{0}{4}$ $\frac{1}{0}$		
4-Aug-10	10:07	14	30.503344	-80.022060	W	9	2	75°	14
4-Aug-10	16:24	112	30.029908	-79.927285	E	2	3	100°	14
5-Aug-10	10:03	9	30.438946	-80.008208	W	8	2	90°	41
8-Sep-10	15:53	35	30.166545	-80.104081	W	4	1	75°	37
31-Jan-11	10:16	18	30.568143	-79.910576	E	10	1	100°	8
8-Apr-11	12:18	49	30.167368	-80.130928	W	4	2	75°	8
20-May-11	9:49	41	30.439923	-80.099134	E	8	2	100°	5
20-May-11	14:43	124	29.973099	-80.091205	W	1	2	110°	4
20-Jul-11	9:57	24	30.366602	-80.105149	W	7	1	90°	23
20-Jul-11	10:10	28	30.371936	-80.164104	W	7	1	90°	28
21-Jul-11	13:13	36	30.361196	-80.134629	E	7	3	90°	20
17-Aug-11	9:44	22	30.503179	-79.850363	W	9	1	90°	4
29-Sep-11	15:08	78	30.560653	-80.093260	W	10	2	100°	45
17-Oct-11	14:35	58	30.365875	-80.164744	E	7	3	90°	11
17-Oct-11	14:41	62	30.362687	-80.118399	E	7	1	60°	10
17-Oct-11	15:52	79	30.497693	-80.014938	E	9	3	90°	10

Figure 8. Risso's dolphin (Grampus griseus) sightings.

Short-finned Pilot Whale (Globicephala macrorhynchus) (Table 7, Fig. 9)

Short-finned pilot whales were encountered eight times for a total of 173 individuals. Group sizes ranged from five to 50 individuals with a mean group size of 21.6. Sightings of pilot whales in the western North Atlantic occur primarily near the continental shelf break (Waring et al. 2010) as is the case with our sightings (Fig. 9). Due to the difficulty of differentiating shortfinned and long-finned pilot whales (Globicephala melas) at sea, NMFS reports stock numbers and status as Globicephala spp. (Waring et al. 2010). The abundance estimate of Globicephala spp. $(24,674, \mathrm{CV}=0.45)$ is based upon shipboard surveys along the outer continental shelf of the U.S. Atlantic between Florida and Maryland in 2004 (Waring et al. 2010). These estimates were combined with spatial distribution analysis as well as genetic analyses to generate the current value of 24,674 . The status of short-finned pilot whales in the U.S. Atlantic is currently unknown (Waring et al. 2010).

Table 7. All short-finned pilot whale (Globicephala macrorhynchus) sightings in the Jacksonville, Florida survey site for aerial surveys conducted from July 2010 to December 2011.

$\begin{array}{\|c} \pm \\ 0 \end{array}$	$\stackrel{\otimes}{\underline{i}}$								
28-Jul-10	14:30	62	30.428555	-79.904506	E	8	2	90°	50
3-Aug-10	15:46	80	30.293612	-80.058466	W	6	3	135°	23
8-Sep-10	13:21	10	29.958024	-80.078054	E	1	3	100°	20
8-Sep-10	14:45	25	30.101518	-80.033725	E	3	2	75°	30
9-Sep-10	15:55	96	30.306173	-80.002039	E	6	1	100°	21
18-Oct-10	14:36	54	30.173050	-79.894166	W	4	2	70°	11
20-May-11	10:16	54	30.365678	-79.997541	W	7	2	45°	5
18-Aug-11	9:33	12	30.028955	-79.930610	W	2	1	90°	13

Figure 9. Short-finned pilot whale (Globicephala macrorhynchus) sightings.

Rough-toothed Dolphin (Steno bredanensis) (Table 8, Fig. 10)

A single sighting of this species occurred in three separate months (July 2010, October 2010 and October 2011) for a total of 114 individuals (Table 8). All three sightings occurred inside of the 100 m isobath in the continental shelf waters (Fig. 10). This species is rarely observed off the U.S. east coast and the current best abundance estimate ($\mathrm{n}=274, \mathrm{CV}=1.03$) is based on a ship board survey conducted in waters south of Maryland in 1998. The status of rough-toothed dolphins in the western North Atlantic is currently unknown (Waring et al. 2008).

Table 8. All rough-toothed dolphin (Steno bredanensis) sightings in the Jacksonville, Florida survey site for aerial surveys conducted from July 2010 to December 2011.

$\begin{aligned} & \text { Q } \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{0}{\underline{E}}$			 0 0 0 0 0 0					Best Estimate
28-Jul-10	13:41	37	30.495012	-80.321756	W	9	2	90°	23
18-Oct-10	13:28	25	30.025375	-80.512558	W	2	3	120°	45
17-Oct-11	16:20	87	30.566635	-80.227814	W	10	2	90°	43

Figure 10. Rough-toothed dolphin (Steno bredanensis) sightings.

Minke Whale (Balaenoptera acutorostrata) (Table 9, Fig. 11)

Minke whales were observed three times (n=five individuals) during our current reporting period. This species was observed exclusively from December to February. Minke whales inhabiting waters off the U.S. east coast are considered part of the Canadian East Coast stock, which occurs from to the western portion of the Davis Strait $\left(45^{\circ} \mathrm{W}\right)$ south to the Gulf of Mexico. The best available abundance estimate for this stock is 8987 (CV=0.32)(Waring et al. 2010).

Table 9. All minke whale (Balaenoptera acutorostrata) sightings in the Jacksonville, Florida survey site for aerial surveys conducted from July 2010 to December 2011.

$\begin{aligned} & \text { 巳 } \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$	$\stackrel{\otimes}{\underset{j}{\underline{E}}}$								
30-Dec-10	11:14	69	30.434864	-79.856500	E	8	2	120°	2
30-Dec-10	15:04	128	30.298252	-79.854173	E	6	3	90°	2
27-Feb-11	15:23	55	30.167562	-79.972130	W	4	1	90°	1

Figure 11. Minke whale (Balaenoptera acutorostrata) sightings.

A single adult humpback whale was sighted over the continental slope, and represents the first sighting of this species in the survey area. Currently, humpback whales in the western North Atlantic are treated as a single stock despite genetic evidence identifying smaller sub stocks (Waring et al. 2010). Population estimates vary depending upon methods utilized, and range between 7698 (genetic tagging methods) and 11570 (photographic mark-recapture methods) (reviewed in Waring et al. 2010). This species is listed as endangered under the Endangered Species Act.

Table 10. Humpback whale (Megaptera novaeangliae) sighting in the Jacksonville, Florida survey site for aerial surveys conducted from July 2010 to December 2011.

$\stackrel{9}{0}$	$\stackrel{0}{\underline{E}}$	$\begin{aligned} & . \stackrel{I}{0} \\ & \stackrel{n}{2} \\ & \frac{\pi}{3} \end{aligned}$		T 0 0 0 \vdots 0 0					
30-Dec-10	14:43	124	30.302666	-79.920360	E	6	1	90°	1

Figure 12. Humpback whale (Megaptera novaeangliae) sighting.

Unidentified cetacean

The category of "unidentified cetaceans" is assigned to sightings where no positive species identification could be made but where observers could say with certainty that the animals were not small delphinids. A single sighting of one animal on the inshore end of trackline two was recorded as an unidentified cetacean during this reporting period.

Unidentified delphinids

No photos were taken during sightings where dolphins could not be relocated after the initial sighting. The designation "unidentified delphinid" was used when a positive species identification could not be established from the images obtained. Ten groups for 23 individuals are classified as unidentified delphinids.

Sea Turtles (Tables 11-13, Figs. 13-16c)
A total of 1149 sea turtles were observed during the reporting period. Sighting rates were negatively correlated with Beaufort Sea State, with rates declining at higher sea states (Figs. 16ab). The low sighting rate calculated for a Beaufort Sea State 0 is due to little survey coverage in this sea state (i.e. 424 km or 2% of 20998 total km surveyed). Sea turtles were recorded in every month surveyed with the highest sighting rates occurring in July 2010 and February 2011 (Fig. 16c). Observation rates ranged from a low of 8.14 /1000 km flown in November 2010 to 119.45 /1000km in July 2010 (Fig. 16c). Loggerhead sea turtles (Caretta caretta) constituted the majority of sea turtle sightings (78.8\%), followed by unidentified sea turtles, leatherback sea turtles (Dermochelys coriacea) (3.9\%), and the Kemp’s Ridley sea turtle (Lepidochelys kempii) ($<1 \%$). Turtles labeled as unidentified were typically either of small size, submerged, or too far away for the observers to make an accurate identification to species. Sea turtle species are listed below in decreasing number of sightings.

Loggerhead Sea Turtle (Caretta caretta) (Table 11, Fig.13)

A total of 906 loggerhead sea turtles were observed. This species was observed in every month that aerial surveys were conducted. Loggerheads were predominantly recorded in the shallower waters over the continental shelf although a low number occurred beyond the shelf break (Fig. 15). For management purposes, loggerheads along the U.S. Atlantic east coast fall into the Northwest Atlantic Ocean distinct population segment (DPS), which is separated into five separate recovery units (NOAA 2011). The current best estimate for nests in the Peninsular Florida Recovery Unit (defined as loggerheads originating from nests between the Georgia/Florida border south to, but not including, the Florida keys) is 64513 annually from 1989 to 2007. Results from index nesting beach surveys show a decline in nesting (NMFS 2008). Loggerhead sea turtles are currently listed as threatened under the Endangered Species Act (NMFS 2008).

Table 11. All loggerhead sea turtle (Caretta caretta) sightings in the Jacksonville, Florida survey site for aerial surveys conducted from July 2010 to December 2011.

$\begin{aligned} & \stackrel{\otimes}{0} \\ & \hline \end{aligned}$	$\stackrel{\otimes}{\underline{j}}$	$\begin{aligned} & \text { 등 } \\ & \frac{2}{2} \\ & \frac{10}{3} \end{aligned}$					$\begin{aligned} & \frac{0}{0} \\ & \frac{5}{4} \\ & \frac{1}{0} \\ & \frac{0}{5} \\ & \hline \mathbf{y} \\ & \hline \end{aligned}$		
28-Jul-10	12:45	4	30.566060	-80.638826	E	10	1	90°	1
28-Jul-10	12:46	7	30.566030	-80.632879	E	10	1	90°	1
28-Jul-10	12:46	8	30.566038	-80.617884	E	10	1	90°	1
28-Jul-10	12:46	9	30.566109	-80.599173	E	10	1	90°	1
28-Jul-10	12:46	5	30.566154	-80.598804	E	10	2	120°	1
28-Jul-10	12:47	10	30.566138	-80.585242	E	10	1	90°	1
28-Jul-10	12:47	11	30.566165	-80.566445	E	10	1	90°	1
28-Jul-10	12:47	6	30.566166	-80.581102	E	10	1	90°	1
28-Jul-10	12:54	16	30.566518	-80.520662	E	10	2	90°	4
28-Jul-10	12:55	9	30.566413	-80.476608	E	10	2	90°	1
28-Jul-10	12:57	12	30.566522	-80.437869	E	10	1	90°	1
28-Jul-10	12:58	19	30.566619	-80.411940	E	10	2	90°	4
28-Jul-10	12:58	13	30.566616	-80.417084	E	10	2	80°	1
28-Jul-10	13:08	18	30.566752	-80.304235	E	10	2	120°	1
28-Jul-10	13:12	19	30.566582	-80.128464	E	10	1	90°	1
28-Jul-10	13:47	40	30.499901	-80.385784	W	9	1	90°	3
28-Jul-10	13:48	27	30.499807	-80.420679	W	9	1	90°	1
28-Jul-10	13:49	28	30.499783	-80.467661	W	9	2	90°	1
28-Jul-10	13:57	31	30.499397	-80.523001	W	9	2	100°	1
28-Jul-10	13:58	32	30.499575	-80.538028	W	9	1	90°	1
28-Jul-10	13:59	45	30.499567	-80.594807	W	9	1	90°	2
28-Jul-10	14:00	46	30.499509	-80.615172	W	9	2	90°	1
28-Jul-10	14:00	35	30.499369	-80.635609	W	9	1	60°	
28-Jul-10	14:01	36	30.499296	-80.655144	W	9	1	90°	1
28-Jul-10	14:05	49	30.433269	-80.678894	E	8	1	90°	1
28-Jul-10	14:06	50	30.432730	-80.653910	E	8	1	90°	1
28-Jul-10	14:06	39	30.432726	-80.651665	E	8	2	80°	1
28-Jul-10	14:08	51	30.432779	-80.590561	E	8	1	90°	1
28-Jul-10	14:08	41	30.432764	-80.587007	E	8	2	90°	1
28-Jul-10	14:08	42	30.432800	-80.572904	E	8	1	120°	1
28-Jul-10	14:09	52	30.432888	-80.553103	E	8	1	90°	2
28-Jul-10	14:09	53	30.432906	-80.537360	E	8	1	90°	3
28-Jul-10	14:14	47	30.433195	-80.447111	E	8	2	120°	1
28-Jul-10	14:19	60	30.433238	-80.284971	E	8	1	90°	1
28-Jul-10	14:59	68	30.365982	-80.445327	W	7	2	90°	2
28-Jul-10	14:59	52	30.365976	-80.427615	W	7	1	90°	1
28-Jul-10	15:00	69	30.365926	-80.496361	W	7	2	90°	2
28-Jul-10	15:00	54	30.365930	-80.466742	W	7	1	60°	1
28-Jul-10	15:01	70	30.365992	-80.519360	W	7	1	90°	1
28-Jul-10	15:03	71	30.365770	-80.582755	W	7	1	90°	2
28-Jul-10	15:05	57	30.365508	-80.652803	W	7	1	90°	1
28-Jul-10	15:17	78	30.299697	-80.664286	E	6	1	90°	1
28-Jul-10	15:17	63	30.299545	-80.660602	E	6	1	90°	1
28-Jul-10	15:19	79	30.299674	-80.593029	E	6	1	90°	1
28-Jul-10	15:19	65	30.299685	-80.601288	E	6	2	90°	2
28-Jul-10	15:19	66	30.299676	-80.579090	E	6	1	90°	2
28-Jul-10	15:21	67	30.299778	-80.510566	E	6	2	80°	1
28-Jul-10	15:22	82	30.299811	-80.496444	E	6	1	90°	1
28-Jul-10	15:46	87	30.233315	-79.825415	W	5	1	90°	1

Table 11 (Continued). All loggerhead sea turtle
(Caretta caretta) sightings in the Jacksonville, Florida survey site for aerial surveys conducted from July 2010 to December 2011.

$\begin{aligned} & \text { \#} \\ & \hline 0 \\ & \hline \end{aligned}$	$\stackrel{\otimes}{\underline{j}}$	$\begin{aligned} & \text { 듬 } \\ & \text { D } \\ & \text { In } \\ & \hline \end{aligned}$		7 0 0 0 0					
28-Jul-10	16:04	91	30.231989	-80.370299	W	5	1	110°	-
28-Jul-10	16:05	92	30.233085	-80.442417	W	5	1	90°	1
28-Jul-10	16:07	93	30.233208	-80.492184	W	5	1	90°	2
28-Jul-10	16:08	94	30.232875	-80.533015	W	5	1	110°	1
28-Jul-10	16:09	82	30.232841	-80.587354	W	5	2	100°	1
28-Jul-10	16:10	95	30.232838	-80.608761	W	5	1	110°	1
28-Jul-10	16:10	83	30.232925	-80.618039	W	5	1	90°	1
28-Jul-10	16:11	84	30.232669	-80.643901	W	5	1	70°	
29-Jul-10	10:13	4	29.965125	-80.561796	E	1	2	110°	1
29-Jul-10	10:14	3	29.965330	-80.499533	E	1	1	120°	1
29-Jul-10	10:16	4	29.965178	-80.459576	E	1	1	135°	1
29-Jul-10	10:59	10	30.038243	-80.547768	W	2	2	90°	1
29-Jul-10	11:13	16	30.031753	-80.654462	W	2	2	100°	1
29-Jul-10	11:13	17	30.031675	-80.662220	W	2	2	110°	1
29-Jul-10	11:13	13	30.031705	-80.680302	W	2	1	90°	1
29-Jul-10	11:14	18	30.031555	-80.694308	W	2	2	90°	1
29-Jul-10	11:18	21	30.099235	-80.643002	E	3	1	100°	1
29-Jul-10	11:21	23	30.099646	-80.533409	E	3	1	100°	1
29-Jul-10	11:23	24	30.099508	-80.474124	E	3	2	90°	1
29-Jul-10	12:32	25	30.166783	-80.377111	W	4	2	90°	1
29-Jul-10	12:52	37	30.232605	-80.371753	E	5	2	100°	1
29-Jul-10	13:37	35	30.300445	-80.465683	W	6	2	90°	1
29-Jul-10	13:40	36	30.300249	-80.565652	W	6	2	90°	
3-Aug-10	12:47	4	29.964928	-80.635992	E	1	2	90°	1
3-Aug-10	12:48	5	29.964911	-80.620146	E	1	2	90°	1
3-Aug-10	12:48	6	29.965025	-80.605339	E	1	2	90°	1
3-Aug-10	12:50	5	29.965154	-80.539364	E	1	2	90°	1
3-Aug-10	12:50	7	29.965132	-80.543223	E	1	2	90°	1
3-Aug-10	12:51	6	29.965153	-80.509681	E	1	1	90°	1
3-Aug-10	12:53	7	29.965348	-80.435636	E	1	1	100°	1
3-Aug-10	12:53	8	29.965396	-80.425209	E	1	2	90°	1
3-Aug-10	12:54	8	29.965366	-80.406353	E	1	2	90°	1
3-Aug-10	13:35	15	30.032136	-80.445029	W	2	2	90°	3
3-Aug-10	13:36	16	30.032014	-80.467859	W	2	1	90°	1
3-Aug-10	13:40	19	30.032011	-80.561181	W	2	1	90°	1
3-Aug-10	13:42	20	30.031853	-80.604695	W	2	1	90°	1
3-Aug-10	13:43	22	30.031676	-80.657112	W	2	1	100°	1
3-Aug-10	13:44	22	30.031574	-80.676204	W	2	3	90°	1
3-Aug-10	13:45	23	30.032331	-80.705457	W	2	1	100°	1
3-Aug-10	14:02	35	30.099892	-80.553942	E	3	1	90°	1
3-Aug-10	14:03	36	30.099873	-80.541196	E	3	1	90°	2
3-Aug-10	14:03	29	30.099983	-80.522596	E	3	1	90°	1
3-Aug-10	14:04	38	30.099895	-80.492962	E	3	1	90°	1
3-Aug-10	14:05	40	30.100081	-80.470427	E	3	2	90°	1
3-Aug-10	14:23	34	30.101502	-80.004931	E	3	2	90°	2
3-Aug-10	14:51	41	30.166749	-80.350159	W	4	2	90°	1
3-Aug-10	14:52	42	30.166698	-80.379261	W	4	2	90°	1
3-Aug-10	14:54	53	30.166779	-80.449637	W	4	1	130°	1
3-Aug-10	14:54	54	30.166651	-80.462989	W	4	1	90°	1

Table 11 (Continued). All loggerhead sea turtle (Caretta caretta) sightings in the Jacksonville, Florida survey site for aerial surveys conducted from July 2010 to December 2011.

	$\stackrel{\oplus}{\underline{E}}$	$\begin{aligned} & \text { 등 } \\ & \text { n } \\ & \frac{1 \pi}{3} \end{aligned}$		 0 0 0 0 0		ㅎ है 들 든 든			
3-Aug-10	14:54	45	30.166690	-80.462801	W	4	2	90°	1
3-Aug-10	15:01	49	30.166324	-80.616756	W	4	2	90°	2
3-Aug-10	15:02	59	30.166105	-80.646636	W	4	1	120°	1
3-Aug-10	15:02	50	30.166193	-80.638621	W	4	1	90°	1
3-Aug-10	15:03	51	30.166141	-80.672463	W	4	1	90°	1
3-Aug-10	15:07	62	30.231961	-80.666068	E	5	1	90°	1
3-Aug-10	15:09	63	30.232162	-80.612133	E	5	1	100°	1
3-Aug-10	15:09	54	30.232230	-80.601522	E	5	2	90°	1
3-Aug-10	15:11	65	30.232449	-80.539951	E	5	2	110°	1
3-Aug-10	15:11	55	30.232543	-80.515927	E	5	2	90°	1
3-Aug-10	15:12	56	30.232525	-80.481436	E	5	2	90°	1
3-Aug-10	15:13	67	30.232570	-80.446974	E	5	1	90°	1
3-Aug-10	15:19	59	30.232487	-80.420596	E	5	2	90°	2
3-Aug-10	15:20	72	30.232721	-80.383234	E	5	1	100°	1
3-Aug-10	15:20	73	30.232609	-80.364177	E	5	1	110°	1
3-Aug-10	15:56	84	30.300598	-80.368726	W	6	1	90°	1
3-Aug-10	15:56	67	30.300601	-80.364853	W	6	2	90°	1
3-Aug-10	15:57	68	30.300501	-80.399066	W	6	1	90°	1
3-Aug-10	15	85	30.30	-80.458606	W	6	1	130°	1
3-Aug-10	15:59	69	30.300320	-80.457111	W	6	1	90°	2
3-Aug-10	16:02	70	30.300255	-80.556984	W	6	1	90°	1
3-Aug-10	16:03	86	30.30000	-80.594715	W	6	1	140°	1
3-Aug-10	16:03	88	30.299926	-80.617495	W	6	1	110°	2
3-Aug-10	16:03	71	30.299982	-80.597270	W	6	2	90°	1
4-Aug-10	9:24	4	30.566293	-80.617806	E	10	1	90°	1
4-Aug-10	9:24	5	30.566341	-80.606494	E	10	1	90°	1
4-Aug-10	9:25	6	30.566346	-80.584151	E	10	1	90°	1
4-Aug-10	9:26	8	30.566439	-80.537950	E	10	2	90°	1
4-Aug-10	9:27	3	30.566533	-80.497443	E	10	2	90°	1
4-Aug-10	9:39	11	30.566751	-80.324533	E	10	2	90°	1
4-Aug-10	9:42	12	30.566728	-80.210031	E	10	2	90°	1
4-Aug-10	9:43	8	30.566756	-80.165908	E	10	1	90°	1
4-Aug-10	9:46	13	30.566604	-80.065005	E	10	1	90°	1
4-Aug-10	9:47	14	30.566599	-80.020557	E	10	1	110°	1
4-Aug-10	10:12	17	30.499861	-80.105910	W	9	2	90°	1
4-Aug-10	10:25	25	30.499991	-80.351699	W	9	2	90°	1
4-Aug-10	10:37	26	30.499429	-80.592215	W	9	1	90°	1
4-Aug-10	10:45	34	30.432746	-80.653063	E	8	1	90°	2
4-Aug-10	10:47	35	30.432918	-80.571196	E	8	1	90°	2
4-Aug-10	11:40	50	30.366024	-80.082707	W	7	2	90°	1
4-Aug-10	11:53	50	30.366033	-80.374984	W	7	1	90°	1
4-Aug-10	11:59	52	30.365725	-80.567125	W	7	1	90°	1
4-Aug-10	12:00	53	30.365645	-80.612291	W	7	1	90°	1
4-Aug-10	12:00	53	30.365650	-80.608681	W	7	2	90°	2
4-Aug-10	12:01	54	30.365575	-80.640032	W	7	1	90°	1
4-Aug-10	12:06	56	30.299084	-80.686563	E	6	1	90°	1
4-Aug-10	12:21	60	30.299743	-80.465810	E	6	2	90°	1
4-Aug-10	12:23	63	30.299945	-80.413516	E	6	1	90°	1
4-Aug-10	12:25	64	30.299915	-80.346742	E	6	1	90°	1

Table 11 (Continued). All loggerhead sea turtle (Caretta caretta) sightings in the Jacksonville, Florida survey site for aerial surveys conducted from July 2010 to December 2011.

$\begin{aligned} & \stackrel{\otimes}{0} \\ & \hline 0 \end{aligned}$	$\stackrel{\oplus}{\underline{E}}$	$$		$$					
4-Aug-10	12:32	67	30.300009	-80.136446	E	6	1	90°	1
4-Aug-10	13:00	71	30.233411	-80.319350	W	5	1	90°	1
4-Aug-10	13:01	72	30.233347	-80.345688	W	5		90°	1
4-Aug-10	13:02	73	30.233185	-80.402930	W	5	2	90°	1
4-Aug-10	13:06	75	30.232960	-80.533600	W	5	1	90°	1
4-Aug-10	13:07	76	30.232937	-80.580964	W	5	1	90°	1
4-Aug-10	13:08	77	30.232785	-80.607062	W	5	1	90°	1
4-Aug-10	13:08	74	30.232942	-80.587842	W	5	1	90°	1
4-Aug-10	14:59	92	30.165689	-80.657749	E	4	1	90°	1
4-Aug-10	15:01	85	30.165888	-80.562137	E	4	1	90°	2
4-Aug-10	15:08	97	30.166126	-80.502835	E	4	2	90°	1
4-Aug-10	15:09	88	30.166215	-80.471241	E	4	1	90°	2
4-Aug-10	15:09	89	30.166042	-80.452635	E	4	2	90°	2
4-Aug-10	15:52	94	30.100469	-80.532256	W	3	2	90°	1
4-Aug-10	15:52	95	30.100475	-80.541018	W	3	1	90°	1
4-Aug-10	15:53	96	30.100416	-80.557729	W	3	2	90°	1
4-Aug-10	15:54	97	30.100187	-80.588704	W	3	1	90°	1
4-Aug-10	15:55	98	30.099927	-80.641918	W	3	2	90°	2
4-Aug-10	16:01	107	30.031176	-80.674667	E	2	2	90°	1
4-Aug-10	16:51	107	29.965947	-80.300815	W	1	2	90°	1
4-Aug-10	17:01	108	29.965318	-80.689947	W	1	1	90°	1
5-Aug-10	10:11	12	30.433982	-80.242804	W	8	2	90°	1
8-Sep-10	12:50	4	29.966581	-80.671030	E	1	1	90°	2
8-Sep-10	12:51	5	29.966790	-80.642296	E	1	1	90°	1
8-Sep-10	12:52	6	29.967074	-80.607165	E	1	1	90°	1
8-Sep-10	14:3	21	30.102018	-80.331960	E	3	2	80°	1
8-Sep-10	16:03	40	30.164955	-80.340898	W	4	2	130°	1
8-Sep-10	16:04	33	30.164969	-80.366890	W	4	1	80°	1
8-Sep-10	16:16	42	30.165372	-80.587017	W	4	1	95°	1
9-Sep-10	8:45	4	30.567774	-80.608723	E	10	1	100°	1
9-Sep-10	8:47	6	30.567964	-80.509517	E	10	2	90°	2
9-Sep-10	9:01	11	30.568446	-80.402734	E	10	1	100°	1
9-Sep-10	9:09	16	30.566240	-80.361911	E	10	1	90°	1
9-Sep-10	9:27	10	30.568688	-80.227177	E	10	2	90°	1
9-Sep-10	11:12	23	30.498087	-80.523951	W	9	1	90°	1
9-Sep-10	11:14	33	30.498059	-80.592615	W	9	1	95°	1
9-Sep-10	11:15	25	30.498009	-80.607319	W	9	1	90°	1
9-Sep-10	11:24	29	30.497680	-80.672133	W	9	2	90°	2
9-Sep-10	11:59	38	30.434925	-80.355234	E	8	2	90°	1
9-Sep-10	12:01	52	30.434946	-80.286350	E	8	1	95°	1
9-Sep-10	12:03	53	30.434920	-80.213088	E	8	1	100°	1
9-Sep-10	14:58	73	30.300709	-80.681341	E	6	1	85°	1
9-Sep-10	15:19	83	30.301703	-80.465099	E	6	1	100°	1
9-Sep-10	15:22	84	30.301891	-80.348374	E	6	2	85°	1
9-Sep-10	15:22	60	30.301870	-80.352869	E	6	2	90°	1
9-Sep-10	15:38	89	30.301985	-80.273748	E	6	1	80°	1
9-Sep-10	16:22	70	30.231550	-80.213982	W	5	2	90°	2
9-Sep-10	16:26	71	30.231669	-80.376513	W	5	1	90°	1
9-Sep-10	16:29	10	30.231546	-80.46033	W	5	1	85°	1

Table 11 (Continued). All loggerhead sea turtle (Caretta caretta) sightings in the Jacksonville, Florida survey site for aerial surveys conducted from July 2010 to December 2011.

$\begin{gathered} \text { Q } \\ \hline 0 \\ \hline \end{gathered}$	$\stackrel{\oplus}{\underline{E}}$	$\begin{aligned} & \text { 등 } \\ & \frac{2}{2} \\ & \stackrel{\pi}{3} \end{aligned}$		下 0 0 0 0 0			$\frac{0}{0}$ $\frac{C}{4}$ $\frac{0}{\pi}$ $\frac{0}{4}$ 		Best Estimate
9-Sep-10	16:35	74	30.231050	-80.686910	W	5	2	90°	2
9-Sep-10	16:41	108	30.167460	-80.596540	E	4	1	95°	1
9-Sep-10	16:43	78	30.167565	-80.504839	E	4	2	90°	2
10-Sep-10	10:26	12	30.364501	-80.439790	W	7	1	110°	1
10-Sep-10	11:27	21	30.231314	-80.553265	W	5	2	90°	1
10-Sep-10	11:27	22	30.231104	-80.578754	W	5	1	90°	1
10-Sep-10	11:38	26	30.033054	-80.640607	E	2	2	90°	2
10-Sep-10	11:40	27	30.033152	-80.547176	E	2	2	90°	1
18-Oct-10	12:36	9	29.964705	-80.418051	E	1	3	110°	1
18-Oct-10	12:3	5	29.965844	-80.381552	E	1	2	90°	1
18-Oct-10	12:38	6	29.966641	-80.360920	E	1	2	90°	1
18-Oct-10	12:39	11	29.967298	-80.318366	E	1	1	70°	1
18-Oct-10	12:4	12	29.967562	-80.283966	E	1	1	90°	1
18-Oct-10	13:35	29	30.032742	-80.659987	W	2	1	90°	1
18-Oct-10	14:10	40	30.100878	-80.106061	E	3	1	90°	1
18-Oct-10	14:42	35	30.166818	-79.981	W	4	2	90°	1
18-Oct-10	15:11	45	30.166539	-80.587807	W	4	2	90°	1
18-Oct-10	15:13	46	30.16663	-80.652	W	4	1	90°	1
19-Oct-10	9:23	8	30.300029	-80.575962	W	6	2	120°	1
19-Oct-10	13:33	37	30.367191	-80.549040	E	7	1	90°	1
19-Oct-10	14:33	46	30.492166	-80.528082	E	9	2	90°	1
19-Oct-10	15:17	43	30.567072	-80.460372	W	10	2	45°	1
19-Oct-10	15:18	44	30.566953	-80.484509	W	10	1	90°	1
18-Nov-10	8:47	2	30.566017	-80.663696	E	10	1	90°	1
18-Nov-10	8:54	4	30.566650	-80.383205	E	10	2	90°	1
18-Nov-10	9:31	12	30.499912	-80.416049	W	9	2	90°	1
18-Nov-10	9:59	15	30.433001	-80.040357	E	8	1	90°	1
18-Nov-10	10:2	21	30.366467	-80.374825	W	7	2	90°	1
18-Nov-10	10:28	22	30.365960	-80.474296	W	7	3	90°	1
18-Nov-10	10:29	23	30.365933	-80.503937	W	7	2	90°	1
21-Dec-10	10:13	9	30.566615	-80.419618	E	10	2	90°	1
21-Dec-10	10:19	11	30.566655	-80.162673	E	10	1	90°	1
21-Dec-10	10:4	15	30.500082	-80.273992	W	9	2	100°	1
21-Dec-10	10:58	21	30.499508	-80.376568	W	9	2	90°	1
21-Dec-10	11:01	22	30.499440	-80.479355	W	9	1	90°	1
21-Dec-10	11:02	18	30.499097	-80.522188	W	9	2	90°	1
21-Dec-10	11:02	23	30.499495	-80.533364	W	9	2	100°	1
21-Dec-10	11:03	19	30.500007	-80.570782	W	9	2	90°	1
21-Dec-10	11:14	29	30.499482	-80.650043	W	9	1	90°	1
21-Dec-10	11:25	29	30.433188	-80.437960	E	8	2	90°	1
21-Dec-10	11:32	34	30.433169	-80.300485	E	8	2	90°	1
21-Dec-10	12:09	42	30.366295	-80.334287	W	7	2	80°	1
21-Dec-10	12:10	40	30.365846	-80.381900	W	7	1	90°	1
21-Dec-10	12:12	42	30.366265	-80.456993	W	7	1	90°	1
21-Dec-10	12:34	51	30.299203	-80.509580	E	6	1	90°	1
21-Dec-10	12:38	52	30.299098	-80.358631	E	6	1	90°	1
21-Dec-10	12:40	53	30.299540	-80.279930	E	6	1	90°	1
21-Dec-10	13:07	51	30.232879	-80.307462	W	5	2	110°	1
21-Dec-10	15:41	62	30.100790	-80.278333	W	3	1	90°	1

Table 11 (Continued). All loggerhead sea turtle (Caretta caretta) sightings in the Jacksonville, Florida survey site for aerial surveys conducted from July 2010 to December 2011.

$\begin{gathered} 9 \\ 0 \\ \hline 0 \end{gathered}$	$\stackrel{\otimes}{\underline{E}}$	등 을 3		$\begin{aligned} & \text { } \\ & 0 \\ & 0 \\ & 0 \\ & 0 . \overline{0} \\ & 0 \\ & \hline \end{aligned}$					Best Estimate
29-Dec-	12:36	5	29.9668	-80.407	E	1	3	90°	1
29-Dec-10	12:37	6	29.964841	-80.383397	E	1	2	90°	1
29-Dec-10	13:35	14	30.031841	-80.323731	W	2	3	90°	1
29-Dec-10	13:40	15	30.031792	-80.488313	W	2	2	90°	1
29-Dec-10	13:54	19	30.029794	-80.673515	W	2	1	90°	1
29-Dec-10	14:03	30	30.099961	-80.508531	E	3	3	120°	1
29-Dec-10	14:03	31	30.098953	-80.494248	E	3	1	130°	1
29-Dec-10	14:05	32	30.098477	-80.419212	E	3	1	90°	1
29-Dec-10	14:59	42	30.230968	-80.648902	E	5	1	130°	1
29-Dec-10	15:05	44	30.231583	-80.446258	E	5	1	90°	1
29-Dec-10	15:5	35	30.	-80.632418	W	6	1	90°	1
30-Dec-10	9:05	10	30.566504	-80.358845	E	10	1	90°	1
30-Dec-10	9:24	17	30.567033	-80.147850	E	10	1	90°	3
30-Dec-10	9:58	17	30.500009	-80.167716	W	9	2	90°	1
30-Dec-10	9:59	19	30.499799	-80.195258	W	9	1	90°	1
30-Dec-10	10:00	20	30.500455	-80.227556	W	9	1	70°	1
30-Dec-10	10:25	28	30.499953	-80.504669	W	9	1	90°	1
30-Dec-10	10:27	29	30.499651	-80.582232	W	9	2	60°	1
30-Dec-10	10:29	30	30.499455	-80.650346	W	9	1	90°	1
30-Dec-10	10:41	50	30.432833	-80.588273	E	8	1	90°	1
30-Dec-10	10:42	51	30.432938	-80.553769	E	8	1	90°	1
30-Dec-10	10:55	41	30.433294	-80.262975	E	8	2	110°	1
30-Dec-10	11:43	53	30.366392	-80.220094	W	7	1	100°	1
30-Dec-10	11:45	56	30.366477	-80.266340	W	7	2	130°	1
30-Dec-10	11:53	62	30.366179	-80.362848	W	7	2	100°	1
30-Dec-10	12:04	67	30.366342	-80.549808	W	7	1	90°	1
30-Dec-10	12:04	68	30.366108	-80.566493	W	7	2	100°	1
30-Dec-10	12:05	69	30.366054	-80.604936	W	7	1	90°	1
30-Dec-10	15:54	142	30.165966	-80.397294	E	4	1	90°	1
15-Jan-11	12:43	14	30.498677	-80.589508	W	9	1	90°	1
15-Jan-11	12:51	17	30.429464	-80.624916	E	8	2	75°	1
15-Jan-11	12:54	19	30.434580	-80.503338	E	8	1	90°	1
15-Jan-11	13:39	26	30.364705	-80.624028	W	7	3	110°	1
15-Jan-11	13:50	29	30.300718	-80.505796	E	6	1	90°	1
15-Jan-11	13:57	32	30.301304	-80.235411	E	6	1	90°	1
15-Jan-11	14:31	37	30.231968	-80.447529	W	5	1	110°	1
16-Jan-11	9:09	6	29.965874	-80.629504	E	1	1	90°	1
16-Jan-11	10:08	15	30.030654	-80.495997	W	2	2	120°	1
16-Jan-11	10:10	16	30.030465	-80.564686	W	2	1	90°	2
16-Jan-11	10:11	25	30.030581	-80.585095	W	2	1	90°	1
31-Jan-11	10:04	8	30.567617	-80.275119	E	10	2	90°	1
31-Jan-11	10:07	10	30.567475	-80.161273	E	10	2	130°	1
31-Jan-11	10:08	15	30.567605	-80.137428	E	10	1	90°	1
31-Jan-11	10:45	31	30.500076	-80.332382	W	9	2	90°	1
31-Jan-11	10:48	25	30.498798	-80.477174	W	9	1	90°	1
31-Jan-11	10:52	26	30.498452	-80.608619	W	9	1	70°	1
31-Jan-11	11:04	35	30.434179	-80.465965	E	8	2	90°	1
31-Jan-11	11:09	37	30.434416	-80.281121	E	8	2	90°	1
31-Jan-11	12:09	48	30.300565	-80.600835	E	6	2	75°	1

Table 11 (Continued). All loggerhead sea turtle (Caretta caretta) sightings in the Jacksonville, Florida survey site for aerial surveys conducted from July 2010 to December 2011.

$\begin{gathered} \text { 凹. } \\ 0 \\ \hline 0 \end{gathered}$	$\stackrel{\otimes}{\underline{E}}$	등 을 3 3		下 0 0 0 0 0		흥 E E Z 든 은			
31-Jan-11	12:18	52	30.300959	-80.279119	E	6	1	90°	1
31-Jan-11	12:19	71	30.300927	-80.230412	E	6	2	90°	1
31-Jan-11	12:52	62	30.231885	-80.375229	W	5	1	90°	1
31-Jan-11	12:55	80	30.231586	-80.489020	W	5	2	90°	1
31-Jan-11	12:56	64	30.231659	-80.517978	W	5	2	90°	1
31-Jan-11	13:03	85	30.231226	-80.657225	W	5	2	90°	3
31-Jan-11	13:03	68	30.231268	-80.660506	W	5	2	90°	1
31-Jan-11	14:48	90	30.166430	-80.675526	E	4	1	90°	1
31-Jan-11	14:48	91	30.166428	-80.658743	E	4	2	90°	2
31-Jan-11	14:49	92	30.166457	-80.637597	E	4	3	90°	1
31-Jan-11	14:51	93	30.167293	-80.550326	E	4	2	90°	2
31-Jan-11	14:52	74	30.167572	-80.509541	E	4	1	90°	1
31-Jan-11	14:53	94	30.167586	-80.487293	E	4	2	90°	3
31-Jan-11	14:56	96	30.167359	-80.354739	E	4	2	90°	1
31-Jan-11	15:00	100	30.167274	-80.229883	E	4	2	90°	1
31-Jan-11	15:36	117	30.102364	-80.297123	W	3	1	90°	3
31-Jan-11	15:37	119	30.099545	-80.357763	W	3	1	90°	2
31-Jan-11	15:37	94	30.099564	-80.355657	W	3	1	90°	1
31-Jan-11	15:43	97	30.099876	-80.428187	W	3	2	90°	1
31-Jan-11	15:50	102	30.099224	-80.585887	W	3	1	90°	1
22-Feb-11	13:09	8	30.497871	-80.366356	W	9	1	90°	1
22-Feb-11	13:44	10	29.966818	-80.660606	E	1	1	90°	1
22-Feb-11	13:45	12	29.967308	-80.626261	E	1	2	90°	2
22-Feb-11	13:46	13	29.966994	-80.566500	E	1	2	90°	3
22-Feb-11	14:30	26	30.035297	-80.326647	W	2	1	95°	1
22-Feb-11	14:58	31	30.032073	-80.535932	W	2	1	90°	1
22-Feb-11	15:12	36	30.031150	-80.591389	W	2	1	90°	1
22-Feb-11	15:25	38	30.101537	-80.474860	E	3	1	80°	1
22-Feb-11	16:11	46	30.165337	-80.516026	W	4	1	90°	1
26-Feb-11	13:29	6	30.567788	-80.232145	E	10	1	75°	1
26-Feb-11	14:12	12	30.231829	-80.313792	W	5	1	95°	1
26-Feb-11	14:17	13	30.231852	-80.495478	W	5	1	90°	1
26-Feb-11	14:17	14	30.231898	-80.501625	W	5	1	100°	1
26-Feb-11	14:27	21	30.235487	-80.621822	W	5	1	90°	1
26-Feb-11	14:52	34	30.301322	-80.575981	E	6	1	90°	1
26-Feb-11	14:52	24	30.300654	-80.420155	E	6	1	75°	1
26-Feb-11	14:56	25	30.301641	-80.429819	E	6	1	60°	1
26-Feb-11	14:57	37	30.301615	-80.420155	E	6	1	90°	1
26-Feb-11	15:11	42	30.301793	-80.254187	E	6	2	90°	1
26-Feb-11	15:51	36	30.366117	-80.363477	W	7	2	80°	1
26-Feb-11	15:59	39	30.366209	-80.479756	W	7	1	75°	1
26-Feb-11	16:04	42	30.365467	-80.683258	W	7	1	90°	1
26-Feb-11	16:13	64	30.434617	-80.504245	E	8	1	100°	1
26-Feb-11	16:23	49	30.434936	-80.300403	E	8	1	95°	1
27-Feb-11	13:27	5	29.966347	-80.574907	E	1	2	90°	1
27-Feb-11	13:27	5	29.966375	-80.563818	E	1	2	90°	2
27-Feb-11	13:37	8	29.965274	-80.495560	E	1	2	90°	2
27-Feb-11	13:38	9	29.966494	-80.452263	E	1	1	90°	2
27-Feb-11	13:38	10	29.966401	-80.463228	E	1	2	90°	4

Table 11 (Continued). All loggerhead sea turtle (Caretta caretta) sightings in the Jacksonville, Florida survey site for aerial surveys conducted from July 2010 to December 2011.

$\begin{gathered} 9 \\ 0 \\ 0 \end{gathered}$	$\stackrel{\otimes}{\underline{E}}$	등 잋 3		 © 0 0 0 0					әұеш!!sヨ 7seg
27-Feb-11	13:40	11	29.966561	-80.384777	E	1	2	110°	3
27-Feb-11	13:41	12	29.966590	-80.350686	E	1	2	110°	5
27-Feb-11	13:42	11	29.96650	-80.317926	E	1	2	90°	2
27-Feb-11	13:42	13	29.966566	-80.298922	E	1	2	110°	3
27-Feb-11	13:43	13	29.966479	-80.266772	E	1	2	90°	2
27-Feb-11	13:49	15	29.966408	-80.052856	E	1	1	90°	1
27-Feb-11	14:08	20	30.031455	-80.157431	W	2	1	90°	2
27-Feb-11	14:11	23	30.031410	-80.246792	W	2	1	90°	2
27-Feb-11	14:12	24	30.031295	-80.307353	W	2	1	90°	2
27-Feb-11	14:12	21	30.031319	-80.289172	W	2	1	75°	2
27-Feb-11	14:13	26	30.031327	-80.347275	W	2	1	90°	1
27-Feb-11	14:13	22	30.031198	-80.332198	W	2	1	75°	1
27-Feb-11	14:15	27	30.031353	-80.402040	W	2	1	90°	2
27-Feb-11	14	23	30.031259	-80.418648	W	2	2	85°	2
27-Feb-11	14:34	35	30.033009	-80.573731	W	2	1	90°	1
27-Feb-11	14:36	38	30.03055	-80.645545	W	2	2	90°	4
27-Feb-11	14:42	39	30.100403	-80.679259	E	3	2	90°	2
27-Feb-11	14:42	41	30.100199	-80.673186	E	3	2	90°	8
27-Feb-11	14:4	40	30.100683	-80.642	E	3	1	90°	1
27-Feb-11	14:46	42	30.100919	-80.521558	E	3	2	75°	2
27-Feb-11	14:5	43	30.101108	-80.422833	E	3	2	90°	1
27-Feb-11	15:00	46	30.101363	-80.288381	E	3	2	90°	3
27-Feb-11	15:00	49	30.101345	-80.298866	E	3	2	90°	2
27-Feb-11	16:17	69	30.16554	-80.645988	W	4	1	90°	3
27-Feb-11	16:30	82	30.433979	-80.617953	E	8	1	90°	2
27-Feb-11	16:56	93	30.434435	-80.165085	E	8	2	90°	2
27-Feb-11	17:23	80	30.499116	-80.389218	W	9	1	90°	1
8-Apr-11	10:16	7	29.965628	-80.345769	E	1	1	90°	1
8-Apr-11	10:59	16	30.032166	-80.385954	W	2	1	75°	1
8-Apr-11	11:13	22	30.031897	-80.565697	W	2	2	75°	1
8-Apr-11	11:33	34	30.099829	-80.563002	E	3	1	120°	1
8-Apr-11	11:41	36	30.100368	-80.288343	E	3	3	90°	1
8-Apr-11	12:30	35	30.166681	-80.366156	W	4	1	75°	1
8-Apr-11	12:47	39	30.166306	-80.602228	W	4	1	90°	1
8-Apr-11	14:54	52	30.232333	-80.653807	E	5	1	75°	1
8-Apr-11	14:55	75	30.232493	-80.619538	E	5	1	90°	1
8-Apr-11	14:58	53	30.232385	-80.506370	E	5	1	80°	2
8-Apr-11	15:01	77	30.232612	-80.423495	E	5	1	90°	1
8-Apr-11	15:36	88	30.300571	-80.299291	W	6	1	130°	1
8-Apr-11	15:42	89	30.300304	-80.508909	W	6	1	100°	1
8-Apr-11	15:51	63	30.299962	-80.546441	W	6	1	100°	1
8-Apr-11	15:52	94	30.300026	-80.580529	W	6	2	90°	1
8-Apr-11	15:55	65	30.299806	-80.676812	W	6	1	90°	1
8-Apr-11	16:00	98	30.367471	-80.651386	E	7	1	90°	1
8-Apr-11	16:12	103	30.365576	-80.531460	E	7	1	90°	1
8-Apr-11	16:12	70	30.365451	-80.550049	E	7	1	60°	1
8-Apr-11	16:13	104	30.365465	-80.502398	E	7	4	90°	1
8-Apr-11	16:13	71	30.365412	-80.498101	E	7	1	90°	1
8-Apr-11	16:17	105	30.365579	-80.367364	E	7	1	90°	1

Table 11 (Continued). All loggerhead sea turtle (Caretta caretta) sightings in the Jacksonville, Florida survey site for aerial surveys conducted from July 2010 to December 2011.

$\begin{gathered} \pm \\ \stackrel{y}{0} \\ \hline \end{gathered}$	$\stackrel{\otimes}{\underline{j}}$								
8-Apr-11	16:19	106	30.365664	-80.312941	E	7	1	90°	2
8-Apr-11	16:30	111	30.365491	-80.097127	E	7	2	110°	1
8-Apr-11	17:09	123	30.433837	-80.195421	W	8	1	90°	1
8-Apr-11	17:22	128	30.433617	-80.511859	W	8	2	110°	1
8-Apr-11	17:22	90	30.433600	-80.525009	W	8	2	100°	1
9-Apr-11	9:15	4	30.566299	-80.625208	E	10	1	90°	1
9-Apr-11	9:30	6	30.566644	-80.112980	E	10	1	90°	1
9-Apr-11	10:29	22	30.432826	-80.644487	E	8	2	140°	1
9-Apr-11	10:44	28	30.433342	-80.295976	E	8	2	90°	1
9-Apr-11	11:22	36	30.365708	-80.524888	W	7	2	85°	1
9-Apr-11	11:24	38	30.365659	-80.600996	W	7	2	80°	1
9-Apr-11	11:35	40	30.299591	-80.512338	E	6	2	85°	1
9-Apr-11	11:39	41	30.298151	-80.382236	E	6	2	65°	1
9-Apr-11	12:26	46	30.232698	-80.639705	W	5	3	90°	1
9-Apr-11	14:02	52	30.164790	-80.683810	E	4	2	100°	1
9-Apr-11	14:03	60	30.165788	-80.652395	E	4	1	80°	1
9-Apr-11	14:03	53	30.165740	-80.637335	E	4	3	90°	1
9-Apr-11	14:10	62	30.166000	-80.387061	E	4	2	70°	1
9-Apr-11	15:06	64	30.100137	-80.646144	W	3	2	90°	1
9-Apr-11	15:07	65	30.100068	-80.667747	W	3	2	90°	1
9-Apr-11	15:12	77	30.031304	-80.641287	E	2	2	90°	1
9-Apr-11	15:24	84	30.031637	-80.445007	E	,	1	90°	1
9-Apr-11	15:25	85	30.031764	-80.408565	E	,	1	80°	1
9-Apr-11	16:02	94	29.965911	-80.401763	W	1	2	90°	1
9-Apr-11	16:06	95	29.965834	-80.522033	W	1	1	90°	1
9-Apr-11	16:07	97	29.965749	-80.557951	W	1	1	80°	1
9-Apr-11	16:09	100	29.965600	-80.616516	W	1	2	80°	1
9-Apr-11	16:11	79	29.965455	-80.697509	W	1	3	140°	1
19-May-11	12:59	6	29.964633	-80.630986	E	1	2	90°	1
19-May-11	13:50	15	30.031720	-80.420043	W	2	2	90°	1
20-May-11	8:21	13	30.563317	-80.594384	E	10	1	90°	1
20-May-11	8:22	7	30.570936	-80.533392	E	10	2	90°	1
20-May-11	8:23	8	30.569593	-80.507757	E	10	1	90°	3
20-May-11	8:25	16	30.566482	-80.426244	E	10	2	90°	1
20-May-11	8:30	17	30.569400	-80.251935	E	10	2	90°	1
20-May-11	8:31	11	30.570856	-80.194309	E	10	1	90°	1
20-May-11	8:54	20	30.499565	-80.116498	W	9	1	90°	1
20-May-11	9:08	23	30.499577	-80.332452	W	-	2	45°	1
20-May-11	9:13	24	30.503105	-80.516748	W	9		90°	3
20-May-11	9:14	25	30.503081	-80.548323	W	9	2	90°	3
20-May-11	9:16	29	30.501133	-80.623520	W	9	1	90°	2
20-May-11	9:18	30	30.498873	-80.690317	W	9	1	90°	2
20-May-11	9:32	37	30.432442	-80.523462	E	8	1	90°	2
20-May-11	9:40	33	30.433467	-80.331421	E	8	1	90°	1
20-May-11	9:43	34	30.436814	-80.247596	E	8	1	90°	3
20-May-11	10:24	58	30.359595	-80.234776	W	7	2	90°	1
20-May-11	10:26	59	30.363308	-80.318090	W	7	2	90°	1
20-May-11	10:27	60	30.364440	-80.341010	W	7	2	90°	1
20-May-11	10:28	61	30.365062	-80.358036	W	7	2	90°	1

Table 11 (Continued). All loggerhead sea turtle
(Caretta caretta) sightings in the Jacksonville, Florida survey site for aerial surveys conducted from July 2010 to December 2011.

$\stackrel{\text { 凹 }}{\substack{0 \\ \hline}}$	$\stackrel{\oplus}{\underline{j}}$	$\begin{aligned} & \text { 듬 } \\ & \overline{0} \\ & 2 \\ & 3 \\ & 3 \\ & \hline \end{aligned}$							
20-May-11	10:38	48	30.367065	-80.566512	W	7	2	60°	3
20-May-11	10:46	68	30.297975	-80.649067	E	6	1	90°	1
20-May-11	10:47	69	30.298844	-80.631170	E	6	1	90°	2
20-May-11	10:47	51	30.300188	-80.602648	E	6	2	90°	3
20-May-11	10:54	76	30.299032	-80.445236	E	6	2	90°	2
20-May-11	11:01	56	30.294179	-80.379454	E	6	3	90°	2
20-May-11	11:32	65	30.230868	-80.337989	W	5	2	90°	3
20-May-11	13:02	97	30.163427	-80.660120	E	4	2	90°	1
20-May-11	13:03	98	30.164600	-80.624201	E	4	2	90°	2
20-May-11	13:03	73	30.163652	-80.640505	E	4	1	90°	3
20-May-11	13:04	99	30.166266	-80.583449	E	4	2	90°	3
20-May-11	13:05	100	30.165525	-80.557704	E	4	2	90°	2
20-May-11	13:58	83	30.101198	-80.356753	W	3	2	90°	1
20-May-11	14:00	84	30.100958	-80.422810	W	3	1	90°	3
20-May-11	14:04	86	30.100802	-80.610242	W	3	1	90°	3
20-May-11	14:10	115	30.024418	-80.663238	E	,	2	90°	5
20-May-11	14:13	116	30.027429	-80.533176	E	2	2	90°	1
20-May-11	14:17	119	30.025733	-80.449377	E	2	2	90°	1
20-May-11	14:54	100	29.986176	-80.315247	W	1	1	90°	3
20-May-11	14:56	129	29.980720	-80.423502	W	1	1	90°	1
20-May-11	14:57	102	29.980417	-80.431152	W	1	1	90°	4
20-May-11	14:58	131	29.975730	-80.490040	W	1	1	90°	1
20-May-11	14:59	132	29.976062	-80.513108	W	1	1	90°	2
20-May-11	15:07	104	29.963615	-80.657766	W	1	2	90°	1
20-May-11	15:08	135	29.968576	-80.688942	W	1	1	90°	1
20-May-11	15:08	105	29.967360	-80.683368	W	1	1	90°	1
21-Jun-11	9:57	3	30.565614	-80.539043	E	10	1	90°	1
21-Jun-11	10:40	7	30.501802	-80.511094	W	9	1	110°	1
21-Jun-11	11:06	12	30.430739	-80.425020	E	8	1	90°	1
21-Jun-11	14:41	21	29.962703	-80.616160	E	1	1	90°	1
21-Jun-11	14:42	22	29.962624	-80.582059	E	1	1	90°	1
21-Jun-11	14:45	23	29.962816	-80.478623	E	1	1	90°	2
21-Jun-11	14:48	24	29.963266	-80.376980	E	,	1	90°	1
21-Jun-11	14:49	25	29.963335	-80.351298	E	1	1	90°	1
21-Jun-11	15:45	31	30.034162	-80.677171	W	2	1	90°	1
22-Jun-11	11:16	12	30.230267	-80.329166	E	5	1	90°	1
22-Jun-11	11:57	16	30.301741	-80.584482	W	6	1	90°	1
20-Jul-11	9:14	11	30.499873	-80.550273	W	9	2	90°	1
20-Jul-11	9:17	14	30.499632	-80.656476	W	9	1	90°	1
20-Jul-11	10:25	31	30.366516	-80.293864	W	7	2	90°	1
20-Jul-11	10:40	37	30.366396	-80.435558	W	7	1	90°	1
20-Jul-11	10:45	38	30.365933	-80.637356	W	7	1	45°	1
20-Jul-11	13:29	53	30.165666	-80.527449	E	4	3	90°	1
20-Jul-11	13:30	54	30.165821	-80.491398	E	4	2	60°	1
20-Jul-11	13:31	55	30.165857	-80.445849	E	4	2	60°	4
20-Jul-11	13:33	56	30.166005	-80.372607	E	4	1	90°	6
20-Jul-11	14:14	49	30.101023	-80.423350	W	3	2	90°	2
20-Jul-11	14:23	70	30.099880	-80.516003	W	3	2	90°	1
20-Jul-11	14:28	71	30.100297	-80.687030	W	,	2	90°	2

Table 11 (Continued). All loggerhead sea turtle (Caretta caretta) sightings in the Jacksonville, Florida survey site for aerial surveys conducted from July 2010 to December 2011.

$\stackrel{y}{0}$	$\stackrel{\otimes}{\underline{E}}$	등 λ_{i}^{2} 3					$\frac{0}{0}$ $\frac{5}{4}$ $\overline{0}$ $\frac{0}{7}$ $\stackrel{\rightharpoonup}{0}$		
20-Jul-11	14:34	54	30.031057	-80.580981	E	2	2	90°	3
20-Jul-11	14:37	76	30.031183	-80.462095	E	2	2	90°	4
20-Jul-11	14:41	77	30.031322	-80.338196	E	2	1	90°	3
20-Jul-11	15:21	81	29.965944	-80.602271	W	1	2	90°	1
21-Jul-11	8:30	4	29.965011	-80.448075	E	1	1	90°	1
21-Jul-11	9:09	11	30.032517	-80.415447	W	2	2	90°	1
21-Jul-11	9:23	18	30.099443	-80.585964	E	3	2	90°	1
21-Jul-11	10:11	25	30.167043	-80.380911	W	4	3	90°	3
21-Jul-11	10:1	27	30.1667	-80.572771	W	4	1	90°	2
21-Jul-11	11:15	37	30.300884	-80.320357	W	6	2	90°	1
21-Jul-11	11:2	38	30.300257	-80.579987	W	6	1	90°	3
21-Jul-11	11:24	39	30.300194	-80.646221	W	6	1	60°	2
21-Jul-11	13:57	55	30.433714	-80.587289	W	8	2	90°	3
21-Jul-11	14:09	60	30.498872	-80.455609	E	9	2	90°	2
21-Jul-11	14:17	62	30.499061	-80.172581	E	9	1	45°	1
21-Jul-11	14:46	66	30.567579	-80.399094	W	10	2	60°	1
17-Aug-11	9:02	7	30.565724	-80.612346	E	10	2	90°	1
17-Aug-11	9:06	7	30.5658	-80.585782	E	10	1	90°	3
17-Aug-11	9:09	8	30.56874	-80.488367	E	10	1	90°	2
17-Aug-11	9:15	16	30.563146	-80.437980	E	10	2	45°	1
17-Aug-11	9:57	26	30.4992	-80.18	W	9	1	90°	1
17-Aug-11	10:06	32	30.501027	-80.349122	W	9	1	45°	1
17-Aug-11	10:06	22	30.500888	-80.355941	W	9	1	90°	2
17-Aug-11	10:08	34	30.499303	-80.435222	W	9	2	45°	1
17-Aug-11	10:13	24	30.499601	-80.613717	W	9	2	90°	2
17-Aug-11	10:28	29	30.43250	-80.635589	E	8	2	60°	3
17-Aug-11	10:29	41	30.432474	-80.628287	E	8	2	45°	1
17-Aug-11	10:34	43	30.434456	-80.450754	E	8	1	90°	2
17-Aug-11	10:34	44	30.435008	-80.426299	E	8	1	90°	1
17-Aug-11	11:27	39	30.36577	-80.557872	W	7	2	90°	1
17-Aug-11	11:35	56	30.300873	-80.658987	E	6	1	90°	1
17-Aug-11	12:24	48	30.229886	-80.600048	W	5	2	60°	1
17-Aug-11	12:26	49	30.230205	-80.685807	W	5	3	90°	1
17-Aug-11	14:05	56	30.167096	-80.558009	E	4	3	90°	1
17-Aug-11	14:15	76	30.16809	-80.453457	E	4	2	90°	2
17-Aug-11	14:16	59	30.167820	-80.427686	E	4	1	90°	3
17-Aug-11	14:59	66	30.096845	-80.302581	W	3	1	90°	1
17-Aug-11	15:03	67	30.104058	-80.425937	W	3	1	90°	4
17-Aug-11	15:05	68	30.102558	-80.517492	W	3	2	60°	2
17-Aug-11	15:08	69	30.097777	-80.616981	W	3	2	90°	3
17-Aug-11	15:27	88	30.032429	-80.677258	E	2	1	90°	1
17-Aug-11	15:29	74	30.033600	-80.603071	E	2	2	90°	3
17-Aug-11	15:30	89	30.033939	-80.593851	E	2	2	45°	1
17-Aug-11	15:32	90	30.033809	-80.514284	E	2	2	90°	1
17-Aug-11	15:47	96	30.033285	-80.381384	E	2	1	90°	1
17-Aug-11	16:31	85	29.965288	-80.333939	W	1	2	90°	3
17-Aug-11	16:36	86	29.964796	-80.515443	W	1	3	90°	3
17-Aug-11	16:38	111	29.966710	-80.568780	W	1	1	90°	1
18-Aug-11	9:04	3	29.963450	-80.565897	E	1	1	90°	3

Table 11 (Continued). All loggerhead sea turtle (Caretta caretta) sightings in the Jacksonville, Florida survey site for aerial surveys conducted from July 2010 to December 2011.

$\underset{\sim}{0}$	$\stackrel{\oplus}{\underline{E}}$	등 \sum_{i}^{2} \sum_{3}^{2}		 0 0 0 0 0					әృеய!!sヨ \ddagger seg
18-Aug-11	9:08	5	29.967366	-80.421225	E	1	1	90°	2
18-Aug-11	9:10	4	29.970272	-80.348470	E	1	2	45°	1
18-Aug-11	9:11	7	29.970764	-80.322390	E	1	1	90°	3
18-Aug-11	9:57	21	30.031406	-80.384422	W	2	1	90°	2
18-Aug-11	9:57	12	30.031338	-80.364304	W	2	1	90°	1
18-Aug-11	10:09	28	30.031369	-80.576541	W	2	2	90°	4
18-Aug-11	10:09	15	30.030599	-80.583251	W	2	2	90°	1
18-Aug-11	10:11	16	30.028927	-80.639644	W	2	1	90°	1
18-Aug-11	10:17	31	30.096113	-80.665818	E	3	1	90°	3
18-Aug-11	10:20	20	30.103202	-80.538321	E	3	2	45°	2
18-Aug-11	10:22	21	30.104325	-80.484565	E	3	1	90°	1
18-Aug-11	11:10	32	30.168182	-80.330197	W	4	1	90°	1
18-Aug-11	11:13	45	30.164358	-80.416435	W	4	1	90°	3
18-Aug-11	11:13	34	30.163268	-80.430200	W	4	1	90°	1
18-Aug-11	11:16	35	30.163628	-80.541499	W	4	2	60°	2
18-Aug-11	11:19	47	30.166326	-80.630271	W	4	2	90°	3
18-Aug-11	11:26	38	30.231150	-80.621084	E	5	3	60°	2
18-Aug-11	11:27	50	30.231647	-80.604949	E	5	3	90°	2
18-Aug-11	12:11	47	30.301314	-80.489350	W	6	2	90°	1
18-Aug-11	13:59	57	30.369864	-80.618647	E	7	2	60°	1
18-Aug-11	14:01	58	30.370584	-80.532780	E	7	2	90°	1
18-Aug-11	14:02	67	30.370532	-80.482387	E	7	2	90°	3
18-Aug-11	14:05	68	30.370071	-80.372267	E	7	1	90°	3
18-Aug-11	14:37	66	30.433621	-80.251964	W	8	1	90°	1
18-Aug-11	14:47	83	30.435587	-80.406547	W	8	1	90°	2
18-Aug-11	14:47	69	30.435629	-80.408666	W	8	2	45°	1
18-Aug-11	14:52	70	30.432343	-80.591836	W	8	2	90°	1
18-Aug-11	14:54	85	30.431213	-80.657758	W	8	2	90°	2
18-Aug-11	15:04	73	30.500667	-80.512825	E	9	1	90°	1
18-Aug-11	15:13	92	30.500630	-80.364348	E	9	1	90°	2
18-Aug-11	15:52	104	30.566069	-80.473927	W	10	1	90°	3
18-Aug-11	15:52	85	30.566310	-80.462781	W	10	1	90°	2
18-Aug-11	16:08	113	30.567230	-80.583904	W	10	1	90°	2
29-Sep-11	9:38	9	30.031704	-80.439366	W	2	1	90°	1
29-Sep-11	9:51	12	30.101070	-80.593138	E	3	2	90°	1
29-Sep-11	10:27	17	30.164638	-80.327114	W	4	2	90°	1
29-Sep-11	10:29	19	30.165355	-80.389031	W	4	2	90°	1
29-Sep-11	10:31	20	30.164817	-80.458554	W	4	2	60°	3
29-Sep-11	10:35	17	30.164623	-80.610378	W	4	1	90°	1
29-Sep-11	10:41	23	30.233283	-80.659800	E	5	1	90°	1
29-Sep-11	10:48	21	30.232651	-80.393361	E	5	2	90°	1
29-Sep-11	10:50	24	30.233062	-80.344901	E	5	2	90°	3
29-Sep-11	11:21	29	30.299234	-80.371533	W	6	2	90°	3
29-Sep-11	11:23	26	30.299291	-80.434733	W	6	2	90°	2
29-Sep-11	13:15	38	30.366111	-80.497510	E	7	1	90°	1
29-Sep-11	13:23	41	30.365869	-80.459998	E	7	1	90°	3
29-Sep-11	13:23	35	30.366166	-80.436141	E	7	2	90°	1
29-Sep-11	13:25	42	30.367543	-80.375219	E	7	2	90°	3
29-Sep-11	14:14	45	30.433270	-80.438060	W	8	2	90°	1

Table 11 (Continued). All loggerhead sea turtle (Caretta caretta) sightings in the Jacksonville, Florida survey site for aerial surveys conducted from July 2010 to December 2011.

$\begin{aligned} & 9 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{0}{\underline{E}}$	$\begin{aligned} & \text { 듬 } \\ & \frac{2}{2} \\ & \frac{\pi}{3} \end{aligned}$		 0 0 0 0 0					
29-Sep-11	14:30	61	30.496935	-80.595272	E	9	2	90°	2
29-Sep-11	14:33	62	30.501518	-80.471165	E	9	2	90°	2
29-Sep-11	15:29	66	30.568546	-80.428485	W	10	2	90°	1
29-Sep-11	15:29	67	30.567809	-80.449738	W	10	2	90°	2
29-Sep-11	15:30	68	30.566468	-80.488219	W	10	2	90°	3
29-Sep-11	15:32	69	30.565295	-80.543866	W	10	1	90°	1
30-Sep-11	12:21	3	30.566751	-80.600272	W	10	1	90°	1
30-Sep-11	12:25	1	30.567970	-80.464621	E	10	2	100°	1
30-Sep-11	13:07	8	30.498591	-80.391286	W	9	2	90°	2
30-Sep-11	13:09	9	30.49932	-80.458424	W	9	2	90°	2
30-Sep-11	13:35	16	30.498948	-80.618736	W	9	1	90°	1
30-Sep-11	13:43	27	30.434298	-80.604430	E	8	2	90°	2
30-Sep-11	13:43	19	30.434308	-80.596629	E	8	2	45°	1
30-Sep-11	13:50	34	30.434257	-80.423374	E	8	1	90°	1
30-Sep-11	14:34	29	30.364026	-80.444215	W	7	1	90°	1
30-Sep-11	14:45	44	30.297559	-80.597321	E	6	2	90°	1
30-Sep-11	14:47	33	30.301	-80.534749	E	6	1	45°	2
30-Sep-11	14:52	36	30.299378	-80.465556	E	6	2	45°	3
30-Sep-11	14:56	48	30.300901	-80.345038	E	6	1	90°	1
30-Sep-11	15:29	55	30.232714	-80.366305	W	5	2	90°	1
30-Sep-11	15:29	45	30.232719	-80.366978	W	5	1	90°	4
30-Sep-11	15:36	56	30.23038	-80.617708	W	5	2	60°	2
17-Oct-11	9:35	3	29.965284	-80.580642	E	1	2	90°	1
17-Oct-11	9:38	3	29.966110	-80.466365	E	1	2	90°	1
17-Oct-11	9:41	5	29.966022	-80.381953	E	1	2	90°	1
17-Oct-11	9:44	6	29.965657	-80.266205	E	1	2	90°	1
17-Oct-11	10:22	13	30.031681	-80.263838	W	2	1	90°	1
17-Oct-11	10:27	13	30.031147	-80.416332	W	2	1	90°	1
17-Oct-11	10:34	15	30.033538	-80.666439	W	2	1	90°	1
17-Oct-11	10:42	19	30.100285	-80.531554	E	3	2	90°	2
17-Oct-11	10:52	20	30.100321	-80.417718	E	3	2	90°	2
17-Oct-11	11:36	27	30.165484	-80.467844	W	4	1	90°	3
17-Oct-11	11:55	39	30.233466	-80.589218	E	5	2	90°	1
17-Oct-11	11:56	40	30.235228	-80.532857	E	5	1	90°	2
17-Oct-11	11:59	41	30.237357	-80.427994	E	5	1	90°	2
17-Oct-11	12:33	47	30.299728	-80.366458	W	6	2	90°	1
17-Oct-11	12:35	40	30.301910	-80.428242	W	6	1	45°	1
17-Oct-11	14:30	56	30.366456	-80.328760	E	7	2	90°	1
17-Oct-11	15:22	56	30.432073	-80.448196	W	8	2	90°	2
17-Oct-11	15:24	70	30.432859	-80.499521	W	8	2	90°	1
17-Oct-11	15:32	74	30.497972	-80.652627	E	9	2	60°	1
17-Oct-11	15:34	75	30.499587	-80.563584	E	9	1	90°	1
17-Oct-11	16:32	90	30.564243	-80.491197	W	10	1	90°	1
17-Oct-11	16:34	71	30.564585	-80.564397	W	10	2	90°	3

Figure 13. Loggerhead sea turtle (Caretta caretta) sightings.

Leatherback Sea Turtle (Dermochelys coriacea) (Table 12, Fig. 14)

A total of 45 leatherback sea turtles were recorded mainly in the inshore waters of the survey site. This species was observed in every month surveyed during the current reporting period except for July, August and November of 2010 and September of 2011. The most recent population estimates for the North Atlantic is a range of 34,000 to 94,000 adult leatherbacks (Turtle Expert Working Group 2007). Leatherback nesting beaches in the Atlantic, as well as worldwide, have experienced severe to moderate declines over the past several decades and this species is listed as endangered under the Endangered Species Act (NMFS 1992).

Table 12. All leatherback sea turtle (Dermochelys coriacea) sightings in the Jacksonville, Florida survey site for aerial surveys conducted from July 2010 to December 2011.

$$	$\stackrel{\otimes}{\underset{j}{\underline{1}}}$	$\begin{aligned} & \text { 듬 } \\ & \text { N } \\ & \text { In } \\ & 3 \end{aligned}$		$\begin{aligned} & \text { T } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$					
8-Sep-10	16:04	34	30.164993	-80.395468	W	4	1	90°	1
9-Sep-10	11:56	51	30.433302	-80.477210	E	8	2	90°	1
9-Sep-10	16:18	69	30.231432	-80.068385	W	5	3	90°	1
9-Sep-10	16:34	73	30.231160	-80.666152	W	5	1	90°	1
18-Oct-10	12:39	10	29.967095	-80.332057	E	1	2	90°	1
18-Oct-10	14:01	38	30.101976	-80.421491	E	3	1	90°	1
18-Oct-10	14:59	41	30.164511	-80.365173	W	4	2	90°	1
18-Oct-10	15:09	44	30.165736	-80.517338	W	4	2	90°	1
21-Dec-10	12:11	43	30.366225	-80.418890	W	7	2	90°	1
30-Dec-10	12:06	70	30.365919	-80.621155	W	7	2	120°	1
30-Dec-10	15:48	141	30.165743	-80.615990	E	4	1	90°	1
31-Jan-11	10:31	17	30.498793	-80.064842	W	9	2	130°	1
31-Jan-11	14:54	95	30.167780	-80.450586	E	4	2	90°	1
31-Jan-11	16:02	133	30.031272	-80.660210	E	,	2	90°	1
31-Jan-11	16:15	142	30.032605	-80.461696	E	2	2	90°	1
31-Jan-11	16:20	149	30.032608	-80.252951	E	2	1	90°	1
31-Jan-11	17:01	123	29.964732	-80.325029	W	1	1	90°	1
26-Feb-11	16:09	46	30.434388	-80.634695	E	8	1	100°	1
8-Apr-11	17:18	89	30.433829	-80.369985	W	8	1	90°	1
20-May-11	8:23	9	30.568551	-80.487928	E	10	1	90°	1
20-May-11	9:15	26	30.502137	-80.594772	W	9	2	90°	1
20-May-11	14:03	85	30.100869	-80.544252	W	3	3	90°	1
20-May-11	14:10	89	30.025693	-80.653680	E	2	2	90°	1
21-Jun-11	11:00	11	30.431047	-80.629434	E	8	1	90°	1
21-Jul-11	10:13	26	30.166989	-80.447232	W	4	1	90°	1
17-Aug-11	14:23	60	30.165547	-80.199566	E	4	1	90°	1
17-Aug-11	14:56	65	30.094358	-80.180583	W	3	3	90°	1
17-Aug-11	16:26	84	29.964671	-80.150416	W	1	1	90°	1
17-Aug-11	16:33	110	29.962540	-80.384560	W	1	2	90°	1
18-Aug-11	9:07	4	29.965274	-80.460184	E	1	1	90°	1
18-Aug-11	9:10	6	29.969546	-80.374012	E	1	1	90°	1
18-Aug-11	10:25	32	30.102597	-80.354238	E	3	2	90°	1
18-Aug-11	11:27	39	30.231816	-80.599948	E	5	2	90°	1
17-Oct-11	10:26	12	30.030858	-80.394612	W	2	1	90°	1
17-Oct-11	10:53	24	30.100558	-80.399157	E	3	1	90°	1
17-Oct-11	11:32	26	30.166403	-80.313562	W	4	1	90°	1
17-Oct-11	11:33	32	30.165898	-80.360974	W	4	1	90°	1
17-Oct-11	14:21	53	30.366029	-80.642414	E	7	1	90°	1
17-Oct-11	14:22	54	30.366138	-80.612691	E	7	2	90°	1
17-Oct-11	15:25	71	30.434184	-80.555784	W	8	2	90°	1
17-Oct-11	15:37	76	30.500393	-80.451484	E	9	1	90°	1
17-Oct-11	15:37	59	30.500455	-80.457373	E	9	1	90°	1
17-Oct-11	15:45	60	30.499871	-80.147733	E	9	2	90°	1
17-Oct-11	16:27	70	30.567168	-80.268947	W	10	3	90°	1
17-Oct-11	16:33	91	30.564535	-80.530931	W	10	2	90°	1

Figure 14. Leatherback sea turtle (Dermochelys coriacea) sightings.

Kemp’s Ridley Sea Turtle (Lepidochelys kempii) (Table 13, Fig. 15)
Two Kemp’s Ridley sea turtles were recorded while on effort on 9 September 2010.
Since 1978-1991, sharp drops in nesting rates were observed; however, this population appears to be in the early stages of recovery. During the 2006 season 12143 nests were recorded in Mexico, marking the highest number of nests since the program began in 1978 (NOAA
Fisheries). The Kemp’s Ridley sea turtle is listed as endangered under the Endangered Species Act (NMFS 1992).

Table 13. Kemp's ridley sea turtle (Lepidochelys kempii) sightings in the Jacksonville, Florida survey site for aerial surveys conducted from July 2010 to December 2011.

$\begin{aligned} & \text { Q } \\ & 0 \\ & \hline \end{aligned}$	$\stackrel{0}{\underline{E}}$			 0 0 0 0 0					
9-Sep-10	15:19	59	30.301661	-80.445950	E	6	1	90°	-
9-Sep-10	16:28	102	30.231546	-80.424170	W	5	1	95°	1

Figure 15. Kemp's ridley sea turtle (Lepidochelys kempii) sightings.

Figure 16a. Total number of sea turtle sightings per Beaufort Sea State during aerial surveys conducted from July 2010 to December 2011 in the Jacksonville, Florida survey site.

Figure 16b. Sea turtle sightings per 1000 km flown by Beaufort sea State from July 2010 to December 2011 during aerial surveys in the Jacksonville, Florida survey site.

Figure 16 c . Sea turtle sightings per 1000 km surveyed and the average Beaufort Sea State per month from July 2010 to December 2011 during aerial surveys in the Jacksonville, Florida survey site.

Unidentified sea turtles

A total of 196 unidentified sea turtles were observed during the reporting period. Unidentified sea turtles were recorded during every survey month except November 2010 and July 2011.

Other Marine Vertebrate Sightings (Tables 14-17, Fig. 17)

Chondrichthyan fishes
A total of 70 sharks were recorded during the reporting period (Table 14, Fig. 17). Fiftyseven were identified as hammerhead sharks (Sphyrna spp.) and one as a whale shark (Rhincodon typus) with all others listed as unidentified sharks. The whale shark sighting (identified as a juvenile) occurred in February 2011, just inshore of the shelf break (Table 15, Fig. 17). Sharks were seen throughout the study period with no discernable spatial or temporal trends. Thirteen manta rays (Manta birostris) were observed during the study period and occurred in eight of the 15 months surveyed (Table 16, Fig. 17).

Other fishes
Twenty three ocean sunfish (Mola mola) were recorded during the survey period and encountered nine of the 15 months surveyed with more sightings during the winter months (Table 17, Fig. 17).

Table 14. All other cartilaginous fish sightings in the Jacksonville, Florida survey site for aerial surveys conducted from July 2010 to December 2011.

$\begin{aligned} & \text { پ. } \\ & \hline 0 \end{aligned}$	$\stackrel{\otimes}{\underline{j}}$	$\begin{aligned} & \text { 듷 } \\ & \text { D } \\ & \frac{1 \pi}{3} \end{aligned}$			$\begin{aligned} & \text { 으 } \\ & \text { 듬 } \\ & \text { © } \\ & \hline 1 \end{aligned}$					$\begin{aligned} & \text { N} \\ & \stackrel{0}{0} \\ & \stackrel{y}{5} \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$
29-Jul-10	10:53	9	30.032246	-80.340569	W	2	2	90°	1	Hammerhead
5-Aug-10	9:58	7	30.433305	-79.903766	W	8	1	90°	1	Shark
8-Sep-10	16:09	42	30.160624	-80.524435	W	4	2	90°	1	Shark
9-Sep-10	13:02	45	30.364368	-80.515428	W	7	2	90°	1	Hammerhead
9-Sep-10	13:05	46	30.364046	-80.619519	W	7	2	90°	1	Shark
18-Oct-10	13:23	17	30.032910	-80.407249	W	2	3	90°	1	
29-Dec-10	15:08	29	30.234004	-80.336674	E	5	2	90°	1	Hammerhead
29-Dec-10	15:08	45	30.233459	-80.341198	E	5	1	90°	1	Hammerhead
30-Dec-10	11:44	55	30.366178	-80.244557	W	7	1	90°	2	Rays
30-Dec-10	14:00	102	30.299512	-80.685813	E	6	1	90°	40	Cownose Rays
15-Jan-11	13:57	31	30.301508	-80.257957	E	6	2	100°	1	Hammerhead
31-Jan-11	10:33	18	30.498658	-80.147986	W	9	1	90°	1	Shark
31-Jan-11	10:34	19	30.498720	-80.183721	W	9	2	100°	3	Hammerhead
31-Jan-11	11:15	42	30.432785	-80.206956	E	8	2	90°	5	
31-Jan-11	11:16	43	30.434318	-80.178403	E	8	1	90°	1	Hammerhead
31-Jan-11	11:34	49	30.364440	-79.962435	W	7	1	90°	1	Shark
31-Jan-11	12:17	66	30.301090	-80.329923	E	6	2	90°	1	Shark
31-Jan-11	12:19	70	30.300994	-80.242041	E	6	2	90°	1	
31-Jan-11	12:21	53	30.301109	-80.187169	E	6	1	90°	1	Hammerhead
31-Jan-11	12:49	58	30.229481	-80.250741	W	5	3	90°	3	Hammerhead
31-Jan-11	12:55	79	30.231513	-80.481764	W	5	1	90°	2	
31-Jan-11	14:58	98	30.167148	-80.305318	E	4	2	90°	1	Hammerhead
31-Jan-11	15:00	101	30.167270	-80.223746	E	4	2	90°	2	Hammerhead
31-Jan-11	15:03	102	30.167148	-80.132041	E	4	2	90°	1	Hammerhead
31-Jan-11	15:12	107	30.167071	-79.881298	E	4	2	90°	1	Hammerhead
31-Jan-11	15:29	112	30.099650	-80.228034	W	3	2	90°	1	Hammerhead
31-Jan-11	15:29	86	30.099631	-80.218761	W	3	1	90°	1	Hammerhead
31-Jan-11	15:32	88	30.104161	-80.234043	W	3	1	90°	4	Hammerhead
31-Jan-11	15:35	91	30.093684	-80.266905	W	3	2	90°	4	Hammerhead
31-Jan-11	15:36	118	30.100152	-80.321755	W	3	1	90°	3	Hammerhead
31-Jan-11	15:36	92	30.101422	-80.288381	W	3	2	90°	1	Hammerhead
31-Jan-11	15:37	93	30.100158	-80.322076	W	3	1	90°	1	Hammerhead
31-Jan-11	16:16	143	30.032575	-80.421423	E	2	1	90°	1	Hammerhead
31-Jan-11	16:18	145	30.032823	-80.318909	E	2	1	90°	5	Hammerhead
31-Jan-11	16:20	147	30.032648	-80.274259	E		1	90°	1	
31-Jan-11	16:20	148	30.032627	-80.257555	E	2	2	90°	6	Hammerhead
31-Jan-11	16:56	162	29.964983	-80.240323	W	1	2	90°	1	
31-Jan-11	16:56	119	29.964970	-80.242905	W	1	1	90°	1	Hammerhead
31-Jan-11	16:57	120	29.964951	-80.256779	W	1	1	90°	1	Hammerhead
31-Jan-11	16:57	121	29.965149	-80.272111	W	1	2	120°	18	Hammerhead
22-Feb-11	13:14	10	30.495920	-80.490680	W	9	2	100°	1	Hammerhead
26-Feb-11	14:09	11	30.231947	-80.194509	W	5	2	100°	1	Hammerhead
26-Feb-11	16:26	73	30.434851	-80.172864	E	8	2	90°	1	Hammerhead
27-Feb-11	13:42	12	29.966544	-80.307920	E	1	2	90°	1	Hammerhead
27-Feb-11	13:44	14	29.966463	-80.227500	E	1	1	90°	1	Hammerhead
27-Feb-11	13:44	14	29.966512	-80.250865	E	1	2	90°	1	Shark
27-Feb-11	15:00	50	30.101360	-80.281716	E	3	2	90°	3	
27-Feb-11	15:00	50	30.101360	-80.281716	E	3	2	90°	1	Hammerhead
27-Feb-11	15:42	57	30.167646	-80.194278	W	4	1	90°	1	

Table 14 (Continued). All other cartilaginous fish sightings in the Jacksonville, Florida survey site for aerial surveys conducted from July 2010 to December 2011.

$\begin{aligned} & \text { \# } \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$	$\stackrel{\otimes}{\underset{I}{E}}$			 0 0 0 0 0					Best Estimate	$\begin{aligned} & \text { n } \\ & 0 \\ & 0 \\ & \underline{0} \\ & \vdots \\ & 0 \\ & \hline \end{aligned}$
27-Feb-11	15:43	59	30.165776	-80.227473	W	4	2	90°	1	
27-Feb-11	15:43	66	30.166111	-80.211182	W	4	2	90°	7	Hammerhead
27-Feb-11	16:55	92	30.434509	-80.191169	E	8	2	90°	1	Hammerhead
8-Apr-11	12:27	34	30.166775	-80.295266	W	4	1	80°	1	Hammerhead
8-Apr-11	12:47	39	30.166306	-80.602228	W	4	2	100°	100	Cownose rays
8-Apr-11	14:57	76	30.232367	-80.540059	E	5	2	90°	1	Hammerhead
8-Apr-11	15:02	78	30.232719	-80.376896	E	5	1	90°	1	Hammerhead
8-Apr-11	15:03	79	30.232700	-80.349961	E	5	1	90°	1	Hammerhead
8-Apr-11	15:03	80	30.232713	-80.338924	E	5	1	90°	1	Hammerhead
8-Apr-11	15:04	82	30.232737	-80.305262	E	5	2	110°	1	Hammerhead
8-Apr-11	15:05	54	30.232761	-80.256798	E	5	2	90°	2	Hammerhead
8-Apr-11	15:53	64	30.300013	-80.609889	W	6	2	90°	1	Hammerhead
8-Apr-11	16:26	75	30.367205	-80.272303	E	7	2	75°	1	Hammerhead
8-Apr-11	16:30	76	30.365458	-80.102346	E	7	2	90°	1	Hammerhead
8-Apr-11	16:33	112	30.365316	-80.013120	E	7	2	90°	2	
8-Apr-11	16:33	77	30.365297	-80.013393	E	7	1	80°	1	Hammerhead
8-Apr-11	17:15	88	30.433691	-80.296489	W	8	2	100°	1	Hammerhead
9-Apr-11	9:53	12	30.499821	-80.169237	W	9	2	110°	1	Hammerhead
9-Apr-11	9:58	14	30.499800	-80.339860	W	9	2	90°	1	Hammerhead
9-Apr-11	10:14	14	30.499516	-80.523421	W	9	2	90°	1	Hammerhead
9-Apr-11	15:11	68	30.031646	-80.659830	E	2	2	90°	1	Hammerhead
9-Apr-11	16:08	99	29.965669	-80.590841	W	1	1	90°	1	Hammerhead
20-May-11	8:32	12	30.570784	-80.168473	E	10	1	45°	1	Shark
20-May-11	8:34	13	30.568895	-80.098241	E	10	1	90°	1	Hammerhead
20-May-11	11:06	81	30.303351	-80.192779	E	6	3	90°	1	
21-Jun-11	15:34	30	30.034426	-80.284312	W	2	1	90°	1	Hammerhead
29-Sep-11	14:46	67	30.499939	-80.074366	E	9	1	90°	1	Shark
30-Sep-11	14:27	27	30.364552	-80.182561	W	7	1	90°	1	Hammerhead
17-Oct-11	10:03	9	29.965393	-79.937672	E	1	2	90°	1	Shark
17-Oct-11	10:27	14	30.031233	-80.424927	W	2	1	75°	1	Hammerhead
17-Oct-11	10:53	21	30.100574	-80.376063	E	3	2	90°	1	Hammerhead
17-Oct-11	11:15	28	30.101720	-79.860129	E	3	2	90°	1	Hammerhead
17-Oct-11	12:32	39	30.299529	-80.330316	W	6	1	90°	1	Shark
17-Oct-11	12:36	41	30.301898	-80.463466	W	6	2	90°	1	Shark

Table 15. Whale shark (Rhincodon typus) sighting in the Jacksonville, Florida survey site for aerial surveys conducted from July 2010 to December 2011.

$\begin{aligned} & \text { Q } \\ & 0 \\ & \hline \end{aligned}$	$\stackrel{0}{\underline{E}}$	드 을 $\frac{\pi}{3}$		 0 0 0 0 0					Best Estimate
27-Feb-11	14:53	47	30.101220	-80.383363	E	3	3	90°	1

Table 16. Manta ray (Manta birostris) sightings in the Jacksonville, Florida survey site for aerial surveys conducted from July 2010 to December 2011.

$\begin{aligned} & \text { 毋 } \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$	$\stackrel{\otimes}{\underset{1}{E}}$	$\begin{aligned} & \text { 층 } \\ & \text { N } \\ & 3 \\ & 3 \end{aligned}$		「 0 0 0 0 0					
28-Jul-10	12:58	14	30.566598	-80.407248	E	10	\geq	90°	
19-Oct-10	15:31	60	30.566154	-80.655702	W	10	2	100°	1
30-Dec-10	14:36	122	30.299825	-80.128149	E	6	1	90°	1
31-Jan-11	16:15	111	30.032574	-80.456458	E	2	1	90°	1
26-Feb-11	16:03	41	30.364816	-80.632452	W	7	1	90°	1
27-Feb-11	15:44	60	30.165735	-80.237339	W	4	2	90°	3
8-Apr-11	11:42	38	30.108765	-80.257539	E	3	2	90°	1
8-Apr-11	15:32	87	30.300541	-80.181404	W	6	1	120°	1
9-Apr-11	11:12	31	30.366247	-80.202606	W	7	3	100°	1
17-Aug-11	11:10	36	30.367296	-80.195549	W	7	2	90°	1
29-Sep-11	11:01	22	30.234130	-79.882262	E	5	2	90°	1

Table 17. All ocean sunfish (Mola mola) sightings in the Jacksonville, Florida survey site for aerial surveys conducted from July 2010 to December 2011.

$\begin{gathered} \text { 凹 } \\ \hline 0 \\ \hline \end{gathered}$	$\stackrel{\otimes}{\underline{j}}$								$\begin{array}{\|l} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ .5 \\ \text { N } \\ 0 \\ \hline 0 \\ \hline \end{array}$	
18-Oct-10	12:58	11	30.029928	-79.837923	W	2	2	90°	3	1
30-Dec-10	10:47	37	30.425880	-80.512416	E	8	1	90°	3	1
31-Jan-11	9:54	7	30.567589	-80.357380	E	10	1	90°	3	1
31-Jan-11	10:04	12	30.566240	-80.293554	E	10	2	90°	3	1
31-Jan-11	10:05	9	30.567763	-80.252980	E	10	2	120°	3	1
31-Jan-11	10:08	14	30.567473	-80.156747	E	10	1	90°	3	1
31-Jan-11	10:35	20	30.498827	-80.209754	W	9	2	90°	3	1
31-Jan-11	10:58	29	30.434112	-80.664184	E	8	2	120°	3	1
31-Jan-11	11:10	32	30.434226	-80.252405	E	8	1	30°	3	1
31-Jan-11	11:48	54	30.364965	-80.352725	W	7	,	90°	3	1
31-Jan-11	11:48	41	30.364973	-80.353330	W	7	2	90°	3	1
31-Jan-11	11:48	42	30.364890	-80.377127	W	7	1	70°	${ }^{2}$	1
31-Jan-11	12:11	49	30.300566	-80.544952	E	6	2	110°	,	1
31-Jan-11	12:57	65	30.231568	-80.554468	W	5	2	130°	3	1
26-Feb-11	14:52	33	30.301731	-80.611191	E	6	2	120°	3	1
27-Feb-11	17:11	96	30.499338	-79.922662	W	9	1	90°	3	1
27-Feb-11	17:31	98	30.498066	-80.692220	W	9	1	90°	3	1
8-Apr-11	17:25	129	30.433429	-80.602164	W	8	2	110°	3	1
20-May-11	8:24	10	30.565845	-80.455952	E	10	2	90°	2	1
20-May-11	10:53	75	30.298816	-80.498598	E	,	2	90°	3	1
18-Aug-11	10:38	36	30.103765	-80.141827	E	3	1	90°	2	1
29-Sep-11	15:15	61	30.566270	-80.219609	W	10	3	90°	3	1
17-Oct-11	12:25	37	30.299540	-80.052735	W	6	1	90°	3	1

Figure 17. Whale shark (Rhincodon typus), other cartilaginous fish, manta ray (Manta birostris) and ocean sunfish (Mola mola) sightings.

Vessel Sightings

Commercial (Table 18, Fig. 18)
A total of 43 commercial vessels (e.g. tankers, car carriers, and container vessels) were observed in the study site.

Table 18. All commercial vessel sightings in the Jacksonville, Florida survey site for aerial surveys conducted from July 2010 to December 2011.

$\stackrel{\Perp}{0}$	$\stackrel{\otimes}{\underset{1}{E}}$	$\begin{aligned} & \text { 듬 } \\ & \text { 름 } \\ & 3 \end{aligned}$								
28-Jul-10	12:44	4	30.565490	-80.695467	E	10	4	90°	1	Cargo
28-Jul-10	12:45	6	30.566013	-80.638665	E	10	3	75°	1	Cargo
28-Jul-10	13:35	24	30.499908	-80.118364	W	9	4	90°	1	Tanker
28-Jul-10	13:59	33	30.499537	-80.574283	W	9	4	60°	1	Tanker
28-Jul-10	14:47	67	30.365993	-80.034107	W	7	3	65°	1	Cargo
28-Jul-10	16:08	81	30.232859	-80.545019	W	5	3	45°	1	Container vessel
3-Aug-10	12:48	4	29.965030	-80.606365	E	1	4	90°	1	Container vessel
3-Aug-10	13:42	21	30.031644	-80.625433	W	2	3	90°	1	Container vessel
5-Aug-10	9:41	4	30.365621	-80.160385	E	7	3	90°	1	Car Carrier
8-Sep-10	14:02	16	30.031167	-80.132342	W	2	1	120°	1	Ocean going tug and barge
9-Sep-10	9:48	14	30.497920	-80.053432	W	9	3	45°	1	Freighter
10-Sep-10	10:17	15	30.364404	-80.118541	W	7	3	45°	1	Car carrier
10-Sep-10	11:24	20	30.231461	-80.467462	W	5	2	25°	1	Tanker
10-Sep-10	11:55	25	30.033522	-79.994359	E	2	4	60°	1	Container vessel
10-Sep-10	12:06	32	29.963929	-79.902332	W	1	4	45°	1	Cargo vessel
18-Oct-10	14:05	39	30.103926	-80.268310	E	3	3	90°	1	Yacht
19-Oct-10	10:30	20	30.501997	-80.505851	E	9	4	30°	1	Frigate
20-Oct-10	9:24	10	30.498442	-80.512361	W	9	4	30°	1	Tug and Barge
20-Oct-10	10:03	13	30.365672	-79.861371	W	7	3	110°	1	Frigate
18-Nov-10	11:05	30	30.233136	-79.832819	W	5	4	30°	1	Cargo vessel
18-Nov-10	13:35	38	30.169134	-80.303731	E	4	1	75°	1	Submarine and Tenders
18-Nov-10	15:09	47	29.965169	-80.617708	W	1	4	90°	1	Car Carrier
21-Dec-10	11:59	38	30.366371	-79.969208	W	7	3	90°	1	Tanker
21-Dec-10	12:45	47	30.299626	-80.068558	E	6	3	90°	1	Tanker
29-Dec-10	14:52	39	30.165496	-80.605369	W	4	3	60°	1	Yacht
30-Dec-10	9:28	20	30.566433	-80.001726	E	10	2	45°	1	Cargo vessel
30-Dec-10	15:59	103	30.166084	-80.212702	E	4	3	100°	1	Tanker
31-Jan-11	9:50	5	30.567168	-80.495652	E	10	4	90°	1	Frigate
31-Jan-11	10:19	14	30.565100	-79.841555	E	10	2	90°	1	Container vessel
22-Feb-11	16:17	48	30.167938	-80.683331	W	4	4	90°	1	Frigate
26-Feb-11	14:16	13	30.231705	-80.454194	W	5	1	45°	1	Long-liner
8-Apr-11	9:59	4	29.965175	-80.643473	E	1	4	20°	1	Cargo vessel
9-Apr-11	16:01	93	29.967750	-80.336201	W	1	1	90°	1	Cruise ship (Carnival)
19-May-11	15:14	34	30.232740	-79.999633	E	5	3	90°	1	Tanker
19-May-11	15:27	26	30.299145	-79.984646	W	6	3	90°	1	Tanker
20-May-11	11:04	57	30.298047	-80.269368	E	6	3	90°	1	Tanker
22-Jun-11	10:00	5	30.034408	-80.541781	W	2	4	45°	1	Cargo vessel
20-Jul-11	9:33	14	30.432855	-80.251544	E	8	2	90°	1	Frigate
20-Jul-11	9:39	15	30.432715	-79.996462	E	8	4	90°	1	Container vessel
29-Sep-11	9:13	3	29.967517	-79.987492	E	1	3	60°	1	Cargo vessel
29-Sep-11	9:14	4	29.967820	-79.918136	E	1	3	45°	1	Cargo vessel
29-Sep-11	10:36	18	30.163923	-80.655827	W	4	1	60°	1	Cargo vessel
29-Sep-11	10:56	25	30.232847	-80.114296	E	5	4	45°	1	Container vessel

Figure 18. All commercial vessel sightings.

Military (Table 19, Fig, 19)
A total of 17 U.S. military vessels were seen during the reporting period.

Table 19. All military vessel sightings in the Jacksonville, Florida survey site for aerial surveys conducted from July 2010 to December 2011.

$\begin{gathered} 9 \\ 0 \\ \hline 0 \end{gathered}$	$\stackrel{\otimes}{\underline{E}}$	$\begin{aligned} & \text { 드 } \\ & \text { 을 } \\ & \text { त } \\ & 3 \end{aligned}$		 0 0 0 0 0 0						C E 0 0 0
28-Jul-10	16:01	90	30.235885	-80.299050	W	5	2	65°	1	Navy Frigate
29-Jul-10	10:56	11	30.038856	-80.433986	W	2	1	45°	1	Navy war ship
29-Jul-10	12:29	23	30.166835	-80.298436	W	4	4	90°	1	Navy Frigate
3-Aug-10	14:47	40	30.166825	-80.178625	W	4	2	90°	1	Coast Guard Cutter
3-Aug-10	15:22	74	30.232591	-80.324781	E	5	3	30°	1	Navy warship
18-Oct-10	12:47	13	29.967740	-80.040724	E	1	3	90°	1	Navy vessel
18-Oct-10	13:32	28	30.031870	-80.567187	W	2	3	90°	1	Navy vessel
18-Oct-10	14:54	61	30.168124	-80.276690	W	4	3	60°	1	Navy surface vessel
19-Oct-10	11:23	24	30.560288	-80.531442	W	10	3	45°	1	Navy surface vessel
31-Jan-11	9:51	5	30.567153	-80.456212	E	10	3	60°	1	Navy vessel
31-Jan-11	12:12	63	30.300714	-80.515425	E	6	3	90°	1	Navy vessel
31-Jan-11	12:13	64	30.300809	-80.462511	E	6	3	90°	1	Navy vessel
22-Feb-11	15:14	35	30.031141	-80.641882	W	2	4	30°	1	Warship
22-Feb-11	16:11	47	30.165295	-80.519878	W	4	4	90°	1	Warship
20-Jul-11	8:54	9	30.500211	-80.217063	W	9	3	45°	1	Warship
21-Jul-11	10:19	28	30.166454	-80.660394	W	4	3	45°	1	Warship
18-Aug-11	11:59	44	30.303171	-80.063903	W	6	3	45°	1	Millitary cruser

Figure 19. All military vessel sightings.

Other Vessels (Table 20, Fig. 20)
A total of 197 other vessels were recorded in the survey area. Recreational sport fishing vessels constituted the majority of these sightings ($\mathrm{n}=189$). This category also included head boats, sailing vessels and yachts.

Table 20. All other vessel sightings in the Jacksonville, Florida survey site for aerial surveys conducted from July 2010 to December 2011.

$\begin{gathered} 9 \\ 0 \\ 0 \end{gathered}$	$\stackrel{\oplus}{\underline{E}}$	듬 을 त 3		T 0 0 0 0 0						
28-Jul-10	15:58	75	30.233265	-80.223030	W	5	4	90°	1	Sailing vessel
29-Jul-10	11:36	17	30.099833	-79.975358	E	3	3	75°	1	Recreational fishing vessel
3-Aug-10	14:16	31	30.100273	-80.087479	E	3	2	90°	1	Recreational fishing vessel
3-Aug-10	14:52	43	30.166635	-80.385223	W	4	4	90°	1	Recreational fishing vessel
3-Aug-10	15:23	60	30.232596	-80.256640	E	5	3	90°	1	Recreational fishing vessel
4-Aug-10	12:29	64	30.300276	-80.245305	E	6	1	30°	1	Recreational fishing vessel
4-Aug-10	15:40	102	30.100713	-80.099475	W	3	2	90°	1	Recreational fishing vessel
5-Aug-10	10:32	15	30.499115	-80.558034	E	9	3	90°	1	Recreational fishing vessel
9-Sep-10	11:13	24	30.498093	-80.560535	W	9	3	45°	1	Recreational fishing vessel
10-Sep-10	9:27	7	30.498471	-80.325703	W	9	4	45°	1	Recreational fishing vessel
10-Sep-10	12:17	29	29.964460	-80.253697	W	1	4	80°	1	Recreational fishing vessel
10-Sep-10	12:18	34	29.964319	-80.290518	W	1	3	75°	1	Recreational fishing vessel
18-Oct-10	12:28	4	29.965425	-80.608936	E	1	3	120°	1	Recreational fishing vessel
19-Oct-10	9:36	11	30.366576	-80.438000	E	7	3	110°	1	Recreational fishing vessel
19-Oct-10	13:35	31	30.369953	-80.455671	E	7	2	60°	1	Recreational fishing vessel
18-Nov-10	8:48	3	30.566110	-80.618163	E	10	1	90°	1	Sailing vessel
18-Nov-10	9:01	6	30.566371	-80.151136	E	10	3	90°	1	Recreational fishing vessel
18-Nov-10	9:48	13	30.432803	-80.456733	E	8	3	90°	1	Recreational fishing vessel
18-Nov-10	14:28	42	30.031731	-80.373837	E	2	3	90°	1	Recreational fishing vessel
29-Dec-10	12:40	7	29.967027	-80.275728	E	1	3	80°	1	Recreational fishing vessel
29-Dec-10	14:50	38	30.166496	-80.543666	W	4	3	90°	1	Recreational fishing vessel
30-Dec-10	9:23	9	30.565851	-80.170097	E	10	3	90°	2	Recreational fishing vessel
30-Dec-10	9:58	18	30.500056	-80.180945	W	9	1	60°	1	Recreational fishing vessel
30-Dec-10	9:59	30	30.499561	-80.199635	W	9	2	30°	1	Recreational fishing vessel
30-Dec-10	10:01	21	30.500121	-80.262387	W	9	1	90°	1	Recreational fishing vessel
30-Dec-10	10:49	56	30.433200	-80.443112	E	8	2	90°	3	Recreational fishing vessel
30-Dec-10	10:53	57	30.432814	-80.309332	E	8	2	45°	3	Recreational fishing vessel
30-Dec-10	10:53	40	30.432964	-80.302495	E	8	4	90°	1	Recreational fishing vessel
30-Dec-10	10:55	59	30.433075	-80.229754	E	8	2	90°	3	Recreational fishing vessel
30-Dec-10	10:55	42	30.433298	-80.246387	E	8	2	90°	1	Recreational fishing vessel
30-Dec-10	11:43	79	30.366255	-80.193661	W	7	2	90°	4	Recreational fishing vessel
30-Dec-10	11:43	52	30.366260	-80.193238	W	7	3	90°	1	Recreational fishing vessel
30-Dec-10	11:44	54	30.366097	-80.228858	W	7	3	90°	2	Recreational fishing vessel
30-Dec-10	14:03	103	30.299521	-80.599106	E	6	2	45°	1	Recreational fishing vessel
30-Dec-10	14:31	121	30.300459	-80.282457	E	6	3	90°	6	Recreational fishing vessel
30-Dec-10	14:32	87	30.300039	-80.262664	E	6	3	60°	7	Recreational fishing vessel
30-Dec-10	15:25	95	30.233560	-80.304767	W	5	3	90°	1	Recreational fishing vessel
30-Dec-10	15:28	135	30.232969	-80.412877	W	5	2	45°	3	Recreational fishing vessel
30-Dec-10	15:48	100	30.165601	-80.594277	E	4	1	90°	1	Recreational fishing vessel
30-Dec-10	15:55	101	30.165612	-80.336784	E	4	2	100°	2	Recreational fishing vessel
30-Dec-10	16:38	108	30.100207	-80.659195	W	3	4	90°	1	Recreational fishing vessel
15-Jan-11	12:22	11	30.499023	-80.158746	W	9	3	45°	1	Recreational fishing vessel
15-Jan-11	12:37	12	30.498833	-80.392243	W	9	2	60°	1	Recreational fishing vessel
15-Jan-11	12:45	14	30.498133	-80.655514	W	9	3	30°	1	Sailing vessel
15-Jan-11	13:28	23	30.364941	-80.209332	W	7	3	40°	1	Recreational fishing vessel
15-Jan-11	13:28	25	30.364959	-80.232316	W	7	2	90°	2	Recreational fishing vessel
15-Jan-11	13:41	26	30.364619	-80.663882	W	7	1	90°	1	Sailing vessel
15-Jan-11	13:55	30	30.301004	-80.304610	E	6	3	45°	1	Recreational fishing vessel
15-Jan-11	14:27	38	30.232137	-80.284264	W	5	2	90°	1	Recreational fishing vessel

Table 20 (Continued). All other vessel sightings in the Jacksonville, Florida survey site for aerial surveys conducted from July 2010 to December 2011.

$\begin{aligned} & \text { \#, } \\ & \hline 0 \\ & \hline \end{aligned}$	$\stackrel{\otimes}{\underline{j}}$									
16-Jan-11	9:13	8	29.966224	-80.484019	E	1	3	45°	1	Recreational fishing vessel
16-Jan-11	9:16	9	29.966296	-80.388965	E	1	1	45°	1	Recreational fishing vessel
16-Jan-11	9:25	7	29.965555	-80.307916	E	1	3	90°	1	Recreational fishing vessel
16-Jan-11	9:56	12	30.030822	-80.252136	W	2	3	50°	1	Recreational fishing vessel
16-Jan-11	10:28	19	30.101678	-80.323243	E	3	2	30°	1	Recreational fishing vessel
16-Jan-11	10:29	20	30.101754	-80.281416	E	3	3	90°	1	Recreational fishing vessel
16-Jan-11	10:58	26	30.165261	-80.255472	W	4	3	70°	1	Recreational fishing vessel
16-Jan-11	11:04	28	30.165494	-80.456204	W	4	2	45°	1	Head boat
31-Jan-11	11:00	30	30.433976	-80.599540	E	8	4	80°	1	Recreational fishing vessel
31-Jan-11	11:06	36	30.434197	-80.373601	E	8	3	90°	1	Recreational fishing vessel
31-Jan-11	11:16	44	30.434444	-80.171630	E	8	4	90°	1	Recreational fishing vessel
31-Jan-11	12:18	68	30.300984	-80.269926	E	6	2	90°	,	Recreational fishing vessel
31-Jan-11	16:38	116	30.032253	-79.879649	E	2	3	90°	1	Recreational fishing vessel
31-Jan-11	17:02	125	29.965035	-80.377410	W	1	2	90°	1	Recreational fishing vessel
26-Feb-11	14:10	10	30.231773	-80.231627	W	5	1	60°	2	Recreational fishing vessel
26-Feb-11	14:11	11	30.231906	-80.282455	W	5	3	45°	1	Recreational fishing vessel
26-Feb-11	14:34	19	30.234507	-80.655201	W	5	4	75°	1	Recreational fishing vessel
26-Feb-11	15:12	43	30.301641	-80.245132	E	6	2	45°	1	Recreational fishing vessel
26-Feb-11	15:49	54	30.366084	-80.313047	W	7	3	75°	1	Recreational fishing vessel
27-Feb-11	13:45	15	29.966474	-80.198709	E	1	3	90°	1	Recreational fishing vessel
27-Feb-11	14:07	20	30.031181	-80.128454	W	2	3	90°	1	Recreational fishing vessel
27-Feb-11	14:10	21	30.031432	-80.218541	W	2	4	90°	1	Recreational fishing vessel
27-Feb-11	14:10	22	30.031402	-80.230333	W	2	2	90°	1	Recreational fishing vessel
27-Feb-11	14:16	24	30.031164	-80.463912	W	2	3	120°	1	Recreational fishing vessel
27-Feb-11	15:43	58	30.166079	-80.213777	W	4	2	90°	1	Recreational fishing vessel
8-Apr-11	10:20	9	29.965620	-80.211054	E	1	2	60°	1	Recreational fishing vessel
8-Apr-11	17:10	85	30.433868	-80.242748	W	8	2	75°	1	Recreational fishing vessel
9-Apr-11	9:54	9	30.499806	-80.193642	W	9	3	90°	1	Recreational fishing vessel
9-Apr-11	10:14	15	30.499493	-80.535787	W	9	2	100°	1	Recreational fishing vessel
9-Apr-11	10:40	27	30.433294	-80.409209	E	8	4	90°	1	Recreational fishing vessel
9-Apr-11	11:17	35	30.366162	-80.353404	W	7	3	120°	1	Recreational fishing vessel
9-Apr-11	15:28	87	30.031682	-80.300365	E	2	3	120°	1	Recreational fishing vessel
9-Apr-11	15:58	92	29.966080	-80.266845	W	1	3	130°	1	Recreational fishing vessel
9-Apr-11	16:02	77	29.965906	-80.396170	W	1	2	45°	1	Recreational fishing vessel
19-May-11	13:08	8	29.966696	-80.301760	E	1	3	45°	1	Recreational fishing vessel
19-May-11	13:09	6	29.967280	-80.279960	E	1	4	90°	5	Recreational fishing vessel
19-May-11	13:47	12	30.033422	-80.332008	W	2	3	90°	1	Recreational fishing vessel
19-May-11	14:04	19	30.100334	-80.558946	E	3	3	90°	1	Recreational fishing vessel
19-May-11	14:06	20	30.100539	-80.487071	E	3	3	45°	1	Recreational fishing vessel
19-May-11	14:12	22	30.099185	-80.283534	E	3	1	90°	1	Recreational fishing vessel
19-May-11	14:12	15	30.100634	-80.253103	E	3	1	90°	1	Recreational fishing vessel
19-May-11	14:38	18	30.166904	-80.190354	W	4	2	90°		Recreational fishing vessel
19-May-11	14:41	26	30.166642	-80.280596	W	4	2	90°	1	Recreational fishing vessel
19-May-11	14:41	19	30.166764	-80.291958	W	4	2	90°	2	Recreational fishing vessel
19-May-11	14:44	27	30.167098	-80.395708	W	4	1	90°	1	Recreational fishing vessel
19-May-11	15:43	28	30.299351	-80.571209	W	6	4	90°	1	Recreational fishing vessel
20-May-11	10:48	70	30.301447	-80.578374	E	6	1	90°	1	Recreational fishing vessel
20-May-11	11:05	58	30.302565	-80.221156	E	6	3	90°	,	Recreational fishing vessel
20-May-11	11:28	85	30.233429	-80.189324	W	5	3	90°	2	Recreational fishing vessel

Table 20 (Continued). All other vessel sightings in the Jacksonville, Florida survey site for aerial surveys conducted from July 2010 to December 2011.

$\begin{aligned} & \stackrel{y}{0} \\ & \hline 0 \end{aligned}$	$\stackrel{\otimes}{\underline{j}}$				$\begin{aligned} & \text { O } \\ & \text { 드 } \\ & \tilde{\mathbb{O}} \\ & \underline{1} \\ & \hline \end{aligned}$					$\begin{aligned} & \text { 气 } \\ & \text { D } \\ & \text { E } \\ & \text { EO } \end{aligned}$
20-May-11	11:29	64	30.232900	-80.224430	W	5	2	45°	4	Recreational fishing vessel
20-May-11	13:29	78	30.161614	-80.305470	E	4	1	90°	3	Recreational fishing vessel
20-May-11	13:56	82	30.100432	-80.267398	W	3	3	90°	9	Recreational fishing vessel
20-May-11	14:11	90	30.026371	-80.633307	E	2	1	90°	2	Recreational fishing vessel
20-May-11	14:21	93	30.024531	-80.299280	E	2	2	45°	3	Recreational fishing vessel
20-May-11	14:54	99	29.980061	-80.298407	W	1	3	90°	4	Recreational fishing vessel
20-May-11	15:01	103	29.973375	-80.593986	W	1	2	90°	1	Recreational fishing vessel
21-Jun-11	10:36	6	30.502263	-80.351837	W	9	1	45°	1	Recreational fishing vessel
21-Jun-11	15:29	26	30.034493	-80.113358	W	2	2	90°	1	Boat
22-Jun-11	11:18	13	30.230213	-80.256038	E	5	2	90°	1	Recreational fishing vessel
20-Jul-11	11:12	29	30.299258	-79.880416	E	6	2	90°	1	Yacht
20-Jul-11	14:35	75	30.031036	-80.548514	E	2	1	45°	1	Recreational fishing vessel
21-Jul-11	9:10	13	30.032439	-80.449864	W	2	3	90°	1	Recreational fishing vessel
21-Jul-11	9:20	17	30.100590	-80.682947	E	3	3	90°	1	Recreational fishing vessel
21-Jul-11	10:23	31	30.231921	-80.661534	E	5	2	90°	2	Recreational fishing vessel
21-Jul-11	11:13	26	30.300794	-80.260015	W	6	4	90°	1	Recreational fishing vessel
21-Jul-11	12:50	44	30.364697	-80.651267	E	7	3	90°	3	Recreational fishing vessel
21-Jul-11	13:43	50	30.434046	-80.430881	W	8	3	60°	1	Recreational fishing vessel
21-Jul-11	13:44	51	30.434039	-80.455902	W	8	2	90°	1	Recreational fishing vessel
21-Jul-11	14:05	48	30.498612	-80.617196	E	9	4	90°	1	
21-Jul-11	14:05	49	30.498614	-80.609290	E	9	2	90°	5	Recreational fishing vessel
21-Jul-11	14:06	58	30.498745	-80.582644	E	9	3	60°	2	Recreational fishing vessel
21-Jul-11	14:07	59	30.498808	-80.528031	E	9	1	90°	3	Recreational fishing vessel
21-Jul-11	14:09	50	30.498875	-80.461164	E	9	3	90°	5	Recreational fishing vessel
17-Aug-11	10:04	31	30.499101	-80.289240	W	9	2	45°	2	Recreational fishing vessel
18-Aug-11	10:07	27	30.039313	-80.510340	W	2	2	45°	1	Recreational fishing vessel
18-Aug-11	10:11	17	30.029192	-80.650827	W	2	4	45°	1	Recreational fishing vessel
18-Aug-11	12:24	63	30.298411	-80.531411	W	6	3	90°	1	Recreational fishing vessel
18-Aug-11	14:35	65	30.433147	-80.184232	W	8	2	45°	1	Salvage vessel
18-Aug-11	14:37	77	30.433581	-80.273173	W	8	3	45°	1	Recreational fishing vessel
18-Aug-11	14:49	84	30.433833	-80.476121	W	8	2	45°	1	Recreational fishing vessel
18-Aug-11	15:20	78	30.498947	-80.255452	E	9	1	90°	1	Headboat
29-Sep-11	8:56	3	29.961832	-80.652782	E	1	3	60°	1	Recreational fishing vessel
17-Oct-11	10:28	14	30.031729	-80.468606	W	2	1	90°	1	Recreational fishing vessel

Figure 20. All other vessel sightings.

Literature Cited

DeMaster, D. P., Lowry, L. F., Frost, K. J., and R. A. Bengtsson. 2001. The effect of sea state on estimates of abundance for beluga whales (Delphinapterus leucas) in Norton Sound, Alaska. Fisheries Bulletin 99: 197-201.

Gómez de Segura, A., Crespo, E. A., Pedraza, S. N., Hammond., P. S., and J. A. Raga. 2006. Abundance of small cetaceans in waters of the central Spanish Mediterranean. Marine Biology, 150: 149-160.

Perrin, W F., Mitchell, E. D., Mead, J. G., Caldwell, D. K., Caldwell, M. C., van Bree, P. J. H., and W. H. Dawbin. 1987. Revision of the spotted dolphins, Stenella sp. Marine Mammal Science 3(2): 99-170.

Perrin, W. F., Caldwell, D. K., and M. C. Caldwell. 1994. Atlantic spotted dolphin. pp. 173-190. In: S. H. Ridgeway and R. Harrison (eds). Handbook of marine mammals, Volume 5: The first book of dolphins. Academic Press, San Diego, 418 pp.

Torres, L. G., Rosel, P. E., D’Agrosa, D., and A. J. Read. 2003. Improving management of overlapping bottlenose dolphin ecotypes through spatial analysis and genetics. Marine Mammal Science, 19(3): 502-514.

National Marine Fisheries Service and U.S. Fish and Wildlife Service. 2008. Recovery Plan for the Northwest Atlantic Population of the Loggerhead Sea Turtle (Caretta caretta), Second Revision. National Marine Fisheries Service, Silver Spring, MD.

National Marine Fisheries Service and U.S. Fish and Wildlife Service. 1992. Recovery Plan for Leatherback Turtles in the U.S. Caribbean, Atlantic and Gulf of Mexico. National Marine Fisheries Service, Washington, D.C.

National Marine Fisheries Service and U.S. Fish and Wildlife Service. 1992. Recovery Plan for the Kemp’s Ridley Sea Turtle (Lepidochelys kempii). National Marine Fisheries Service, St. Petersburg, Florida.

NOAA 2011. Endangered and Threatened Species; Determination of Nine Distinct population Segments of Loggerhead Sea Turtles as Endangered or Threatened. Federal Register. Vol. 76 No. 184.

Waring GT, Josephson E, Fairfield-Walsh CP, Maze-Foley K, editors. 2007. U.S. Atlantic and Gulf of Mexico Marine Mammal Stock Assessments -- 2007. NOAA Tech Memo NMFS NE 205; 415 p.

Waring GT, Josephson E, Fairfield-Walsh CP, Maze-Foley K, editors. 2008. U.S. Atlantic and Gulf of Mexico Marine Mammal Stock Assessments -- 2008. NOAA Tech Memo NMFS NE 210; 440 p.

Waring GT, Josephson E, Maze-Foley K, Rosel, PE, editors. 2011. U.S. Atlantic and Gulf of Mexico Marine Mammal Stock Assessments -- 2010. NOAA Tech Memo NMFS NE 219; 598 p. Available from: National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 025431026.

ABSTRACT
 Analysis of the UNCW and Duke University aerial and shipboard surveys of the Jacksonville USWTR for the period January 2009 to June 2011

ML Burt and CGM Paxton, RUWPA, University of St Andrews

Aerial and shipboard surveys of the Jacksonville USWTR region (Fig. 1) were carried out throughout 2009 to mid 2011 by the University of North Carolina at Wilmington (UNCW) and Duke University, respectively. Aerial surveys were conducted monthly (weather permitting) from January 2009 to June 2011 and shipboard surveys from July 2009 to March 2011. The aim of these surveys was to collect data to estimate density and abundance of marine animals in the region and investigate how density changed throughout the year. There were sufficient numbers of detections of loggerhead turtles, all turtles combined and all dolphins combined to estimate monthly abundance using density surface modelling techniques (Table 1). Conventional distance sampling (CDS) methods (Buckland et al. 2001) were used to estimate monthly abundances for bottlenose dolphins and spotted dolphins using the aerial survey data. Estimates were obtained for the inner core USWTR region and the outer region.

Density surface modelling (DSM) allows animal density to vary both temporally and spatially across the survey region. To generate an estimated density map for each species/taxa of interest the count method of Hedley et al. (2004) was used. Firstly, the probability of detection associated with each sighting was estimated from a detection function model and this was then used to estimate abundance in small sections, or segments, of the trackline. These estimated abundances formed the response variable in a generalized additive model (GAM) with survey platform (ie. aerial or ship), location, habitat and temporal variables as potential explanatory variables. After model selection, the chosen model was used to estimate density for the region of interest and abundance was obtained by numerically integrating under the predicted density surface. If survey platform was included in the model, then predicted values were obtained assuming a ship to reduce problems associated with availability bias and detection on the trackline. Note that the resulting abundances were relative (rather than absolute) because they did not take into account imperfect detection on the transect line nor availability at the surface.

Twenty-seven aerial surveys and 14 shipboard surveys were carried out with $45,500 \mathrm{~km}$ and $2,440 \mathrm{~km}$ of trackline searched, respectively. Nearly 2,000 groups of turtles were detected with 76% being identified as loggerhead turtles. Over 500 groups of dolphins were detected with 81% being either bottlenose or spotted dolphins with approximately 220 groups of each of these species (Table 1). Detection functions were fitted separately to the aerial and shipboard sightings and to different species or species group (Table 2). Due to the shape of the perpendicular distance distributions for turtles detected during the aerial survey, detection was assumed to be constant and certain within a narrow strip. All the density surface models used to estimate abundance included terms for survey platform, month, location and depth.

Average monthly abundance estimates are given in Table 3 (CDS estimates from the aerial survey data) and Table 4 (DSM estimates obtained from both the aerial and shipboard data). These estimates (also shown in Figure 2) indicated seasonal patterns in abundance with dolphins being more abundant in spring and autumn than in summer or winter. The highest estimate of dolphins was 23,758 animals ($\mathrm{cv}=0.27$) in April and the lowest estimate was 4,144 animals ($\mathrm{cv}=0.35$) in June. Turtles were more abundant in May $(2,856$ ($\mathrm{cv}=0.23$) and least abundant in November (636 animals ($\mathrm{cv}=0.36$)). These seasonal patterns may be linked to sea surface temperature which is highest between June and August and lowest in February and the spatial patterns observed in the density surface maps indicated that both dolphins and turtles were more abundant in shallower waters.

REFERENCES

Buckland, S.T., Anderson, D.R., Burnham, K.P., Laake, J.L., Borchers, D.L. and Thomas, L. 2001. Introduction to distance sampling: estimating abundance of biological populations. Oxford University Press, London. 432pp.

Hedley, S.L., Buckland, S.T. and Borchers D. L. 2004. Spatial distance sampling models. In Advanced Distance Sampling. Buckland S.T., Anderson D.R., Burnham K.P., Laake J.L., Borchers D.L. and Thomas L. (Eds) Oxford University Press, Oxford

Table 1 Summary of search effort and number of detections (no truncation) by year.

Survey platform	Year	Number of surveys	Search effort (km)	All dolphin species	Bottlenose dolphins	Spotted dolphins	All turtle species	Loggerhead turtles
Aerial	2009	10	15884	116	40	47	703	554
	2010	12	22714	262	129	98	884	661
	2011	5	6877	77	31	40	290	206
	Total	27	45476	455	200	185	1877	1421
Ship	2009	4	780	15	6	8	23	20
	2010	8	1315	36	13	22	37	27
	2011	2	346	12	6	6	24	18
	Total	14	2440	63	25	36	84	65
Total		41	47916	518	225	221	1961	1486

Table 2 Summary of detection function models; truncation distances, detection function (DF) form ($\mathrm{HN}=$ half normal, $\mathrm{HZ}=$ hazard rate and strip=strip transect) and effective strip half width (esw). Percentage coefficients are given in parentheses.

Species	Platform	Truncation (m)	DF form	Esw (m)
Bottlenose dolphins	Aerial	1000	HN	$676.1(6.8)$
Spotted dolphins	Aerial	1150	HN	$747.2(7.0)$
Dolphin	Aerial	1035	HN	$706.3(4.4)$
	Ship	50	HN	$25.6(14.0)$
Turtles	Aerial	$140-410$	Strip	-
	Ship	145	HZ	$48.3(16.1)$
Loggerhead turtles	Aerial	$140-410$	Strip	-
	Ship	100	HZ	$48.7(17.9)$

Table 3 Estimates of average monthly abundance and 95% confidence intervals (CI) for a) bottlenose dolphins and b) spotted dolphins obtained from the aerial survey data using the conventional distance sampling estimator. Percentage CVs are given in parentheses.
a) Bottlenose dolphins

Month	Inner region		Outer region		Total	
	Abundance	$95 \% \mathrm{Cl}$	Abundance	$95 \% \mathrm{Cl}$	Abundance	$95 \% \mathrm{Cl}$
January	$37(46.5)$	$16-88$	$170(22.3)$	$110-261$	$207(21.1)$	$137-311$
February	$37(44.1)$	$16-84$	$184(23.2)$	$117-288$	$221(22.6)$	$143-342$
March	$18(100.2)$	$3-90$	$138(72.5)$	$39-493$	$153(65.4)$	$48-493$
April	$86(32.4)$	$46-159$	$308(27.0)$	$183-519$	$393(22.9)$	$252-612$
May	$55(54.9)$	$20-150$	$172(36.0)$	$87-341$	$227(31.7)$	$123-416$
June	$7(100.6)$	$1-38$	$42(46.9)$	$18-101$	$50(42.7)$	$22-110$
July	0		$165(29.3)$	$94-290$	$163(29.8)$	$92-290$
August	$12(101.6)$	$2-62$	$167(35.8)$	$85-330$	$179(32.9)$	$96-336$
September	$41(52.1)$	$16-106$	$106(28.7)$	$61-184$	$147(26.2)$	$89-244$
October	0		$101(52.2)$	$39-264$	$103(51.0)$	$40-265$
November	0		0		0	
December	$42(61.4)$	$14-126$	$124(39.0)$	$59-260$	$166(33.3)$	$88-313$

b) Spotted dolphins

Month	Inner region		Outer region		Total	
	Abundance	$95 \% \mathrm{Cl}$	Abundance	$95 \% \mathrm{Cl}$	Abundance	$95 \% \mathrm{Cl}$
January	$12(101.0)$	$2-59$	$164(33.4)$	$86-309$	$174(31.8)$	$95-320$
February	$55(49.1)$	$22-136$	$287(24.9)$	$177-464$	$342(23.3)$	$218-536$
March	$261(37.8)$	$128-534$	$330(35.3)$	$168-646$	$604(25.6)$	$369-991$
April	$179(29.9)$	$101-317$	$488(24.4)$	$305-782$	$668(20.1)$	$452-986$
May	$102(53.6)$	$38-272$	$390(37.3)$	$192-792$	$491(30.3)$	$274-878$
June	0		$78(40.3)$	$36-167$	$79(40.4)$	$37-169$
July	0		$112(59.3)$	$38-327$	$110(60.3)$	$37-329$
August	0		$222(29.3)$	$126-389$	$222(29.5)$	$126-390$
September	$76(51.6)$	$29-196$	$364(22.7)$	$235-566$	$440(21.6)$	$290-668$
October	$103(73.8)$	$28-376$	$282(32.5)$	$151-524$	$384(33.9)$	$201-734$
November	$29(100.9)$	$6-148$	0		$29(100.4)$	$6-151$
December	$77(60.4)$	$26-231$	$126(50.9)$	$49-323$	$206(41.2)$	$95-447$

Table 4 Estimates of average monthly abundance and 95% 'percentile' Cl for a) dolphins, b) turtles and c) Loggerhead turtles obtained from the density surface modelling. Percentage CVs are given in parentheses.
a) Dolphins

Month	Inner region		Outer region		Total	
	Abundance	$95 \% \mathrm{Cl}$	Abundance	$95 \% \mathrm{Cl}$	Abundance	$95 \% \mathrm{Cl}$
January	$3386(26.8)$	$1864-5468$	$9265(25.3)$	$5328-14575$	$12652(25.2)$	$7333-19844$
February	$3630(30.9)$	$1903-6191$	$9931(27.8)$	$5430-16224$	$13561(28.1)$	$7466-22534$
March	$6157(27.6)$	$3330-9906$	$16845(26.6)$	$9734-27306$	$23001(26.3)$	$13111-37029$
April	$6359(30.0)$	$3284-10610$	$17398(26.6)$	$9868-27855$	$23758(27.1)$	$13309-37550$
May	$6676(29.1)$	$3691-11261$	$18266(24.5)$	$10779-27389$	$24942(25.3)$	$14530-38367$
June	$1109(36.5)$	$485-2101$	$3035(35.2)$	$1356-5689$	$4144(35.2)$	$1844-7721$
July	$2405(30.7)$	$1133-4033$	$6580(29.6)$	$3365-10690$	$8985(29.5)$	$4504-14391$
August	$2681(28.9)$	$1459-4388$	$7335(28.7)$	$3974-12659$	$10015(28.3)$	$5431-17215$
September	$5249(25.1)$	$3048-8276$	$14362(23.1)$	$8718-21647$	$19611(23.1)$	$11668-29470$
October	$5032(33.9)$	$2263-8931$	$13767(31.7)$	$6817-23309$	$18799(31.9)$	$9056-32375$
November	$1529(64.1)$	$15-3702$	$4182(60.5)$	$44-9434$	$5711(61.2)$	$58-13100$
December	$2589(40.8)$	$1109-5330$	$7085(36.6)$	$3101-13527$	$9674(37.4)$	$4137-18528$

b) Turtles

Month	Inner region		Outer region		Total	
	Abundance	$95 \% \mathrm{Cl}$	Abundance	$95 \% \mathrm{Cl}$	Abundance	$95 \% \mathrm{Cl}$
January	$306(25.1)$	$183-505$	$1079(22.2)$	$662-1675$	$1385(22.7)$	$848-2171$
February	$433(26.0)$	$251-716$	$1529(24.0)$	$918-2401$	$1962(24.3)$	$1169-3104$
March	$450(22.2)$	$283-700$	$1588(20.7)$	$1017-2338$	$2038(20.8)$	$1300-3009$
April	$612(24.7)$	$351-969$	$2160(23.3)$	$1227-3357$	$2772(23.4)$	$1581-4268$
May	$631(23.4)$	$393-969$	$2226(22.6)$	$1342-3421$	$2856(22.6)$	$1730-4382$
June	$353(22.4)$	$228-540$	$1247(21.1)$	$820-1877$	$1601(21.2)$	$1066-2420$
July	$615(23.7)$	$367-961$	$2171(22.9)$	$1372-3321$	$2787(22.9)$	$1759-4283$
August	$475(23.1)$	$298-745$	$1676(21.0)$	$1094-2515$	$2151(21.3)$	$1403-3256$
September	$433(25.2)$	$260-680$	$1529(22.5)$	$937-2262$	$1962(23.0)$	$1207-2938$
October	$378(30.4)$	$199-659$	$1335(29.3)$	$693-2283$	$1714(29.4)$	$889-2923$
November	$141(37.7)$	$64-281$	$496(36.0)$	$229-938$	$636(36.2)$	$295-1219$
December	$228(24.7)$	$136-366$	$805(22.7)$	$500-1229$	$1033(23.0)$	$640-1598$

c) Loggerhead turtles

Month	Inner region		Outer region		Total	
	Abundance	$95 \% \mathrm{Cl}$	Abundance	$95 \% \mathrm{Cl}$	Abundance	$95 \% \mathrm{Cl}$
January	$159(29.5)$	$89-271$	$580(27.2)$	$323-952$	$739(27.5)$	$414-1227$
February	$315(29.3)$	$171-554$	$1152(28.4)$	$623-2046$	$1467(28.4)$	$796-2611$
March	$371(27.6)$	$208-617$	$1358(26.3)$	$769-2249$	$1729(26.4)$	$990-2848$
April	$319(32.6)$	$164-586$	$1166(31.5)$	$597-2008$	$1485(31.6)$	$759-2540$
May	$446(28.0)$	$250-775$	$1631(26.8)$	$930-2701$	$2077(26.9)$	$1184-3436$
June	$274(25.1)$	$164-445$	$1004(24.6)$	$609-1622$	$1278(24.5)$	$774-2063$
July	$485(28.0)$	$269-806$	$1774(27.1)$	$999-2876$	$2259(27.1)$	$1278-3629$
August	$354(27.3)$	$205-578$	$1294(26.0)$	$762-2062$	$1647(26.1)$	$967-2633$
September	$283(29.8)$	$157-509$	$1035(27.9)$	$599-1750$	$1318(28.2)$	$766-2259$
October	$235(33.8)$	$113-436$	$861(33.4)$	$413-1546$	$1096(33.3)$	$527-1961$
November	$77(45.2)$	$27-173$	$283(44.5)$	$102-610$	$361(44.5)$	$128-800$
December	$144(29.1)$	$82-247$	$526(27.4)$	$297-901$	$670(27.6)$	$381-1147$

Figure 1 Region of interest for the Jacksonville USWTR off the coast of Florida (shown in blue).

Figure 2 Estimates of average monthly abundance with $95 \% \mathrm{Cl}$ (vertical lines); green = inner region, blue $=$ outer region and black = total region. Note abundances for bottlenose and spotted dolphins these are relative abundances obtained using data from the aerial survey only and the CDS estimator.

Acknowledgements

For collaborative efforts we thank our colleagues at Duke University Marine Lab (Kim Urian, Andy Read, Dave Johnston, Heather Foley, Zach Swaim, Jennifer Dunn, Lynne Williams) and St. Andrews University (Charles Paxton and David Borchers). We thank Ed Coffman, owner and operator of Orion Aviation, and his highly skilled pilots: Dave Huddle, Ryan Macgregor, Wayne McKendry, Collin Mendenhall, Ron Shreck and Bob Sticle, for excellent flying and a high level of professionalism. We thank Joel Bell for his support of this work. Surveys are conducted under NOAA Scientific Permit No. 948-1692-00, held by UNCW and NOAA General Authorization Letters of Confirmation No. 808-1798-01, 808-1798-02 and No. 16185 held by Duke University.

Summary of Cape Hatteras Aerial Surveys

This chapter describes the aerial surveys conducted in Cape Hatteras, North Carolina, between May 2011 and December 2011. The aim was to conduct two days of effort each month, flying a subset of 26 tracklines that cover the area. This goal was achieved in five of the eight months. Unfavorable weather conditions precluded any survey effort from being conducted during the three remaining months (August 2011, September 2011 and December 2011). A total of 64 tracklines (5027 km) were covered in the Cape Hatteras survey site during this reporting period. While survey conditions were dominated by Beaufort Sea State (BSS) 3, there was effort in both BSS 4 and 5. Other aerial surveys have demonstrated that the rate of cetacean sightings is negatively affected by an increase in the BSS (e.g. Gómez de Segura et al. 2006, DeMaster et al. 2001). This trend also was apparent in the present effort, as sightings dropped from 29.42 to 5.69 sightings per 1000 km as BSS increased from 2 to 5.

A total of 66 sightings of 1270 cetaceans were encountered while on effort during the ten days of aerial surveys in the study area (Table 1, Fig. 1). Thirteen species of cetaceans were documented including short-finned pilot whales (Globicephala macrorhynchus; 17 sightings of 327 individuals), bottlenose dolphins (Tursiops truncatus; 13 sightings of 272 individuals), sperm whales (Physeter macrocephalus; ten sightings of 18 individuals), Atlantic spotted dolphins (Stenella frontalis; three sightings of 84 individuals), mesoplodont beaked whales (Mesoplodon spp; three sightings of four individuals), Cuvier’s beaked whales (Ziphius cavirostris; two sightings of five individuals), spinner dolphins (Stenella longirostris; one sighting of 70 individuals), Clymene dolphins (Stenella clymene; one sighting of 70 individuals), rough-toothed dolphins (Steno bredanensis; one sighting of four individuals), Fraser's dolphins (Lagenodelphis hosei; one sighting of 75 individuals), common dolphins (Delphinus delphis; one sighting of 300 individuals), dwarf or pygmy sperm whale (Kogia spp; one sighting of one individual), and fin whale (Balaenoptera physalus; one sighting of one individual). There were seven sightings (35 individuals) where species identity could not be established with 100% certainty. Four of these sightings were of animals of considerable size and are listed here as "unidentified cetaceans". The remaining three sightings are listed as "unidentified delphinids".

Thirty nine sea turtle sightings were recorded during this survey period. Twenty nine were identified as loggerhead (Caretta caretta) sea turtles, and three as leatherback (Dermochelys coriacea) sea turtles. No species identification could be established for the remaining seven sightings, and they are listed here as "unidentified sea turtles". (Tables 17-18, Fig. 19).

In addition to cetaceans and sea turtles, other pelagic marine vertebrates (e.g. a small number of shark species, manta rays, and ocean sunfish) were observed (Tables 19-21, Fig 21). Commercial, Coast Guard and recreational vessels were also encountered in the survey area (Tables 22-24, Fig. 22-24).

Table 1. Total number of sightings and individuals for each species by month from May 2011 - December 2011 for the Hatteras survey area. Asterisk denotes a sighting that was off effort.

		2011								Total
		May	June	July	August	September	October	November	December	
Globicephala macrorhynchus	Sightings	6	1	6			3	1		17
	\# of individuals	118	10	176			20	3		327
Tursiops truncatus	Sightings		3	5				7*		15
	\# of individuals		27	86				159*		272
Physeter macrocephalus	Sightings	2		7*				1		10
	\# of individuals	3		14*				1		18
Stenella frontalis	Sightings	1						2		3
	\# of individuals	50						34		84
Mesoplodon spp.	Sightings	2		1						3
	\# of individuals	3		3						6
Ziphius cavirostris	Sightings		1				1			2
	\# of individuals		4				1			5
Stenella longirostris	Sightings						1			1
	\# of individuals						70			70
Stenella clymene	Sightings						1			1
	\# of individuals						70			70
Steno bredanensis	Sightings	1								1
	\# of individuals	4								4
Lagenodelphis hosei	Sightings	1								1
	\# of individuals	75								75
Delphinus delphis	Sightings	1								1
	\# of individuals	300								300
Kogia spp.	Sightings						1			1
	\# of individuals						1			1
Balaenoptera physalus	Sightings						1			1
	\# of individuals						1			1
Unidentified delphinid	Sightings	1					2	2		5
	\# of individuals	4					11	18		33
Unidentified cetacean	Sightings	2*	2							4
	\# of individuals	2*	2							4
	Total sightings	17	7	19	0	0	10	13	0	66
	Total individuals	559	43	279	0	0	174	215	0	1270

Figure 1. All cetacean sightings during aerial surveys of the Hatteras survey area from May 2011 - December 2011.

Methodology

Survey Design and Logistics

Aerial survey effort was initiated in the waters off Cape Hatteras, North Carolina in May of 2011 to assess the distribution and abundance of offshore cetacean species and sea turtles. These surveys are included in the Navy's Atlantic Fleet Active Sonar Training (AFAST) Monitoring Program, established to document marine species that could potentially be impacted by naval activities. The approximately $16000 \mathrm{~km}^{2}$ survey area covers continental shelf waters as well as deeper waters beyond the shelf break. Placement of the survey area was designed to incorporate a large portion of the Cape Hatteras Special Research Area (CHSRA) in support of current research assessing fishery interactions between short-finned pilot whales and the local greenstick fisheries. The survey area excludes coastal waters to minimize survey effort in areas where the spatial distribution and relative abundance of coastal bottlenose dolphins has previously been established (Torres et al. 2003; Torres et al. 2005). Twenty six tracklines, ranging from 73.5 to 81.5 km long and orientated perpendicular to the coastline were evenly placed across the survey site.

Survey flights originated from the Fixed-base Operator (FBO) in Wilmington, NC. with additional effort being conducted from the Dare County Regional Airport in Manteo, NC. Utilizing both airports maximized "on effort" survey time by decreasing transit time to and from the tracklines surveyed. A complete description of survey methods can be found in the Methodology section in the Onslow Bay Aerial Survey chapter of this report.

Table 2. Coordinates for trackline end points for the Hatteras survey area.

Transect Line	Eastern Waypoint		Western Waypoint	
Line	Latitude	Longitude	Latitude	Longitude
20	34.770853	-75.954044	34.315878	-75.364928
21	34.819136	-75.891558	34.365250	-75.298656
22	34.870261	-75.824811	34.418267	-75.226703
23	34.919967	-75.760906	34.469392	-75.166111
24	34.972511	-75.691319	34.522408	-75.097944
25	35.023633	-75.625994	34.571642	-75.039247
26	35.073339	-75.562089	34.617083	-74.971081
27	35.118783	-75.502444	34.668208	-74.908594
28	35.169908	-75.435697	34.721228	-74.840431
29	35.219611	-75.371792	34.768564	-74.77605
30	35.270736	-75.303628	34.817794	-74.711672
31	35.319019	-75.242561	34.868919	-74.649186
32	35.319019	-75.242561	34.948447	-74.469303
33	35.319019	-75.242561	35.139689	-74.384097
34	35.340331	-75.161133	35.340331	-74.333672
35	35.410389	-75.161133	35.410389	-74.333672
36	35.48045	-75.161133	35.48045	-74.333672
37	35.550508	-75.161133	35.550508	-74.333672
38	35.620569	-75.161133	35.620569	-74.333672
39	35.690628	-75.161133	35.690628	-74.333672
40	35.762581	-75.161133	35.762581	-74.333672
41	35.832642	-75.161133	35.832642	-74.333672
42	35.906486	-75.161133	35.906486	-74.333672
43	35.978439	-75.161133	35.978439	-74.333672
44	36.048500	-75.161133	36.048500	-74.333672
45	36.122344	-75.161133	36.122344	-74.333672

Trackline number
N

બ

Trackline Effort in Hatteras Survey Area

Results

Sixty four tracklines totaling 5027 km were surveyed from May 2011 to December 2011. The goal of two days of effort in the Cape Hatteras survey area each month was achieved in five of these eight months (Table 3). Unfavorable survey conditions prevented any aerial surveys from being conducted during the remaining three months.

An average Beaufort Sea State (BSS) value was calculated each month as a way to compare conditions across time. This average was calculated by taking the distance flown at each sea state multiplied by the BSS number (i.e. BSS 1 x distances would be multiplied by 1). These values were summed and then divided by the total distance flown that month. Weather patterns during the first three months allowed effort to be focused in favorable "weather windows" with lower sea state conditions. In subsequent months, periods of suitable survey conditions were increasingly difficult to predict, and prevented surveys from being conducted in August and September. Despite the higher sea states in October and November, days with the lowest forecasted conditions were flown to ensure coverage of the survey area. Although these days were dominated by BSS 4 or 5, a number of cetacean sightings were still recorded. Surveys could not be flown in December due to unfavorable survey conditions. Survey conditions for this reporting period ranged from a BSS 1 to 5, with the majority of the surveys flown in a BSS 3 [BSS 1: 45 km (1\%), BSS 2: 850 km (17\%), BSS 3: 1557 km (31\%), BSS 4: 1336 km (27\%), BSS 5: 1229 km (24\%)(Fig. 3a-c)]. Cetacean sighting rates dropped off as BSS increased, with 29.42 sightings/1000 km surveyed in BSS 2, 15.32 sightings/ 1000 km surveyed in BSS 3, 7.49 sightings/1000 km surveyed in BSS 4, and 5.69 sightings/1000 km surveyed in BSS 5(Fig. 4a-c). A small amount of effort was conducted in a BSS 1 (45.4 km), but no cetacean sightings were recorded during this period.

Mean sighting distance for all cetacean sightings was 1 km ($\mathrm{SD}=0.58$). Sighting distances for Beaufort Sea States 2 and 3 were slightly shorter than those for BSS 4 and 5 (Fig.5a-b). Average sighting distances are normally calculated after removing outliers, defined as any value in excess of three standard deviations from the mean (Mean=1.0 km, SD=0.58*3=1.74, Outlier >2.74). None of the sighting distances were identified as outliers during this reporting period. Ten sightings for which assumed locations was collected or sightings that were off effort are excluded from these calculations.

Table 3. Tracklines and km flown during aerial surveys of the Hatteras survey area between May 2011 and December 2011. Trackline numbers are listed in the order in which they were flown.

Date	Tracklines Flown AM	Tracklines Flown PM	Total km Flown
26-May-2011	34 to 36	27,26	341.1
27-May-2011	41 to 38	36,37	440.4
14-Jun-2011	25 to 28	29 to 33	672.9
15-Jun-2011	34 to 37	N/A	298.5
30-Jul-2011	40,39	38 to 35	445.7
31-Jul-2011	34 to 36	27,26	602.1
25-Oct-2011	N/A	36 to 41	442.5
26-Oct-2011	45 to 40	32 to 35	746.8
12-Nov-2011	45 to 42	40 to 38	592.8
13-Nov-2011	37 to 34	33,32	444.5
			5027.4

Figure 3a. Total distance surveyed per Beaufort Sea State during the May 2011 - December 2011 aerial surveys in the Hatteras survey area.

Figure 3b. Effort by Beaufort Sea State for each day during the May 2011 December 2011 aerial surveys in the Hatteras survey area.

Figure 3c. Average Beaufort Sea State for each month during the May 2011 - December 2011 aerial surveys in the Hatteras survey area. Values were calculated using the formula AvgBSS = [(Distance @ BSS 1*1)+(Distance @ BSS 2*2)+.../Total distance flown that day]

Figure 4a. Total number of cetacean sightings per Beaufort Sea State during the May 2011 - December 2011 aerial surveys in the Hatteras survey area.

Figure 4b. Cetacean sightings per 1000 km flown by Beaufort Sea State during the May 2011 - December 2011 aerial surveys in the Hatteras survey area.

Figure 4c. Cetacean sightings per 1000 km surveyed and the average Beaufort Sea State per month during the May 2011 - December 2011 aerial surveys in the Hatteras survey area.

Figure 5a. Sighting distances by Beaufort Sea State for 55 of 66 cetacean sightings during the May 2011 - December 2011 aerial surveys in the Hatteras survey area.

Figure 5b. Mean sighting distances by Beaufort Sea State for 55 of 66 cetacean sightings during the May 2011 - December 2011 aerial surveys in the Hatteras survey area. Error bars denote standard deviation for each category.

Marine Mammal Sightings

A total of 66 sightings of 1270 individual cetaceans representing thirteen species were observed while on effort during the reporting period. Two endangered species - sperm (Physeter macrocephalus) and fin (Balaenoptera physalus) whales - were encountered in the survey area. All identified species sighted are listed below in order of decreasing number of sightings (i.e. most commonly sighted species first). Total number of individuals is based upon the best estimate of group size. Summaries for individual sightings are in Appendix I. Daily sightings are summarized in Appendix J.

Short-finned pilot whale (Globicephala macrorhynchus) (Table 4, Fig. 6)

The short-finned pilot whale was the most commonly observed cetacean species during the present study, based both on number of sightings (17) and number of individuals (327). This species was recorded during all five of the months in which surveys were conducted. Group sizes ranged from three to 90 individuals (mean=19).

Sightings of pilot whales in the western North Atlantic occur primarily near the continental shelf break (Waring et al. 2010), and sightings in the Cape Hatteras survey area followed this pattern. Pilot whales were observed from the 100 m isobath to waters greater than 2000 m deep (Fig. 6). As both species of Globicephala have been reported in the waters north of Cape Hatteras, careful examination of all photos was conducted to determine whether long-finned pilot whales (Globicephala melas) were encountered. As a result all sightings were identified as Globicephala macrorhynchus. The difficulty of differentiating short-finned and long-finned pilot whales at sea results in NMFS reporting stock numbers and status for both species grouped as Globicephala spp. (Waring et al. 2010). The abundance estimate of Globicephala spp. (24674, CV=0.45) is based upon shipboard surveys along the outer continental shelf of the U.S. Atlantic between Florida and Maryland in 2004 (Waring et al. 2010). These estimates were combined with spatial distribution analysis, as well as genetic analyses, to generate the current value of 24674 . The status of shortfinned pilot whales in the U.S. Atlantic is currently unknown (Waring et al. 2010).

Table 4. Short-finned pilot whale (Globicephala macrorhynchus) sightings in the Hatteras survey area for surveys conducted from May 2011 - December 2011.

$\begin{aligned} & \text { Q } \\ & 0 \\ & \hline \end{aligned}$	$\stackrel{\otimes}{\underset{E}{E}}$	$\begin{aligned} & \text { II } \\ & 0 \\ & 0 \\ & \text { I } \\ & 3 \\ & 3 \end{aligned}$	$$				$\begin{aligned} & \stackrel{\rightharpoonup}{3} \\ & 0 \\ & \frac{0}{O} \\ & \frac{1}{4} \\ & \hline \end{aligned}$	0 0	\#
27-May-11	9:54	9	35.847822	-74.838262	E	41	2	90°	46
27-May-11	10:08	14	35.823289	-74.753615	E	41	2	90°	13
27-May-11	10:45	25	35.761017	-74.779985	W	40	2	45°	13
27-May-11	10:52	29	35.768861	-74.831074	W	40	1	90°	23
27-May-11	11:21	38	35.688751	-74.748692	E	39	2	90°	13
27-May-11	11:40	47	35.698266	-74.534039	E	39	2	90°	10
14-Jun-11	15:19	49	35.116018	-74.960536	SE	31	2	100°	10
30-Jul-11	10:09	5	35.827493	-74.853076	E	40	3	90°	90
30-Jul-11	10:19	9	35.839234	-74.818899	E	40	3	100°	25
30-Jul-11	11:29	41	35.753212	-74.701881	W	39	3	90°	4
30-Jul-11	11:41	45	35.758390	-74.789591	W	39	1	45°	6
30-Jul-11	14:23	67	35.619175	-74.785925	W	37	3	90°	43
31-Jul-11	10:20	16	35.147153	-74.870689	E	32	2	90°	8
25-Oct-11	12:33	13	35.623382	-74.785817	E	38	1	100°	13
26-Oct-11	12:35	29	35.767674	-74.360549	W	40	1	90°	4
26-Oct-11	12:14	23	35.834532	-74.419003	E	41	2	60°	3
13-Nov-11	11:33	52	35.349782	-74.721951	W	34	1	90°	3

Figure 6. Short-finned pilot whale (Globicephala macrorhynchus) sightings.

Bottlenose dolphins (Tursiops truncatus) (Table 5, Fig. 7)

This species was observed 15 times, for a total of 272 individuals, and was observed during three of the five survey months of this reporting period. Group size ranged between two to 40 individuals (mean=18). The majority of sightings occurred father than 37 km from shore and in waters beyond the 100 m isobath. Based on the distance from shore (i.e. greater than 34 km), these bottlenose dolphins were most likely the offshore ecotype (Torres et al. 2003). The current best estimate of offshore bottlenose dolphin in the western Atlantic, between central Florida and Canada, is 81588 (CV=0.17) (Waring et al. 2008). The status of the offshore bottlenose dolphins stock in the Northwest Atlantic is unknown.

Table 5. All bottlenose dolphin (Tursiops truncatus) sightings in the Hatteras survey area for surveys conducted from May 2011 -
December 2011.

$\begin{aligned} & \text { y } \\ & \text { O} \\ & \hline \end{aligned}$	$\stackrel{\otimes}{\underset{1}{E}}$		$$						\#
14-Jun-11	11:36	23	34.928116	-75.116029	NW	28	3	90°	18
14-Jun-11	11:48	25	34.985284	-75.185588	NW	28	2	90°	2
14-Jun-11	15:03	45	35.154789	-75.023044	SE	31	2	90°	7
30-Jul-11	10:09	5	35.827493	-74.853076	E	40	3	90°	11
30-Jul-11	10:34	13	35.842294	-74.763221	E	40	2	90°	25
30-Jul-11	10:48	18	35.837776	-74.534692	E	40	2	90°	8
30-Jul-11	10:56	22	35.829427	-74.482279	E	40	2	45°	12
30-Jul-11	11:19	37	35.766473	-74.508376	W	39	2	90°	30
13-Nov-11	10:25	21	35.504660	-74.699905	W	36	1	90°	30
13-Nov-11	10:44	27	35.402847	-75.072340	E	35	3	90°	20
13-Nov-11	10:53	31	35.404918	-74.930050	E	35	2	100°	40
13-Nov-11	11:03	39	35.424565	-74.794380	E	35	2	90°	15
13-Nov-11	11:14	43	35.420423	-74.509397	E	35	3	90°	12
13-Nov-11	11:37	54	35.347230	-74.758430	W	34	3	90°	12
13-Nov-11	11:43	58	35.349374	-74.864955	W	34	2	45°	30

Figure 7. Bottlenose dolphin (Tursiops truncatus) sightings.

Sperm whale (Physeter macrocephalus) (Table 6, Fig. 8)
This species was observed 10 times, for a total of 18 individuals, and was seen in three of the five months surveyed during this reporting period. These animals were observed either as individuals, pairs, or groups of three. All sightings were recorded beyond the continental shelf, in depths greater than 100 m . Sperm whales are listed as endangered under the Endangered Species Act, and the current best population estimate in the western North Atlantic is 4804 (CV=0.38) (Waring et al. 2007).

Table 6. Sperm whale (Physeter macrocephalus) sightings in the Hatteras survey area for surveys conducted from May 2011 December 2011.

$\begin{aligned} & \text { y } \\ & \hline 0 \\ & \hline \end{aligned}$	$\stackrel{0}{\underset{1}{E}}$			$\begin{aligned} & \bar{d} \\ & 0 \\ & 0 \\ & \text { N } \\ & 0 \\ & \hline \end{aligned}$					\#
27-May-11	10:18	19	35.831716	-74.600833	E	41	2	90°	2
27-May-11	11:25	42	35.700880	-74.723435	E	39	3	90°	1
30-Jul-11	11:08	29	35.769256	-74.376584	W	39	2	45°	1
30-Jul-11	11:11	32	35.764706	-74.414867	W	39	1	90°	3
30-Jul-11	13:56	58	35.681309	-74.533918	E	38	3	60°	2
30-Jul-11	15:02	76	35.560734	-74.398325	E	36	3	90°	2
31-Jul-11	10:16	15	35.146405	-74.870301	E	32	2	90°	3
31-Jul-11	11:01	27	35.143140	-74.982232	W	31	2	60°	1
31-Jul-11	10:48	24	34.867745	-74.645303	W	31	2	90°	2
13-Nov-11	10:59	36	35.424983	-74.824943	E	35	3	90°	1

Figure 8. Sperm whale (Physeter macrocephalus) sightings.

Atlantic spotted dolphins (Stenella frontalis) (Table 7, Fig. 9)

Groups of spotted dolphins were observed in May and November 2011 three times totaling 50 individuals. Group size ranged between 13 and 50 (mean=28). There are two distinct forms, or ecotypes, of the Atlantic spotted dolphin in the western north Atlantic: a heavily spotted, larger form that typically occurs on the continental shelf and is most often encountered around the 200 m isobath or shallower water, and a less spotted and smaller form which occurs further offshore and around islands (Perrin et al. 1987, 1994). The absence of spots, size of animals and distance from shore suggests these spotted dolphins belong to the offshore body form. The abundance estimate for S. frontalis (both inshore and offshore ecotypes) in the western north Atlantic is 50978; the status of the stock(s) is/are unknown (Waring et al. 2007).

Table 7. All spotted dolphin (Stenella frontalis) sightings in the Hatteras survey area for surveys conducted from May 2011 December 2011.

$\begin{aligned} & \text { 毋 } \\ & \hline 0 \\ & \hline \end{aligned}$	$\stackrel{\otimes}{\underset{1}{E}}$	등 0 त 3 3	$$					0 0 \sum_{0}^{0} 0 0 0 0 0 0	$\#$ $\#$ W ¢ ¢
27-May-11	12:07	54	35.630056	-74.684793	W	38	1	45°	50
13-Nov-11	9:42	8	35.545902	-74.476016	E	37	1	100°	13
13-Nov-11	10:05	13	35.562103	-74.373883	E	37	3	100°	21

Figure 9. Spotted dolphin (Stenella frontalis) sightings.

Beaked whale (Mesoplodon spp.) (Table 8, Fig. 10)

Animals were identified as belonging to the genus Mesoplodon on three occasions.
Sightings occurred near or offshore of the 1000 m isobath and ranged from one to three animals. The difficulty in differentiating the various species of beaked whales (Mesoplodon spp. and Ziphius sp.) has lead NMFS to create a single combined stock estimate for all species in the western Atlantic. Surveys conducted in 2004 from Maryland to Florida resulted in an estimate abundance at 674 animals ($\mathrm{CV}=0.36$). The status of the various beaked whales stock in the Northwest Atlantic is unknown (Waring et al. 2009).

Table 8. Mesoplodon spp. sightings in the Hatteras survey area for surveys conducted from May 2011 - December 2011.

$\begin{aligned} & \text { O} \\ & \hline 0 \\ & \hline \end{aligned}$	$\underset{i}{\oplus}$						$\begin{aligned} & \text { ت } \\ & \frac{0}{0} \\ & \frac{0}{0} \\ & \frac{5}{4} \end{aligned}$	$\begin{array}{\|l} \hline 0 \\ \hline 0 \\ 0 \\ 0 \\ 0 \\ \hline 0 \\ 0 \\ 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \end{array}$	\# W W ¢
26-May-11	10:18	3	35.341992	-74.589329	E	34	1	90°	2
27-May-11	12:07	54	35.630056	-74.684793	W	38	1	90°	1
31-Jul-11	14:57	56	34.825875	-75.238322	W	26	1	90°	3

Figure 10. Mesoplodon spp. sightings.

Cuvier's beaked whale (Ziphius cavirostris) (Table 9, Fig. 11)

Two sightings in the Cape Hatteras survey area were positively identified as Cuvier's beaked whales. A single animal was observed just beyond the 1000 m isobath in June, while a single animal was recorded inside this isobath in October. See above for NMFS stock assessment information for this species.

Table 9. Cuvier's beaked whale (Ziphius cavirostris) sightings in the Hatteras survey area for surveys conducted from May 2011 December 2011.

$\stackrel{0}{0}$	$\stackrel{ \pm}{\underline{1}}$	$\begin{aligned} & \text { 등 } \\ & \text { Q } \\ & \text { त } \\ & \hline \end{aligned}$							\#
14-Jun-11	15:03	45	35.154789	-75.023044	SE	31	2	90°	4
25-Oct-11	11:40	6	35.468725	-74.668304	E	36	2	90°	1

Figure 11. Cuvier's beaked whale (Ziphius cavirostris) sightings.

Common dolphins (Delphinus delphis) (Table 10, Fig. 12)
One group of 300 common dolphins was observed in May just beyond the 100 m isobath. The current best estimate of common dolphins in the western Atlantic Ocean, between central Florida and Canada, is 120743 (CV=0.23) (Waring et al. 2010). The status of the common dolphins stock in the Northwest Atlantic is unknown.

Table 10. All common dolphin (Delphinus delphis) sightings in the Hatteras survey area for surveys conducted from May 2011 December 2011.

$\begin{aligned} & \text { Q } \\ & 0 \\ & \hline \end{aligned}$	$\stackrel{0}{\underset{i}{E}}$								$\#$ $\#$ W 0 0
27-May-11	9:42	5	35.824427	-74.867357	E	41	2	90°	300

Figure 12. Common dolphin (Delphinus delphis) sightings .

Spinner dolphin (Stenella longirostris) (Table 11, Fig. 13)

This species was observed in the northern offshore waters of the survey area, in a mixed group with Clymene dolphins (Stenella clymene). Each species appeared to represent similar proportion of the group and, as such, our best estimate of group size was divided equally between the two species (Total 140: 70 S. longirostris, 70 S. clymene). Photographs collected during the sighting revealed that each species aggregated into distinct sub groups of 10-20 animals within the larger herd. These animals occur, but are infrequently seen, in deep waters (>2000 km) along the western north Atlantic coast. There is currently insufficient data to determine the population size of this species in the western north Atlantic and the status of the stock is unknown. (Waring et al. 2007).

Table 11. Spinner dolphin (Stenella longirostris) sighting in the Hatteras survey area for surveys conducted from May 2011 December 2011.

$\begin{aligned} & 0 \\ & \hline 0 \\ & \hline 0 \end{aligned}$	$\underset{\sim}{0}$						$\begin{aligned} & \pm \overrightarrow{3} \\ & \frac{0}{0} \\ & \frac{0}{O} \\ & \frac{C}{4} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \hline 0 \\ & \sum_{0}^{0} \\ & 0 \\ & \text { L } \\ & 0 \\ & 0 \\ & \hline 0 \\ & 0 \\ & 0 \end{aligned}$	$\#$ $\#$ W ¢ ¢
26-Oct-11	10:19	7	36.033285	-74.456628	W	44	2	90°	70

Figure 13. Spinner dolphin (Stenella longirostris) sighting.

Clymene dolphin (Stenella clymene) (Table 12, Fig. 14)

This species was observed in the northern offshore waters of the survey area in a mixed group with spinner dolphin (Stenella longirostris). Each species appeared to represent a similar proportion of the group and, as such, our best estimate of group size was divided equally between the two species (Total 140: 70 S. longirostris, 70 S. clymene). Photographs collected during the sighting revealed that each species aggregated into distinct sub groups of 10-20 animals within the larger herd. Sighting and stranding reports of this species suggest that Clymene dolphins routinely occur in the western north Atlantic. NOAA vessel surveys conducted in 1998 from Maryland to Florida only recorded this species along the continental slope off Cape Hatteras. The historic estimate of this species in the US Atlantic is $6086(\mathrm{CV}=0.93)$. There are currently insufficient data to determine the population size of this species in the western north Atlantic and the status of the stock is unknown (Waring et al. 2007).

Table 12. Clymene dolphin (Stenella clymene) sighting in the Hatteras survey area for surveys conducted from May 2011 - December 2011.

$\begin{aligned} & \text { Q } \\ & 0 \\ & \hline \end{aligned}$	$\stackrel{0}{\underline{E}}$	$\begin{aligned} & \vec{ㄷ} \\ & 0 \\ & 0 \\ & \lambda \\ & \lambda \\ & 3 \end{aligned}$							\# 0 \sim
26-Oct-11	10:19	7	36.033285	-74.456628	W	44	2	90°	70

Figure 14. Clymene dolphin (Stenella clymene) sighting.

Rough-toothed dolphin (Steno bredanensis) (Table 13, Fig. 15)
A single group of four rough-toothed dolphins was observed in May just beyond the 100 m isobath. This species is rarely observed off the U.S. east coast, and the current best abundance estimate ($\mathrm{n}=274, \mathrm{CV}=1.03$) is based on a single sighting from one shipboard survey conducted in waters south of Maryland in 1998. The status of rough-toothed dolphins in the western North Atlantic is presently unknown (Waring et al. 2008).

Table 13. Rough-toothed dolphin (Steno bredanensis) sighting in the Hatteras survey area for surveys conducted from May 2011 December 2011.

$\begin{aligned} & 0 \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$	$\stackrel{\otimes}{\underset{1}{E}}$	$\begin{aligned} & \text { 등 } \\ & 0 \\ & \text { त } \\ & \text { त } \\ & 3 \end{aligned}$					$\begin{aligned} & \text { ت} \\ & 0 \\ & \frac{0}{O} \\ & \frac{5}{4} \end{aligned}$		\# W ¢ -
27-May-11	11:40	47	35.698266	-74.534039	E	39	1	90°	4

Figure 15. Rough-toothed dolphin (Steno bredanensis) sighting.

Fraser's dolphin (Lagenodelphis hosei) (Table 14, Fig. 16)
A single sighting of 75 animals was observed offshore of the 1500 m isobath. Waring et al. (2007) state that only a single sighting of this species has been recorded in eastern US waters, which occurred off Cape Hatteras in 3300 m of water. Currently no species estimate exists for the western north Atlantic and the status of its stock remains unknown (Waring et al. 2007).

Table 14. Fraser's dolphin (Lagenodelphis hosei) sighting in the Hatteras survey area for surveys conducted from May 2011 December 2011.

$\frac{0}{0}$	$\stackrel{0}{\underline{E}}$				$\begin{aligned} & \text { O } \\ & \text { 듬 } \\ & \text { © } \\ & \text { I } \\ & \hline \end{aligned}$				\# W W -
27-May-11	14:20	63	35.562988	-74.604346	E	37	3	90°	75

Figure 16. Fraser's dolphin (Lagenodelphis hosei) sighting.

Pygmy and Dwarf Sperm Whales (Kogia spp.)(Table 15, Fig 17)

A single kogiid whale, which could not be identified to species, was observed beyond the 1500 m isobath in the northern portion of the Cape Hatteras survey site. As pygmy (Kogia breviceps) and dwarf sperm whales (Kogia sima) are difficult to differentiate at sea, NMFS population estimates for these species are combined. The best available abundance estimate for Kogia spp. in the western Atlantic is 395 animals (CV=0.40). This estimate represents the sum of two figures generated from surveys conducted in 2004 which report Kogia spp. numbers in the southern US Atlantic as $37(\mathrm{CV}=0.74)$ and northern US Atlantic as $358(\mathrm{CV}=0.44)($ Waring et al. 2007). The status of both kogiid species is currently unknown (Waring et al. 2007).

Table 15. Kogia spp. sighting in the Hatteras survey area for surveys conducted from May 2011 - December 2011.

$\begin{aligned} & \text { Q } \\ & 0 \\ & \hline \end{aligned}$	$\stackrel{ \pm}{ \pm}$							$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \\ & 0 \\ & 0 \end{aligned}$	$\#$ $\#$ W ¢
26-Oct-11	10:35	11	36.053662	-74.497680	W	44	2	90°	1

Figure 17. Kogia spp. sighting.

Fin Whale (Balaenoptera physalus) (Table 16, Fig. 18)

A single fin whale was observed in October 2011 beyond the 100 m isobath of the Hatteras survey site. Fin whales are listed as endangered under the Endangered Species Act, and the current best population estimate in the western north Atlantic is 3985 (CV=0.24) (Waring et al. 2010). The status of fin whales is currently unknown (Waring et al. 2010). Waring et al. (2010) note that this species is common in offshore waters north of the Cape Hatteras. Near shore sightings of this species have also been recorded off the mouth of the Chesapeake Bay during right whale aerial surveys in 2001 (McLellan et al., 2001), 2002 (McLellan et al., 2002), 2005-06 (McLellan et al., 2006), and 2006-07 (McLellan et al., 2007).

Table 16. Fin whale (Balaenoptera physalus) sighting in the Hatteras survey area for surveys conducted from May 2011 - December 2011.

$\stackrel{y}{0}$	$\underset{i}{\mathbb{E}}$	$\begin{aligned} & \text { Iㅡㅁ } \\ & 0 \\ & 0 \\ & \lambda \\ & \frac{\pi}{3} \end{aligned}$							$\#$ \# W ¢
26-Oct-11	14:35	38	35.209452	-74.983697	E	32	2	90°	1

Figure 18. Fin whale (Balaenoptera physalus) sighting.

Sea Turtles (Tables 17-18, Figs. 19 and 20a-c)

Thirty nine sea turtles were observed during the reporting period. Sighting rates were negatively correlated with Beaufort Sea State, with rates declining at sea states greater than BSS 2 (Figs. 20a-b). The high sighting rate calculated for a Beaufort Sea State 1 was due to a brief productive period of effort in this sea state (11 sea turtle sightings in 45.4 km). Sea turtles were recorded in every month surveyed; the highest sighting rates occurred in the summer months of May, June and July (Fig. 20c). Loggerhead sea turtles (Caretta caretta) constituted the majority of sea turtle sightings (74\%). The only other sea turtle species that was identified in the Cape Hatteras survey site was the leatherback sea turtles (Dermochelys coriacea) (7.6\%) and for the remaining 18% of sightings, species identification could not be made with 100% certainty and are, therefore, listed as "unidentified sea turtles".

Loggerhead sea turtles (Caretta caretta)(Table 17, Fig. 19)
Sightings of loggerhead sea turtles occurred in four of the five months surveyed, for a total of 29 animals. The majority of sightings were over the continental shelf inside of the 100 m isobath. For management purposes, loggerheads along the U.S. Atlantic east coast fall into the Northwest Atlantic Ocean distinct population segment (DPS), which is separated into five separate recovery units (NOAA 2011). The Northern Recovery Unit (defined as loggerheads originating from nests between southern VA through the FL/GA border) is currently listed as threatened under the Endangered Species Act (NMFS 2008).

Table 17. Loggerhead sea turtle (Caretta caretta) sightings in the Hatteras survey area for surveys conducted from May 2011 December 2011.

$\begin{aligned} & \text { y } \\ & 0 \\ & \hline 0 \end{aligned}$	$\stackrel{0}{\underline{E}}$	능 0 त 3 3					$\begin{aligned} & \text { İ } \\ & 0 \\ & \frac{0}{0} \\ & \frac{\rightharpoonup}{4} \\ & \hline \end{aligned}$	0 0 3 0	
27-May-11	9:34	3	35.835266	-75.124045	E	41	2	90°	1
27-May-11	9:35	3	35.836552	-75.087009	E	41	2	90°	3
27-May-11	9:36	4	35.835776	-75.049181	E	41	2	90°	4
27-May-11	9:38	5	35.835099	-74.962938	E	41	3	90°	3
27-May-11	10:58	32	35.765202	-75.027065	W	40	2	90°	1
27-May-11	11:00	24	35.763215	-75.108749	W	40	1	90°	2
27-May-11	11:06	27	35.695171	-75.091161	E	39	1	90°	1
14-Jun-11	14:46	41	35.288607	-75.198856	SE	31	1	90°	2
14-Jun-11	14:47	47	35.273869	-75.179852	SE	31	1	90°	1
14-Jun-11	16:07	57	35.304731	-75.207323	NW	32	1	90°	1
14-Jun-11	16:08	60	35.306071	-75.210438	NW	32	2	90°	1
14-Jun-11	16:13	60	35.296437	-75.152838	SE	33	2	90°	1
15-Jun-11	9:32	3	35.336853	-75.117561	E	34	1	90°	1
15-Jun-11	9:34	3	35.339465	-75.029025	W	34	2	90°	1
31-Jul-11	10:03	11	35.289371	-75.180516	E	32	1	90°	1
31-Jul-11	10:33	13	35.034067	-74.647836	E	32	1	90°	1
31-Jul-11	11:09	31	35.279238	-75.188611	W	31	1	90°	1
31-Jul-11	11:15	23	35.258476	-75.284707	SE	30	1	90°	1
12-Nov-11	10:35	3	36.126493	-75.117137	E	45	3	90°	1
13-Nov-11	9:17	3	35.552712	-74.836032	E	37	2	90°	1

Three leatherback sea turtles were observed in both inshore and offshore waters of the survey site. This species was observed only in October 2011 and November 2011. The most recent population estimates for the North Atlantic ranges from 34000 to 94000 adult leatherbacks (Turtle Expert Working Group 2007). Leatherbacks throughout their range are listed as endangered under the Endangered Species Act (NMFS 1992).

Table 18. Leatherback sea turtle (Dermochelys coriacea) sightings in the Hatteras survey area for surveys conducted from May 2011 December 2011.

$\stackrel{y}{0}$	$\stackrel{\otimes}{i}$	$\begin{aligned} & \text { 등 } \\ & 0 \\ & \text { N } \\ & \text { त } \\ & 3 \end{aligned}$					$\begin{aligned} & \frac{1}{3} \\ & 0 \\ & \frac{0}{0} \\ & \frac{5}{4} \\ & \hline \end{aligned}$		$\#$ $\#$ $\#$ 0 0
25-Oct-11	12:46	16	35.618351	-74.505412	E	38	2	90°	1
13-Nov-11	10:52	19	35.408820	-74.940878	E	35	1	90°	1
13-Nov-11	10:52	29	35.408742	-74.926543	E	35	2	90°	1

Unidentified sea turtles

Turtles labeled as unidentified were typically either of small size, submerged, or too far away for observers to make an accurate identification to species. Seven sightings of individual animals in the Cape Hatteras survey site are listed as unidentified.

Figure 19. Loggerhead (Caretta caretta), and leatherback (Dermochelys coriacea) sea turtle sightings.

Figure 20a. Total number of sea turtle sightings by Beaufort Sea State in the Hatteras survey area from May 2011 - December 2011.

Figure 20b. Sea turtle sightings per 1000 km flown by Beaufort Sea State in the Hatteras survey area from May 2011 - December 2011.

Figure 20c. Sea turtle sightings per 1000 km surveyed and the average Beaufort Sea State per month in the Hatteras survey area from May 2011 April 2011.

Other Marine Vertebrate Sightings (Tables 19-21, Fig. 21)
Chondrichthyan fishes
Four unidentified shark sightings were recorded during the reporting period. Sharks were seen in the area inshore and offshore of the 100 m isobath in three of the five months surveyed. Eight manta rays (Manta birostris) were observed during the study period, and occurred in four of the five months surveyed.

Other fishes
Two sightings of ocean sunfish (Mola mola) were recorded; one over the continental shelf and one beyond the shelf break. Both sightings occurred in November.

Table 19. All manta ray (Manta birostris) sightings in the Hatteras survey area for surveys conducted from May 2011 - December 2011.

$\begin{aligned} & \text { 凹 } \\ & \text { O} \\ & \hline \end{aligned}$	$\stackrel{\oplus}{\underline{j}}$				$\begin{aligned} & \text { 을 } \\ & \text { 후 } \\ & \mathbb{\#} \\ & \hline \end{aligned}$			O 0 0 0 0 0 0 0 0	\# W W - 1
27-May-11	10:14	17	35.822887	-74.689854	E	41	3	90°	-
27-May-11	12:10	40	35.620388	-74.789110	W	38	1	90°	1
14-Jun-11	16:19	64	35.255037	-74.948243	SE	33	2	90°	1
15-Jun-11	11:17	19	35.553374	-74.764459	E	37	1	90°	1
30-Jul-11	10:44	16	35.833922	-74.606571	E	40	2	90°	1
25-Oct-11	11:26	2	35.477263	-74.844782	E	36	1	90°	1
25-Oct-11	13:26	21	35.759315	-74.828225	E	40	1	100°	1
26-Oct-11	15:33	46	35.340174	-75.031868	E	34	1	90°	1

Table 20. All ocean sunfish (Mola mola) sightings in the Hatteras survey area for surveys conducted from May 2011 - December 2011.

Table 21. All shark sightings in the Hatteras survey area for surveys conducted from May 2011 - December 2011.

$\begin{aligned} & \text { y } \\ & \hline 0 \\ & \hline \end{aligned}$	$\stackrel{0}{\underline{E}}$								$\#$ $\#$ ¢ ¢
14-Jun-11	16:03	59	35.242711	-75.080107	NW	32	2	90°	1
14-Jun-11	16:14	63	35.293805	-75.121135	SE	33	1	90°	1
26-Oct-11	11:40	16	35.904697	-74.940530	W	42	2	90°	1
13-Nov-11	11:47	34	35.348731	-74.911101	W	34	1	90°	2

Figure 21. Manta ray (Manta birostris), ocean sunfish (Mola mola) and unidentified sharks.

Vessel Sightings Commercial (Table 22, Fig. 22)
A total of 26 commercial vessels (e.g. tankers, car carriers, and container vessels) were observed in the survey site.

Table 22. All commercial vessel sightings in the Hatteras survey area for surveys conducted from May 2011 - December 2011.

$\begin{aligned} & \text { ע } \\ & \hline 0 \end{aligned}$	$\stackrel{\oplus}{\underset{j}{E}}$							Degree Forward		$\begin{aligned} & \text { ת } \\ & \text { © } \\ & \text { E } \\ & \text { EO } \\ & \hline 0 \\ & \hline \end{aligned}$
26-May-11	10:40	9	35.410862	-74.343232	W	35	4	45°	1	Cargo vessel
26-May-11	11:15	13	35.409792	-75.121083	W	35	1	45°	1	Container vessel
27-May-11	10:06	12	35.835506	-74.777834	E	41	3	45°	1	Cargo vessel
14-Jun-11	11:28	22	34.812961	-74.960295	NW	28	1	45°	1	Cargo vessel
14-Jun-11	11:46	26	34.945855	-75.134433	NW	28	3	45°	1	Car carrier
14-Jun-11	14:50	48	35.208742	-75.094464	SE	31	2	45°	1	Cargo vessel
15-Jun-11	9:32	4	35.334979	-75.089461	E	34	2	45°	1	Tanker
15-Jun-11	9:47	6	35.339672	-74.560032	E	34	1	45°	1	Tug and Barge
15-Jun-11	10:07	9	35.409130	-74.636518	W	35	3	45°	1	Container vessel
15-Jun-11	10:10	10	35.406223	-74.753444	W	35	3	45°	1	Tanker
15-Jun-11	11:24	21	35.552237	-75.009878	W	37	1	45°	1	Container vessel
30-Jul-11	14:35	46	35.621772	-75.076715	E	37	2	30°	1	Cargo vessel
30-Jul-11	15:22	81	35.481485	-74.776390	W	35	2	90°	1	Commercial fishing vessel
31-Jul-11	10:09	12	35.208270	-75.010994	E	32	2	30°	1	Cargo vessel
31-Jul-11	14:28	49	34.888980	-75.451691	E	25	3	30°	1	Container vessel
31-Jul-11	14:33	51	34.776056	-75.306427	E	25	3	60°	1	Cargo vessel
25-Oct-11	13:58	25	35.825125	-74.987344	W	41	3	90°	1	Cargo vessel
26-Oct-11	9:59	3	36.125657	-74.774803	E	45	3	60°	1	Cargo vessel
26-Oct-11	14:29	36	35.276023	-75.142477	E	32	2	30°	1	Cargo vessel
26-Oct-11	15:12	43	35.183773	-74.612527	W	33	3	60°	1	Cargo vessel
26-Oct-11	15:54	40	35.406956	-74.384210	W	35	3	90°	1	Tanker
12-Nov-11	13:22	16	35.835797	-75.145915	E	41	4	30°	1	Car carrier
12-Nov-11	14:41	25	35.619878	-74.484653	W	38	3	60°	1	Cargo vessel
13-Nov-11	10:05	10	35.550246	-74.343219	E	37	1	45°	1	Tanker
13-Nov-11	11:25	49	35.342477	-74.434910	W	34	2	90°	1	Tanker
13-Nov-11	14:04	70	35.165502	-74.499394	E	33	1	30°	1	Tanker

Figure 22. Large commercial shipping vessel sightings.

Military / Coast Guard Vessels (Table 23, Fig. 23)
A total of three Coast Guard vessels were observed in the survey site.

Table 23. All military vessel sightings in the Hatteras survey area for surveys conducted from May 2011 - December 2011.

$\begin{gathered} \text { 凹 } \\ 0 \\ \hline \end{gathered}$	$\stackrel{ \pm}{\underline{E}}$							$\begin{aligned} & \hline \text { D } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \\ & 0 \\ & 0 \\ & \hline 0.0 \\ & 0 \\ & 0 \end{aligned}$		© 0 0 0 0
31-Jul-11	14:24	47	34.957679	-75.540629	E	25	2	90°	3	Coast guard vessel

Figure 23. Military vessel sightings.

Other Vessels (Table 24, Fig. 24)

A total of 134 other vessels were recorded in the survey site. Recreational sport fishing vessels constituted the majority of these sightings ($\mathrm{n}=126$). This category also included sailing vessels and yachts.

Table 24. All other vessel sightings in the Hatteras survey area for surveys conducted from May 2011 - December 2011.

$\begin{gathered} \text { \#} \\ 0 \\ \hline \end{gathered}$	$\stackrel{\oplus}{\underline{j}}$	$\begin{array}{\|l} \hline \stackrel{\rightharpoonup}{0} \\ \text { n } \\ \text { n } \\ \text { त } \\ 3 \\ \hline \end{array}$						윾 2 0 0 0 0 0 0 0	$\begin{aligned} & \# \\ & \stackrel{\#}{\otimes} \\ & \underset{\sim}{0} \end{aligned}$	
26-May-11	10:06	3	35.346372	-75.120198	E	34	3	45°	1	Sailboat
26-May-11	11:20	16	35.480553	-75.136101	E	36	2	90°	1	Yatch
26-May-11	11:22	16	35.486235	-75.032858	E	36	2	45°	1	Sailboat
26-May-11	11:25	17	35.484961	-74.896708	E	36	3	45°	3	Recreational fishing vessel
26-May-11	11:27	17	35.484613	-74.836795	E	36	3	90°	4	Recreational fishing vessel
26-May-11	14:16	27	34.960812	-75.289966	SE	27	3	45°	1	Recreational fishing vessel
27-May-11	10:49	20	35.762870	-74.804895	W	40	3	45°	2	Recreational fishing vessel
27-May-11	12:11	56	35.620252	-74.821748	W	38	1	90°	1	Recreational fishing vessel
14-Jun-11	10:02	3	34.968514	-75.552176	SE	25	3	90°	1	Recreational fishing vessel
14-Jun-11	10:05	4	34.908900	-75.474351	SE	25	2	90°	1	Recreational fishing vessel
14-Jun-11	10:07	5	34.872944	-75.428824	SE	25	2	45°	3	Recreational fishing vessel
14-Jun-11	10:50	12	34.967569	-75.423493	NW	26	3	90°	4	Recreational fishing vessel
14-Jun-11	10:53	14	35.011530	-75.481388	NW	26	2	90°	1	Research vessel
14-Jun-11	11:01	18	35.058323	-75.422883	SE	27	2	90°	3	Recreational fishing vessel
14-Jun-11	11:02	16	35.049926	-75.410519	SE	27	3	90°	12	Recreational fishing vessel
14-Jun-11	11:06	17	34.962921	-75.295040	SE	27	2	60°	4	Recreational fishing vessel
14-Jun-11	11:33	23	34.892041	-75.067426	NW	28	3	45°	1	Sailboat
14-Jun-11	11:56	29	35.022578	-75.234582	NW	28	2	60°	1	Sailboat
14-Jun-11	11:57	30	35.037335	-75.259169	NW	28	3	90°	3	Recreational fishing vessel
14-Jun-11	13:55	36	35.147494	-75.278825	SE	29	2	90°	2	Recreational fishing vessel
14-Jun-11	13:58	38	35.093894	-75.201350	SE	29	1	45°	1	Recreational fishing vessel
14-Jun-11	14:35	43	35.144533	-75.141469	NW	30	2	60°	1	Recreational fishing vessel
14-Jun-11	14:49	42	35.235933	-75.130074	SE	31	1	45°	1	Sailboat
15-Jun-11	9:35	4	35.340626	-75.008142	W	34	2	45°	3	Recreational fishing vessel
15-Jun-11	9:36	5	35.339434	-74.967722	E	34	2	45°	2	Recreational fishing vessel
15-Jun-11	10:12	11	35.405101	-74.810764	W	35	3	90°	12	Recreational fishing vessel
15-Jun-11	10:13	7	35.404037	-74.853787	E	35	3	60°	3	Recreational fishing vessel
15-Jun-11	10:21	8	35.404905	-75.104701	E	35	2	60°	1	Recreational fishing vessel
15-Jun-11	10:34	12	35.476340	-74.845040	W	36	3	60°	2	Recreational fishing vessel
15-Jun-11	10:34	16	35.476257	-74.850648	E	36	2	90°	6	Recreational fishing vessel
30-Jul-11	11:50	48	35.763507	-74.846218	W	39	3	90°	1	Recreational fishing vessel
30-Jul-11	13:35	32	35.688834	-75.056915	W	38	3	90°	1	Recreational fishing vessel
30-Jul-11	13:40	54	35.692087	-74.875270	E	38	1	45°	1	Recreational fishing vessel
30-Jul-11	14:21	65	35.621042	-74.777179	W	37	2	90°	5	Recreational fishing vessel
30-Jul-11	14:27	44	35.623139	-74.807441	E	37	3	90°	12	Recreational fishing vessel
30-Jul-11	14:33	45	35.619511	-75.017943	E	37	3	90°	1	Recreational fishing vessel
30-Jul-11	14:47	72	35.552000	-74.901495	E	36	1	90°	2	Recreational fishing vessel
30-Jul-11	14:50	73	35.549736	-74.803852	E	36	2	90°	1	Recreational fishing vessel
30-Jul-11	14:50	49	35.549742	-74.795559	W	36	1	60°	1	Recreational fishing vessel
30-Jul-11	14:51	74	35.550246	-74.759226	E	36	3	90°	1	Recreational fishing vessel
31-Jul-11	10:05	10	35.252400	-75.102948	E	32	1	90°	2	Recreational fishing vessel
31-Jul-11	11:06	30	35.204550	-75.089525	W	31	3	60°	1	Recreational fishing vessel
31-Jul-11	11:18	34	35.199548	-75.210744	E	30	1	90°	1	Recreational fishing vessel
31-Jul-11	11:18	25	35.190858	-75.199424	SE	30	1	45°	1	Recreational fishing vessel
31-Jul-11	11:55	41	35.124749	-75.244794	W	29	3	60°	1	Recreational fishing vessel
31-Jul-11	11:55	29	35.114327	-75.230812	NW	29	1	45°	1	Recreational fishing vessel
31-Jul-11	14:21	35	35.015819	-75.622441	SE	25	2	45°	1	Recreational fishing vessel
31-Jul-11	14:26	48	34.921385	-75.493381	E	25	2	45°	2	Recreational fishing vessel

Table 24 (Continued). All other vessel sightings in the Hatteras survey area for surveys conducted from May 2011 - December 2011.

پ゙ँ	$\stackrel{\oplus}{\underline{j}}$									$\begin{aligned} & \stackrel{N}{2} \\ & \stackrel{0}{\omega} \\ & \stackrel{E}{6} \\ & \text { E} \end{aligned}$
31-Jul-11	15:21	44	35.035513	-75.511377	NW	26	2	90°	1	Recreational fishing vessel
26-Oct-11	11:08	17	35.976825	-74.810271	E	43	1	90°	1	Recreational fishing vessel
26-Oct-11	12:53	25	35.758463	-74.805317	W	40	2	90°	1	Recreational fishing vessel
12-Nov-11	11:29	8	35.979401	-74.882151	E	43	3	90°	1	Recreational fishing vessel
12-Nov-11	11:31	9	35.978955	-74.763175	E	43	2	60°	1	Recreational fishing vessel
12-Nov-11	11:54	13	35.906487	-74.682165	W	42	3	90°	1	Recreational fishing vessel
12-Nov-11	11:57	14	35.906436	-74.786799	W	42	3	45°	2	Recreational fishing vessel
12-Nov-11	13:23	19	35.834200	-75.073810	E	41	1	45°	1	Recreational fishing vessel
12-Nov-11	13:58	24	35.763115	-74.837779	W	40	1	60°	1	Recreational fishing vessel
12-Nov-11	14:11	27	35.688284	-75.081311	E	39	1	90°	1	Recreational fishing vessel
12-Nov-11	14:59	26	35.621398	-75.147600	W	38	1	60°	1	Recreational fishing vessel
13-Nov-11	10:17	19	35.482555	-74.643452	W	36	3	90°	1	Sailboat
13-Nov-11	10:57	34	35.408048	-74.843006	E	35	2	90°	1	Recreational fishing vessel
13-Nov-11	11:46	32	35.345437	-74.880097	W	34	1	45°	2	Recreational fishing vessel
13-Nov-11	14:32	73	35.216832	-75.025445	W	32	2	60°	1	Yacht

Figure 24. Other vessel sightings.

Literature Cited

DeMaster, D. P., Lowry, L. F., Frost, K. J., and R. A. Bengtsson. 2001. The effect of sea state on estimates of abundance for beluga whales (Delphinapterus leucas) in Norton Sound, Alaska. Fisheries Bulletin 99: 197-201.

Gómez de Segura, A., Crespo, E. A., Pedraza, S. N., Hammond., P. S., and J. A. Raga. 2006. Abundance of small cetaceans in waters of the central Spanish Mediterranean. Marine Biology, 150: 149-160.

Hiby, L. 1999. The objective identification of duplicate sightings in aerial survey for porpoise. Pages 179-189 In: Garner et al. (eds.). Marine Mammal Survey and Assessment Methods. Balkema, Rotterdam.

McAlarney, R. J., Nilsson, P. B., Cummings, E. W., Pabst, D. A., McLellan, W.A., Aerial Surveys of the proposed Under Sea Warfare Training Range (USWTR) in Onslow Bay, North Carolina, June 2008 to June 2009. Submitted to The Department of the Navy Norfolk, VA. November 16, 2009.

McAlarney, R. J., Cummings, E. W., Pabst, D. A., McLellan, W.A., Aerial Surveys of the proposed Under Sea Warfare Training Range (USWTR) in Onslow Bay, North Carolina, July 2009 to June 2010. Submitted to The Department of the Navy Norfolk, VA. August 27, 2010.

McLellan, W. A., Barco, S. G., Meagher, E. M., Zvalaren, S. D., and A. D. Pabst. 1999. Offshore aerial surveys of two mid-Atlantic sites: Wallops Island and Onslow Bay. University of North Carolina Wilmington Technical Report.

McLellan, W.A., Lefler, K.M., Jones, G., Lovewell, G.G., and D.A. Pabst. Mid-Atlantic Marine Mammal Aerial Survey, 2001. Final Contract Report to NMFS SER.

McLellan, W.A., Meagher, E.M., Torres, L.G., Lovewell, G.G., and D.A. Pabst. Marine Mammal Aerial Survey, 2002. Final Contract Report to NMFS SER.

McLellan, W.A., C.B. Duggan, H.C. Esch, J.H. Yonas, and D.A. Pabst. Marine Mammal Aerial Survey 2006. Final Contract Report to NMFS SER. 118pp.

McLellan, W.A., C.B. Duggan, McAlarney, R.J., Tatem, S.A., and D.A. Pabst. Marine Mammal Aerial Survey 2007. Final Contract Report to NMFS SER. 158pp.

National Marine Fisheries Service and U.S. Fish and Wildlife Service. 1991. Recovery Plan for U.S. Population of Atlantic Green Turtle. National Marine Fisheries Service, Washington, D.C.

National Marine Fisheries Service and U.S. Fish and Wildlife Service. 1992a. Recovery Plan for the Kemp’s Ridley Sea Turtle (Lepidochelys kempii). National Marine Fisheries Service, St. Petersburg, Florida.

National Marine Fisheries Service and U.S. Fish and Wildlife Service. 1992b. Recovery Plan for Leatherback Turtles in the U.S. Caribbean, Atlantic, and Gulf of Mexico. National Marine Fisheries Service, St. Petersburg, Florida.

National Marine Fisheries Service and U.S. Fish and Wildlife Service. 1993. Recovery Plan for Hawksbill Turtles in the U.S. Caribbean Sea, Atlantic Ocean, and Gulf of Mexico. National Marine Fisheries Service, St. Petersburg, Florida.

National Marine Fisheries Service and U.S. Fish and Wildlife Service. 2008. Draft Recovery Plan for the Northwest Atlantic Population of the Loggerhead Sea Turtle (Caretta caretta), Second Revision. National Marine Fisheries Service, Silver Spring, MD.

NOAA 2011. Endangered and Threatened Species; Determination of Nine Distinct population Segments of Loggerhead Sea Turtles as Endangered or Threatened. Federal Register. Vol. 76 No. 184.

Pabst, D.A., Nilsson, P.B., McAlarney, R.J., McLellan, W.A., Aerial Surveys of the proposed Under Sea Warfare Training Range (USWTR) in Onslow Bay, North Carolina, June 2007 to June 2008. Submitted to The Department of the Navy Norfolk, VA. October 1, 2008.

Perrin, W F., Mitchell, E. D., Mead, J. G., Caldwell, D. K., Caldwell, M. C., van Bree, P. J. H., and W. H. Dawbin. 1987. Revision of the spotted dolphins, Stenella sp. Marine Mammal Science 3(2): 99-170.

Perrin, W. F., Caldwell, D. K., and M. C. Caldwell. 1994. Atlantic spotted dolphin. pp. 173-190. In: S. H. Ridgeway and R. Harrison (eds). Handbook of marine mammals, Volume 5: The first book of dolphins. Academic Press, San Diego, 418 pp.

Rotstein, D. S., Burdett, L. G., McLellan, W. A., Schwacke, L., Rowles, T., Terio, K. A., Schultz, S., Pabst, D. A. 2009. Lobomycosis in Offshore Bottlenose Dolphins (Tursiops truncatus), North Carolina. Emerging Infectious Diseases, Volume 15, 4: 588-590.

Torres, L.G., McLellan, W.A., Meagher, E.M. and D.A. Pabst. 2005. Seasonal distribution and relative abundance of bottlenose dolphins, Tursiops truncatus, along the US mid-Atlantic coast. Journal of Cetacean Research and Management 7(2):153-161.

Torres, L. G., Rosel, P. E., D’Agrosa, D., and A. J. Read. 2003. Improving management of overlapping bottlenose dolphin ecotypes through spatial analysis and genetics. Marine Mammal Science, 19(3): 502-514.

Waring, G. T., Josephson, E., Fairfield-Walsh, C. P., and K. Maze-Foley, editors. 2007. U.S. Atlantic and Gulf of Mexico Marine Mammal Stock Assessments -- 2007. NOAA Tech Memo NMFS NE 205; 415 p.

Waring, G. T., Josephson, E., Fairfield-Walsh, C. P., and K. Maze-Foley, editors. 2009. U.S. Atlantic and Gulf of Mexico Marine Mammal Stock Assessments -- 2008. NOAA Tech Memo NMFS NE 210; 440 p.

Waring GT, Josephson E, Maze-Foley K, Rosel, PE, editors. 2011. U.S. Atlantic and Gulf of Mexico Marine Mammal Stock Assessments -- 2010. NOAA Tech Memo NMFS NE 219; 598 p. Available from: National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 025431026.

AERIAL SURVEY DATA SHEET

Date: YYYYMMDD
Track\#: opportunistic track line=99

Event:

1.1 = On effort/on track
1.2 = Off effort
3.1 = Change in environmental conditions
10.0 = Opportunistic sighting(s)
PF = Preflight
XB $=$ Cross Beach
WU = Wheels Up
WD = Wheels Down
TE = Transit Leg on Effort

> 2.0 = Sighting-breaking track/off effort (real time)
$2.2=$ Sighting of commercial fishing vessel
2.3 = Vessel sighting
2.4 = Sighting of marine mammal (real location)
2.41 = Location of Sighting Cue, No Animals sighted
$2.42=$ Break from sighting
2.7 = Sighting of sea turtle (real location)
$2.8=$ Sighting of large vessel (Military, commercial, etc.)
2.9 = Unidentified sighting, requires comments
Sighted by: 1= pilot \quad 2= co-pilot $\quad 3=$ observer left side $\quad 4=$ observer right side

Confidence of cue

1 = definite
2 = probable
3 = possible/unsure

Sea State:

0 = slick, calm, mirror-like
1 = small waves
$2=$ whitecaps $0-33 \%$, waves $1-2$ feet
$3=$ whitecaps $33-50 \%$, waves $2-3$ feet
$4=$ whitecaps $50-65 \%$, waves $3-5$ feet
$5=$ whitecaps $>65 \%$, waves >5 feet
$6=$ too rough too survey

Cloud Cover:

01 = clear
02 = partly cloudy
$03=$ continuous layer of clouds
04 = rain
$05=$ haze
99 = other, requires comments

Glare

$0=$ No glare $\quad 1=0-25 \%$
$2=25-50 \% \quad 3=>50 \%$

Visibility:

1 = clear to horizon
2 = half the distance to the horizon
$3=$ less than half the distance to the horizon

Sighting Cues:

1 = Blow
2 = Splash
3 = Body Part
4 = Breach
5 = Other (needs comments)

Vertical Angle is given in rough increments of 20 degrees with 1 being directly on the trackline and 4 being anything outside of survey wide to horizon

Horizontal Angle is given assuming the nose of the plane is 0 degrees and directly off the wing is 90 degrees - measurements are taken from 1-180 on each side of the plane.

Species List for Aerial Surveys		
Common Name	Scientific Name	Species Code
Cetaceans		
North Atlantic right whale	Eubalaena glacialis	Egl
Minke whale	Balaenoptera acutorostrata	Bac
sei whale	Balaenoptera borealis	Bbo
fin whale	Balaenoptera physalus	Bph
Brydes whale	Balaenoptera edeni	Bed
humpback whale	Megaptera novaeangliae	Mno
unidentified balaenopterid	Family Balaenopteridae	BALA
sperm whale	Physeter macrocephalus	Pma
pygmy sperm whale	Kogia breviceps	Kbr
dwarf sperm whale	Kogia sima	Ksi
unidentified Kogia	Kogia spp.	KOGI
Northern bottlenose whale	Hyperoodon ampullatus	Ham
Cuvier's beaked whale	Ziphius cavirostris	Zca
Mesoplodon beaked whale	Genus Mesoplodon	MESO
unidentified beaked whale	Family Ziphiidae	ZIPH
harbor porpoise	Phocoena phocoena	Pph
killer whale	Orcinus orca	Oor
melon-headed whale	Peponocephala electra	Pel
pygmy killer whale	Feresa attenuata	Fat
false killer whale	Pseudorca crassidens	Pcr
Risso's dolphin	Grampus griseus	Ggr
long-finned pilot whale	Globicephala melas	Gme
short-finned pilot whale	Globicephala macrorhynchus	Gma
unidentified pilot whale	Genus Globicephala	GLOB
rough-toothed dolphin	Steno bredanensis	Sbr
Atlantic white-sided dolphin	Lagenorhynchus acutus	Lac
Fraser's dolphin	Lagenodelphis hosei	Lho
common dolphin	Delphinus delphis	Dde
bottlenose dolphin	Tursiops truncatus	Ttr
spotted dolphin	Stenella frontalis	Sfr
striped dolphin	Stenella coeruleoalba	Sco
spinner dolphin	Stenella longirostris	Scl
unidentified Stenella	Genus Stenella	STEN
unidentified delphinid	Family Delphinidae	DELP
unidentified cetacean		CETA
Pinnipeds		
gray seal	Halichoerus grypus	Hgr
harbor seal	Phoca vitulina	Pvi
harp seal	Phoca groenlandica	Pgr
hooded seal	Cystophora cristata	Ccr
unidentified phocid	Family Phocidae	PHOC
Sea Turtles		
loggerhead	Caretta caretta	Cca
leatherback	Dermochelys coriacea	Dco
green	Chelonia mydas	Cmy
Kemp's ridley	Lepidochelys kempii	Lke
hawksbill	Eretmochelys imbricata	Eim
unidentified sea turtle		TURT
Other interesting sightings		
basking shark	Cetorhinus maximus	Cma
manta ray	Manta birostris	Mbi
ocean sunfish	Mola mola	Mmo
spotted eagle-ray	Aetobatus narinari	Ana
Unidentified elasmobranch		CHON
Unidentified marine vertebrate		VERT

\qquad
\qquad Sighting Data Sheet

Initial Sighting on Track

Time: \qquad WP: \qquad Sighting Cue: \qquad
Confidence: $1 \begin{array}{llllllllll} & 2 & 3 & 4 & \text { Vertical Angle: } & 1 & 2 & 3 & 4 & \text { Horizontal Bearing in Degrees: }\end{array}$ \qquad
Observer: \qquad Observer Side
L R
Beaufort Sea State: \qquad Track Line: \qquad

Actual Time and Position of Sighting

Time: \qquad WP \#: \qquad
Species: \qquad Numbers: (Low/ High/ Best): \qquad 1 \qquad
Photographer: \qquad Frame Numbers: \qquad to \qquad Spacer: \qquad

Final Time and Position of Sighting

Time: \qquad WP\#: \qquad

USWTR Daily Plane Log Sheet

Pilot in Command: Dave
Observers: Ryan-Left, Erin-Right
Time take off: 9:45
Time take off: $\frac{9: 45}{12.53}$
Land for lunch: 12:53
Track Lines and Direction (e.g. N to S) Flown: 1 to 6

Take off after lunch: 14:11
Second in Command: Bob
Plane: N1353L

HOBBS Start: 1977.7

HOBBS Stop: 1983.8
Land: 16:39
HOBBS Total: 6.1
Track Lines and Direction (e.g. N to S) Flown: 7 to 10
Overall weather: Hazy in the morning, clear but partly cloudy in the afternoon

General Observations

Absolutely no marine mammals or other living creature seen in the USWTR range. BSS varied from 2-3 in the morning and from 2-4 in the afternoon. There were some showers in the afternoon on the offshore end of the lines. There were lots of military vessels and training in the range all day.

Transit effort leg:

Date: 08/20/2010

USWTR Daily Plane Log Sheet

Pilot in Command: Dave
Second in Command: Bob
Plane: N1353L
Observers: Erin - Left, Ryan - Right
Time take off: 12:25
HOBBS Start: 2043.3
Land for lunch: 15:55
Track Lines and Direction (e.g. N to S) Flown: 1, offshore lines, 10, 8, \& 9
Take off after lunch: N/A
HOBBS Stop: 2047.1
Land: N/A
HOBBS Total: 3.8
Track Lines and Direction (e.g. N to S) Flown: N/A
Overall weather: Varied, offshore lines better than inshore region, high cloud cover and some rain showers

General Observations

Only flew afternoon flights, morning showers and cloud cover prevented earlier flights. Conducted a total of four tracklines in the USWTR box as well as three offshore transit legs. An offshore line 1 was flown then we survied a transit line to offshore line 10 which was survied into our normal USWTR trackline 10. USWTR box was higher on the inshore portion of the box with BSS 3-4, on the back sides of rain showers sea state dropped and conditions improved to BSS 2-3. Offshore legs also had low sea states of BSS 2-3. No sightings were recorded on any line.

Transit effort leg: \qquad

USWTR Daily Plane Log Sheet

Pilot in Command: Dave
Second in Command: Bob
Plane: N1353L
Observers: Ryan-L, Erin-R
Time take off: 9:17
HOBBS Start: 2047.1
Land for lunch: 13:29
Track Lines and Direction (e.g. N to S) Flown: 7 to 2
Take off after lunch: N/A
HOBBS Stop: 2051.5
Land: N/A
HOBBS Total: 4.4
Track Lines and Direction (e.g. N to S) Flown: N/A
Overall weather: Continuous cloud cover with some rain

General Observations

Beaufort Sea States were poor most of the day with a high 3 to 4 and then on lines 3 and 2 the seas calmed to a BSS 2. There were some patches of rain causing the plane to truncate the trackline and run parallel to the line. There was one sighting that could not be resighted due to sea state. There was a sighting of Tursiops and another unknown sighting that was not resighted due to animals avoidance.

Transit effort leg:

Date: $\underline{09 / 14 / 2010}$

USWTR Daily Plane Log Sheet

Pilot in Command: Dave
Second in Command: Bob
Plane: N1353L
Observers: Erin - left, Ryan - right
Time take off: 8:48
HOBBS Start: 1953.8
Land for lunch: 12:24
Track Lines and Direction (e.g. N to S) Flown: 6, 5, 7-10, 5
Take off after lunch: NA
HOBBS Stop: 1957.6
Land: NA
HOBBS Total: 3.8
Track Lines and Direction (e.g. N to S) Flown: NA
Overall weather: Poor, BSS 3-4 low swell but high white caps

General Observations

Forcasted 10knt winds and 2 ft seas. Winds higher and in opposition to swell causing white caps to build up degrading survey conditions. Started to fly lines 6 to 1 but military vessel conducting live fire in those areas caused flights to be diverted to northern lines 7 to 10 . Picked up line 5 after 10 as only part of this line was flown earlier in the day. Forecasted conditions did not match actual causing team to only run 6 lines in poor sea state conditions.

USWTR Daily Plane Log Sheet

Pilot in Command: Dave
Observers: Ryan-Left, Erin-Right
Time take off: 12:08
Time take off: $12: 08$
Land for lunch: N/A
Track Lines and Direction (e.g. N to S) Flown: 4 to 1, 5, 6
Take off after lunch: N/A
Land: 16:15
Second in Command: Bob
Plane: N1353L

HOBBS Start: 1957.6

Track Lines and Direction (e.g. N to S) Flown: N/A
Overall weather: Hazy, no clouds

General Observations

BSS of a 3 on the western edge of the lines with most of the lines being a BSS 2. Three sightings one of which was an unidentified delphinid and the other two were spotted dolphins. The first sighting was of a single animal which was showing avoidance behavior so was unable to be identified.

Transit effort leg: No

Date: 10/21/2010

USWTR Daily Plane Log Sheet

Pilot in Command: Dave
Second in Command: Colin
Plane: N337CH
Observers: Ryan - Right, Erin - Left
Time take off: 8:40
HOBBS Start: 922.7
Land for lunch: 12:56
Track Lines and Direction (e.g. N to S) Flown: 10, 9, 8, 3, 2, 1
Take off after lunch: 14:25
HOBBS Stop: 929.4
Land: 16:48
HOBBS Total: 6.7
Track Lines and Direction (e.g. N to S) Flown: 4, 5, 7, 6
Overall weather: AM good conditions, PM conditions deteriorated

General Observations

Calling for 5-10, 10-15, seas 2-3 feet, 6 sec period.
Morning conditions BSS 2 with some 3, overall nice. Busy in the range, NAVY had area 17 reserved with 1 live fire
exercises and 2 aircraft carriers conducting flight activities. All activities required no fly buffer areas that affected our flight paths. Afternoon winds switched direction and increased which drove the BSS up. Team had 3 cetacean sightings (1 of bottlenose dolphins, and 2 of Risso's dolphin).

USWTR Daily Plane Log Sheet

Pilot in Command: Dave
Second in Command: Collin
Plane: N 337 CH
Observers: Right-Erin, Left-Ryan
HOBBS Start: 929.4
Time take off: 8:50
Land for lunch: 11:50
Track Lines and Direction (e.g. N to S) Flown: 1 and 2, coastal survey
Take off after lunch: \qquad HOBBS Stop: 932.4
Land:
HOBBS Total: 3
Track Lines and Direction (e.g. N to S) Flown:
Overall weather: Clear skys, high winds, rough seas

General Observations

Beaufort Sea State was a 4, winds were 15-20 knots. No marine mammals were observed. Surveys were stopped due to high seas. A coastal survey was performed after USWTR surveys ended. The survey started at Cape Lookout and went to Cape Fear, flying 2 miles from the coastline. No large whales were observed.

Transit effort leg:

Date: 11/19/2010

USWTR Daily Plane Log Sheet

Pilot in Command: Dave
Second in Command: Bob
Plane: N1375L
Observers: Erin - Left, Ryan - Right
Time take off: 12:11
HOBBS Start: 2076.6
Land for lunch: 15:23
Track Lines and Direction (e.g. N to S) Flown: 10-7 plus 2 coastal survey
Take off after lunch: NA
HOBBS Stop: 2079.9
Land: NA
HOBBS Total: 3.3
Track Lines and Direction (e.g. N to S) Flown: NA
Overall weather: Poor conditions due to high sea state

General Observations

Forcast 15-20 knts diminishing, 2-4 ft seas. Weather had predicted a High to move in over area by today causing weather conditions to improve, the High was late. Team flew a coasta survey from ILM airport up to the tip of Cape Lookout before flying lines 10-7 in the USWTR box. Survey conditions were a BSS of 3 to 4 resulting in no cetacean sightings. The team also flew a coastal survey from Cape Fear up to Wrightsville Beach. No sightings during coastal surveys either.

USWTR Daily Plane Log Sheet

Pilot in Command: Dave
Observers: Ryan-Left, Erin-Right
Time take off: 8:11
Second in Command: Bob
Plane: N1375L

HOBBS Start: 2079.9
Land for lunch: 12:00
Track Lines and Direction (e.g. N to S) Flown: 1 to 6
Take off after lunch: 13:07
HOBBS Stop: 2087.1
Land: 15:57
HOBBS Total: 7.2

Track Lines and Direction (e.g. N to S) Flown: 1, 1E, 1B, 10W, 10
Overall weather: sunny, clear, BSS 1-2

General Observations

Great day with 13 sightings. Three sightings were beaked whales but we were only able to photo 2 of those. The USWTR box was flipped farther off shore which is were the beaked whales were observed. The other 10 sightings were of Tursiops truncatus. Seas were a BSS 1-2 all day with it picking up in the afternoon.

Transit effort leg:

Date: 01/14/2011

USWTR Daily Plane Log Sheet

Pilot in Command: Dave
Second in Command: Bob
Plane: 1275M
Observers: Erin - Left, Ryan - Right
Time take off: 8:20
HOBBS Start: Broken
Land for lunch: 12:16
Track Lines and Direction (e.g. N to S) Flown: 10 to 5
Take off after lunch: 1:30
HOBBS Stop: Broken
Land: 3:56
HOBBS Total: 7.0
Track Lines and Direction (e.g. N to S) Flown: 4 to 1
Overall weather: Good sea conditions and vizability

General Observations

Forecast called for low winds and 2-3ft seas - Cold temperatures. Good day of surveys, had 8 sightings, mainly inshore of Spotted dolphins. Seas picked up a little towards the end of the day and the winter glare conditions made our sighting window smaller on one side of the plane for the last two survey lines.

Transit effort leg:

USWTR Daily Plane Log Sheet

Pilot in Command: Dave
Observers: Erin-Right, Ryan-Left
Time take off: 8:45
Second in Command: Bob

Land for lunch: 11:59
Track Lines and Direction (e.g. N to S) Flown: 1 to 4
Take off after lunch: 13:12
Land: 16:16
\qquad HOBBS Stop: N/A

Track Lines and Direction (e.g. N to S) Flown: 5 to 8
Overall weather: Morning clear skies, afternoon was cloudy

General Observations

In the morning BSS were higher inshore then offshore and in the afternoon BSS were lower inshore and higher offshore. BSS ranged from 1-3 all day. There were 11 sightings with one minke whale mom calf pair and a single minke whale. There rest were bottlenose dolphin except for one unknown animal.

Transit effort leg:

Date: 03/17/2011

USWTR Daily Plane Log Sheet

Pilot in Command: Wayne
Second in Command: Ron
Plane: N1314S
Observers: Erin - Left, Ryan - Right
Time take off: 9:30
HOBBS Start: 3028.1
Land for lunch: 12:15
Track Lines and Direction (e.g. N to S) Flown: 1-4 and TE from CF to ILM
Take off after lunch: 1:05
HOBBS Stop: 3035.3
Land: 5:00
HOBBS Total: 7.2
Track Lines and Direction (e.g. N to S) Flown: 5-10
Overall weather: Am poor conditions with PM improving

General Observations

Morning flights saw no sighting in 4 lines flown due to high sea states. Flew a transit effort flight from Cape Fear to ILM to give the seas time to calm down and to take advantage of lower sea states inshore. Afternoon survey conditions improved slightly and saw 4 sightings in 6 tracklines including a pair of Humpback whales (a species not recorded in the range before today). Overall moderate survey conditions for the day.

USWTR Daily Plane Log Sheet

Pilot in Command: Ron
Observers: Ryan - Left, Erin - Right
Time take off: 8:33
Second in Command: Wayne
Plane: N1314S

Land for lunch: 11:20
Track Lines and Direction (e.g. N to S) Flown: 1, Transit, 10
Take off after lunch: \qquad HOBBS Stop: 3038.3
Land:
HOBBS Total: 3
Track Lines and Direction (e.g. N to S) Flown: \qquad
Overall weather: Sunny, rough seas

General Observations

Seas were more rough than predicted. BSS was between 3-4. No sightings were observed and surveys were cut after lunch.

Transit effort leg:

Date: 04/20/2011

USWTR Daily Plane Log Sheet

Pilot in Command: Colin Second in Command: Cameron \quad Plane: N1275M
Observers: Erin- Left, Ryan - Right
Time take off: 9:34
HOBBS Start: 129.2
Land for lunch: 1:35
Track Lines and Direction (e.g. N to S) Flown: 5-10 and Lookout to ILM
Take off after lunch: \qquad HOBBS Stop: 133.4
Land:
\qquad HOBBS Total: 4.2
Track Lines and Direction (e.g. N to S) Flown:
Overall weather: Overcast, High winds lead to high seas

General Observations

Beaufort sea state 3-4 entire survey, no sightings. Targeted the 19th but scheduling conflict caused flights to be moved back. By this time seas were beginning to increase which lead to below average survey conditions.

Transit effort leg:

Complete Cetacean Sighting Summaries

Complied here are all sighting summaries for cetaceans seen during the July 2010 - April 2011 Onslow Bay aerial surveys. Each of the 41 on effort sightings has its own summary and no off effort sightings were recorded during this survey period.

Initial sighting on Track

Actual Time and Position of Sighting
Time: 10:25 WP\#:_8 Lat: 33.690604 Long: -76.385677
Species:Unidentified Delphinid Numbers (Low/High/Best): 7/9/8

Features used in Species ID:
Representative images used for Species ID
Photographer: NA Frame numbers:
NA

NA

Calculated distance from Trackline:
Estimate
Final Time and Position of Sighting
Time:_NA WP\#: NA Lat:_NA Long: _ NA Calculated Distance Traveled: \qquad

Behavior and Additional Comments

Animals were not relocated after initial observation due to high sea state. Group was closely packed and traveling at a moderate pace. Animals had robust body appearance with pronounced rostrum, uniform grey in coloration.

Saturday, August 21, 2010 Sighting \# 2

Initial sighting on Track
Time: 11:17 WP\#: 19 Lat: 33.643184 Long: -76.57215
Vertical Angle: $\quad 2$ Horizontal Bearing in Degrees: 90 Sighting Cue: Splash On/Off Effort: On Trackline: 4 Beaufort Sea State: 2 Observer: EWC Observer side: Right
Actual Time and Position of Sighting
Time: 11:18 WP\#: 20 Lat: 33.649193 Long: -76.570275
Species:Tursiops truncatus Numbers (Low/High/Best): 7/10/8
Features used in Species ID: Robust, uniform gray animals with a light to white colored peduncle

Behavior and Additional Comments

Group spaced very close to one another in group of 7 to 10 close to the surface traveling slowly. Animals might have been feeding on bait ball nearby, animals congregating showing bellies to one another. Upon circling animals spread out into pairs but still traveling slowly. No white peduncle patch was observed.

Initial sighting on Track

Time: 12:13 WP\#: 34 Lat: 33.500171 Long: -76.65558
Vertical Angle: _ 2 Horizontal Bearing in Degrees: 90 Sighting Cue: Body On/Off Effort: On Trackline: $\quad 2 \quad$ Beaufort Sea State: $\quad 2$
Observer: Erin

Observer side: Right

Actual Time and Position of Sighting

Time: 12:36 WP\#: 35 Lat: 33.514175 Long: -76.647372
Species:None Numbers (Low/High/Best): 5/7/7
Features used in Species ID: Species ID could not be established, animal labeled as Unidentified
delphinid
Representative images used for Species ID: None
Photographer: Erin Frame numbers: \quad NA \quad Spacer: NA
Calculated distance from Trackline: Wpt 35 assumed location
Final Time and Position of Sighting
Time: NA WP\#: NA Lat:
Calculated Distance Traveled:
\qquad Long: NA

Behavior and Additional Comments

Dark bodied animals diving slowly upon initial observation. Most likely pilot whales but ID could not be established as animals were not resighted.

Initial sighting on Track
Time: 13:32 WP\#: 13 Lat: 33.68278 Long: -76.888802
Vertical Angle: $\quad 3 \quad$ Horizontal Bearing in Degrees: 100 Sighting Cue: Body On/Off Effort: On Trackline: $\quad 2 \quad$ Beaufort Sea State: $\quad 2$ Observer: Erin Observer side: \qquad
Actual Time and Position of Sighting
Time: 13:34 WP\#:_14 Lat: 33.68420 Long: -76.9000859
Species:Unidentified Delphinid Numbers (Low/High/Best): 1/1/1
Features used in Species ID: Unable to establish species ID
Representative images used for Species ID:
Photographer: EWC Frame numbers: $\quad 6221$ to 6223 Spacer:
Calculated distance from Trackline:
1.1 km

Final Time and Position of Sighting
Time: 13:52 WP\#: 15 Lat: $\quad 33.68472$ Long: $\quad-76.895721$
Calculated Distance Traveled: \qquad

Behavior and Additional Comments

Single animal surfaced once with a big splash then dove below the surface. Showed a uniform grey coloration. Upon resighting animal it showed similar elusive behavior around the plane making collecting images difficult.

Wednesday, September 15, 2010 Sighting \# 2
Initial sighting on Track
Time: 14:22 WP\#: 19 Lat: 33.61948 Long: -76.943368
Vertical Angle: 3 Horizontal Bearing in Degrees: 100 Sighting Cue: Splash On/Off Effort: On Trackline: 1 Beaufort Sea State: 2 Observer: Erin Observer side: Right

Actual Time and Position of Sighting

Species:Stenella frontalis Numbers (Low/High/Best): 33/40/37
Features used in Species ID: Alternating light and dark body coloration. Active interactions among animals in the group with lots of belly showing and tactile interactions.
Representative images used for Species ID: 6238,6240, 6242, 6249, 6252, 6260,6271
Photographer: Erin Frame numbers: 6224-6290 Spacer: 6291
Calculated distance from Trackline: \qquad

Final Time and Position of Sighting

Time: 14:32 WP\#: 21 Lat: 33.62938 Long: -76.927847

Calculated Distance Traveled: \qquad
Long: -76.927847

Behavior and Additional Comments

Fairly large group in close association with one another, traveling at moderate pace just below the surface. Surfacing frequently and regularly.

Wednesday, September 15, 2010 Sighting \# 3
Initial sighting on Track
Time: 14:57 WP\#: 25 Lat: 33.95259 Long: $\quad-76.848477$
Vertical Angle: _ 1 Horizontal Bearing in Degrees: 60 Sighting Cue: Body On/Off Effort: On Trackline: 5 Beaufort Sea State: $\quad 2$
Observer: Erin

Observer side: Right
Actual Time and Position of Sighting
Time: 14:58 WP\#: 26 Lat: 33.95439 Long: $\quad-76.849868$
Species:Stenella frontalis Numbers (Low/High/Best): 2/2/2
Features used in Species ID: Alternating light and dark coloration, white rostrum tip.
Representative images used for Species ID: 6302, 6305
Photographer: EWC Frame numbers: 6292 to 6305 Spacer: 6306
Calculated distance from Trackline: $\quad 0.24 \mathrm{~km}$
Final Time and Position of Sighting
Time: 15:05 WP\#: 27 Lat: 33.94656 Long: $\quad-76.868110$
Calculated Distance Traveled: $\quad 1.9 \mathrm{~km}$

Behavior and Additional Comments

Initial sighting of a single animal followed by a second with the two separated by a large distance.
Both animals created large splashes while surfacing.

Initial sighting on Track

Actual Time and Position of Sighting
Time: 9:39 WP\#: 10 Lat: 33.813908 Long: -76.141887
Species:Grampus griseus Numbers (Low/High/Best): 8/12/10
Features used in Species ID: Long body, large dorsal fin, grey coloration, white head with cleft on rostrum

Representative images used for Species ID:			
Photographer: \quad Ryan	Frame numbers:	6308 to 6398	Spacer:
0.3262 km	6399		

Calculated distance from Trackline: $\quad 0.3262 \mathrm{~km}$
Final Time and Position of Sighting
Time: 9:48 WP\#: 10 Lat: $\quad 33.807848$ Long: $\quad-76.139425$
Calculated Distance Traveled: \qquad

Behavior and Additional Comments

Some traveling in pairs but staying spread out. Slow travel, animals staying just below the surface.
There are some juvenile animals. Some animals are picked up speed.

Thursday, October 21, 2010 Sighting \# 2

Initial sighting on Track
Time: 11:12 WP\#: 31 Lat: 33.572535 Long: -76.621860
Vertical Angle: _ 2 Horizontal Bearing in Degrees: 90 Sighting Cue: Splash On/Off Effort: On Trackline: 3 Beaufort Sea State: 2 Observer: Erin Observer side: Left
Actual Time and Position of Sighting
Time: 11:14 WP\#: 32 Lat: 33.568532 Long: -76.625898
Species:Grampus griseus Numbers (Low/High/Best): 2/2/2

Features used in Species ID: Long body, large dorsal fin, grey coloration, white head with cleft on rostrum
Representative images used for Species ID: \quad Frame numbers: $\frac{6425,6447}{0.5815 \mathrm{~km}}$ to $6486 \quad$ Spacer: \quad N/A
Photographer: \quad Ryan \quad Frackline:
Calculated distance from Track

Calculated distance from Trackline: \qquad
Final Time and Position of Sighting
Time: 11:23 WP\#: 33 Lat: 33.571147 Long: $\quad-76.621735$
Calculated Distance Traveled:
0.4830 km

Behavior and Additional Comments

Animals were traveling slowly just below the surface, with some deeper dives. They are showing possible avoidance behavior.

Thursday, October 21, 2010 Sighting \# 3

Initial sighting on Track

Time: 11:26 WP\#: 35 Lat: 33.635035 Long: -76.702165
Vertical Angle: _ 2 Horizontal Bearing in Degrees: 60 Sighting Cue: Splash On/Off Effort: On Trackline: 3 Beaufort Sea State: 2
Observer: Ryan
Observer side: Right
Actual Time and Position of Sighting
Time: 11:28 WP\#: 36 Lat: 33.638377 Long: $\quad-76.701693$

Species:Tursiops truncatus
Numbers (Low/High/Best): 15/20/18
Features used in Species ID: Grey robust animals with white peduncles
Representative images used for Species ID: \quad 6511, 6512
Photographer: Ryan Frame numbers: 6487 to 6517 Spacer: 6517
Calculated distance from Trackline: $\quad 0.3742 \mathrm{~km}$
Final Time and Position of Sighting
Time: 11:30 WP\#: 37 Lat: 33.640930 Long: -76.700543
Calculated Distance Traveled: $\quad 0.3032 \mathrm{~km}$

Behavior and Additional Comments

Animals were in a tightly packed group doing deeper dives. They were possibly feeding in a cluster or group or exhibiting social behavior. They were not traveling in any general direction.

Initial sighting on Track
Time: 9:03 WP\#: 9 Lat: 33.559341 Long: -76.7316
Vertical Angle: 2 Horizontal Bearing in Degrees: 45 Sighting Cue: Splash On/Off Effort: On Trackline: $\quad 2 \quad$ Beaufort Sea State: 1 Observer: \qquad Observer side: Right

Actual Time and Position of Sighting
Time: 9:05 WP\#:_10 Lat: 33.561044 Long: $\quad-76.736932$ Species:Tursiops truncatus Numbers (Low/High/Best): 15/16/16 Features used in Species ID: Robust bodied animals with darker grey on dorsal surface and lighter on sides. Large dorsal fin.
Representative images used for Species ID: 7,11, 16, 23
Photographer: Erin Frame numbers: 1 to 37 Spacer: 38
Calculated distance from Trackline: $\quad 0.5291 \mathrm{~km}$
Final Time and Position of Sighting
Time: \quad 9:10 WP\#: 11 Lat: 33.570211 Long: $\quad-76.74018$
Calculated Distance Traveled: \qquad

Behavior and Additional Comments

Disperse group, animals traveling in pairs or loose groups of approximately 4-5. Slow directional travel with regular surfacings. Group tightened into one larger group with only a few animals swimming seperately. White caudal peduncle coloration was noted in group and at least one calf was present. Animals showing non directional travel when we left them.

Saturday, November 20, 2010 Sighting \# 2
Initial sighting on Track
Time:_ 9:12 WP\#: 13 Lat: 33.592834 Long: -76.77504
Vertical Angle: 1 Horizontal Bearing in Degrees: 45 Sighting Cue: Body On/Off Effort: On Observer: Erin Trackline: 2 Beaufort Sea State: \qquad Actual Time and Position of Sighting
Time: 9:15 WP\#:_14 Lat: 33.594334 Long: $\quad-76.784286$
Species:Tursiops truncatus Numbers (Low/High/Best): 10/12/12

Features used in Species ID: Dark grey dorsal ridge with lighter grey lateral coloration. Lighter grey blaze to dorsal fin.

Calculated distance from Trackline: \qquad
Final Time and Position of Sighting
Time: 9:19 WP\#: 15 Lat: 33.597477 Long: $\quad-76.778585$

Calculated Distance Traveled: \qquad -76.778585

Behavior and Additional Comments

Fairly tight group splashing while surfacing together. Possibly one or two calves observed. A number of animals would breach clear of the surface during the encounter. On one of our circles animals appeared to be hanging motionless just below the surface before resuming travel a few moments later.

Initial sighting on Track
Time: 9:49 WP\#: 25 Lat: 33.614727 Long: -76.67656
Vertical Angle: _ 1 Horizontal Bearing in Degrees: 90 Sighting Cue: Splash On/Off Effort: On Trackline: $\frac{3}{}$ Beaufort Sea State: 1 Observer: Ryan Observer side: Left
Actual Time and Position of Sighting
Time: 9:50 WP\#: 26 Lat: 33.614344 Long: -76.67268 Species:Tursiops truncatus Numbers (Low/High/Best): 22/25/25
Features used in Species ID: Robust body and rostrum, darker grey dorsal ridge with lighter grey lateral body.
Representative images used for Species ID: $\quad 109,119,125,128,137$
Photographer: Erin Frame numbers: 100 to 147 Spacer: 148 Calculated distance from Trackline:
Final Time and Position of Sighting
Time: 9:53 WP\#: 27 Lat: 33.621534 Long: $\quad-76.68275$
Calculated Distance Traveled: \qquad
Behavior and Additional Comments
Animals traveling close to one another in a horizontal line at a moderate rate of travel and surfacing regularly. Group increased its amount of subsurface travel upon circling.

Saturday, November 20, 2010 Sighting \# 4
Initial sighting on Track
Time: 9:49 WP\#: 31 Lat: 33.528411 Long: -76.42429
Vertical Angle: $\quad 3 \quad$ Horizontal Bearing in Degrees: 90 Sighting Cue: Splash On/Off Effort: On Trackline: 4 Beaufort Sea State: 1 Observer: \qquad Observer side: _ Right

Actual Time and Position of Sighting
Time: 10:05 WP\#: 32 Lat: 33.527289 Long: -76.41977

Species:Tursiops truncatus Numbers (Low/High/Best): 45/55/50
Features used in Species ID: Dark grey dorsal surface with lighter grey lateral coloration. Blaze from lateral coloration to region of dorsal fin
Representative images used for Species ID: $\quad 166,175,198$
Photographer: Erin Frame numbers: 149 to 205 Spacer: 206 Calculated distance from Trackline: \qquad
Final Time and Position of Sighting
Time: 10:12 WP\#: 33 Lat: 33.536427 Long: $\quad-76.42388$

Calculated Distance Traveled:
: $\quad 1.09 \mathrm{~km}$

Long. -76.42388

Behavior and Additional Comments

Entire group was spread out over a large area, most animals were swimming as singles with a few groups of 4-5. All individuals showed milling behavior with little dedicated direction to travel.

Initial sighting on Track
Time: 10:18 WP\#: 35 Lat: 33.641741 Long: -76.57079
Vertical Angle: $\quad 2$ Horizontal Bearing in Degrees: 60 Sighting Cue: Body On/Off Effort: On Trackline: $\quad 4 \quad$ Beaufort Sea State: 1 Observer: Erin Observer side: Right

Actual Time and Position of Sighting
Time: 10:20 WP\#: 36 Lat: 33.645909 Long: -76.57503 Species:Tursiops truncatus Numbers (Low/High/Best): 4/4/4
Features used in Species ID: Lateral light grey blaze up to robust dorsal fin. Darker grey coloration on dorsal ridge.
Representative images used for Species ID: \quad 210,211,216
Photographer: Erin Frame numbers: 207 to 229 Spacer: 230 Calculated distance from Trackline: $\quad 0.61 \mathrm{~km}$
Final Time and Position of Sighting
Time: 10:23 WP\#: $\quad 37$ Lat: 33.647799 Long: $\quad-76.575663$ Calculated Distance Traveled: \qquad
Behavior and Additional Comments
Traveling slowly just below the surface. All animals surfacing roughly together. White peduncle coloration was observed.

Saturday, November 20, 2010 Sighting \# 6

Initial sighting on Track
Time: 10:54 WP\#: 47 Lat: 33.745104 Long: -76.57954
Vertical Angle: 3 Horizontal Bearing in Degrees: 90 Sighting Cue: Splash On/Off Effort: On Trackline: $\quad 5 \quad$ Beaufort Sea State: 1 Observer: Erin Observer side: Right

Actual Time and Position of Sighting

Features used in Species ID: Lateral light grey blaze up to robust dorsal fin. Darker grey coloration on dorsal ridge.

Representative images	sed for Spe	236, 239, 253, 257, 262		
Photographer: Erin	Frame numbers:	231 to 265	Spacer:	266
Calculated distance	Trackline			

Calculated distance from Trackline: \qquad
Final Time and Position of Sighting
Time: 11:00 WP\#: 49 Lat: 33.742372 Long: $\quad-76.58289$

Calculated Distance Traveled: $\quad 0.73 \mathrm{~km}$

Behavior and Additional Comments

Couple of tightly packed groups of 7-12 animals showing slow travel with a moderate amount of time spent traveling just below the surface. Three groups of pairs also seen. White peduncle coloration noted in animals.

Initial sighting on Track
Time: 13:43 WP\#: 67 Lat: 33.446025 Long: -76.71448
Vertical Angle: 3 Horizontal Bearing in Degrees: 90 Sighting Cue: Body On/Off Effort: On Trackline: $\quad 1 \quad$ Beaufort Sea State: $\quad 2$ Observer: Ryan Observer side: \quad Left

Actual Time and Position of Sighting
Time: 13:45 WP\#: 68 Lat: 33.454015 Long: -76.70884
Species:Tursiops truncatus Numbers (Low/High/Best): 12/18/15
Features used in Species ID: Light grey blaze up to level of dorsal fin. Robust body appearance darker grey coloration along dorsal midline.
Representative images used for Species ID: $\quad 268,273,281,284,289$
Photographer: Erin Frame numbers: 267 to 293 Spacer: 294
Calculated distance from Trackline: $\quad 1.03 \mathrm{~km}$
Final Time and Position of Sighting
Time: $13: 50$ WP\#: $\quad 69$ Lat: $\quad 33.438818$ Long: $\quad-76.69766$ Calculated Distance Traveled: \qquad

Behavior and Additional Comments

Widely spaced single animals traveling at moderate pace. Upon initial sighting only saw 3 animals this increased to $11+$ while circling as a few groups of 3-4 joined. White peduncle coloration pattern was observed. Group formed into a single large group as sighting progressed.

Saturday, November 20, 2010 Sighting \#

Initial sighting on Track
Time: 13:54 WP\#: 71 Lat: 33.369371 Long: -76.614519
Vertical Angle: 2 Horizontal Bearing in Degrees: 60 Sighting Cue: Body On/Off Effort: On Trackline: 1 Beaufort Sea State: 2 Observer: Ryan Observer side: Left
Actual Time and Position of Sighting
Time: 14:00 WP\#: 72 Lat: 33.371993 Long: -76.61616
Species:Tursiops truncatus Numbers (Low/High/Best): 8/10/9
Features used in Species ID: Robust rostrum, dark grey dorsal midline, robust dorsal fin.

Behavior and Additional Comments

Group of approximately 8 animals transiting across our trackline. Arranged in a horizontal line swimming side by side. Animals appeared to freeze just below the surface during one of our circles. At least 2 small calves observed in the group. White peduncle coloration observed.

Initial sighting on Track
Time: 14:03 WP\#: 76 Lat: 33.297995 Long: -76.52494
Vertical Angle:_ 2 Horizontal Bearing in Degrees: 60 Sighting Cue: Body On/Off Effort: On Trackline: 1 off \quad Beaufort Sea State: _ 2 Observer: Ryan Observer side: \qquad
Actual Time and Position of Sighting
Time: 14:08 WP\#: 77 Lat: 33.305696 Long: -76.5216
Species:Tursiops truncatus Numbers (Low/High/Best): 6/8/7
Features used in Species ID: Dark grey dorsal surface and light grey lateral coloration. Light blaze up to level of dorsal fin.
Representative images used for Species ID: 332, 344, 346
Photographer: Erin Frame numbers: 326 to 352 Spacer: 353
Calculated distance from Trackline: $\quad 0.91 \mathrm{~km}$
Final Time and Position of Sighting
Time: 14:08 WP\#: 78 Lat: $\quad 33.305532$ Long: $\quad-76.51888$
Calculated Distance Traveled: \qquad

Behavior and Additional Comments

Two groups of animals moderately spaced from one another traveling just below the surface.

Saturday, November 20, 2010 Sighting \# 10

Initial sighting on Track

Time: 14:26 WP\#: 82 Lat: 33.355409 Long: -76.02944
Vertical Angle: $\quad 2$ Horizontal Bearing in Degrees: 90 Sighting Cue: Body On/Off Effort: On Trackline: Bline Beaufort Sea State: 2 Observer: Erin Observer side: \quad Right

Actual Time and Position of Sighting

Time: 14:29 WP\#: 83 Lat: 33.354651 Long: -76.02138
Species:None Numbers (Low/High/Best): 2/2/2

Features used in Species ID: Dark grey tiger stripe appearance along dorsal surface. Small d fin placed far back on body, small pectoral fins, slow slopping head.
Representative images used for Species ID:

$354-357,360-362,366-370$
354 to 380
0.751

Photographer: Erin Frame numbers: $\frac{354 \text { to } 380}{0.75 \mathrm{~km}}$
Calculated distance from Trackline: \qquad

Final Time and Position of Sighting

Time: 14:34 WP\#: 84 Lat: 33.358452 Long: $\quad-76.024618$

Calculated Distance Traveled:
$=0.52 \mathrm{~km}$

Long: -76.024618

Behavior and Additional Comments

Pair of large animals with light tan/grey body coloration. Animals appeared to have deeper bodies compared to other animals we have seen. Slow sloping head with a crease roughly at level of blowhole Small pectoral fins and dorsal fin that was positioned closer to tail than head. Animals surfaced for a series of 6-7 breathes before diving from sight quickly.

Initial sighting on Track
Time: 14:37 WP\#: 85 Lat: 33.436558 Long: -75.92367
Vertical Angle: 3 Horizontal Bearing in Degrees: 45 Sighting Cue: Body On/Off Effort: On Trackline: B Bline Beaufort Sea State: _ 2 Observer: \quad Erin Observer side: _ Right
Actual Time and Position of Sighting
Time: 14:40 WP\#: 86 Lat: 33.440505 Long: -75.91474
Species:None Numbers (Low/High/Best): 2/2/2
Features used in Species ID: Large bodied animal, sloping head, dorsal fin placed far back on body, small pectoral fins.
Representative images used for Species ID: NA
Photographer: Erin Frame numbers: \quad NA \quad Spacer: NA
Calculated distance from Trackline: $\quad 0.94 \mathrm{~km}$
Final Time and Position of Sighting
Time: NA WP\#: NA Lat:_NA Long: _ NA Calculated Distance Traveled:
d: NA

Behavior and Additional Comments

Large bodies animals similar to those in sighting 10. Animals dove quickly from sight before images could be collected.

Saturday, November 20, 2010 Sighting \# 12

Initial sighting on Track
Time: 14:52 WP\#: 90 Lat: 33.665092 Long: -75.83501
Vertical Angle: 3 Horizontal Bearing in Degrees: 90 Sighting Cue: Body On/Off Effort: On Trackline: 10 offshore Beaufort Sea State: 2 Observer: Erin Observer side: Right

Actual Time and Position of Sighting

Time: 14:58 WP\#: 91 Lat: 33.672114 Long: -75.83727
Species:None Numbers (Low/High/Best): 6/6/6

Features used in Species ID: Large bodied animal, sloping head, dorsal fin placed far back on body, small pectoral fins.
 Calculated distance from Trackline: \qquad
Final Time and Position of Sighting
Time: NA WP\#: NA Lat: NA Long: \quad NA

Calculated Distance Traveled: NA

Behavior and Additional Comments

A group of six large bodied animals, different from the two previous sightings, with light grey coloration Widely spaced from one another, all traveling in the same direction. Animals quickly dove from the surface only allowing for a single quick sequence of images to be collected. Small dorsal fin and pectoral fins can be seen.

Initial sighting on Track

Time: 15:10 WP\#: 95 Lat: 33.977613 Long: $\quad-76.22938$
Vertical Angle: _ 2 Horizontal Bearing in Degrees: 90 Sighting Cue: Splash
On/Off Effort: On Trackline: 10 Beaufort Sea State: 2

Observer: Erin

Observer side: Right
Actual Time and Position of Sighting
Time: 15:17 WP\#: 97 Lat: 33.984226 Long: $\quad-76.224449$
Species:Tursiops truncatus Numbers (Low/High/Best): 15/23/21
Features used in Species ID: Light grey blaze up to level of dorsal fin. Robust body appearance darker grey coloration along dorsal midline.
Representative images used for Species ID:
399, 403, 407
Photographer: Erin Frame numbers: 388 to 418 Spacer: $\quad 419$
Calculated distance from Trackline: \qquad
Final Time and Position of Sighting
Time: NA WP\#: NA Lat:
Calculated Distance Traveled:
$\frac{N A}{N A}$

Long: \qquad

Behavior and Additional Comments

Animals traveling in 2-3 groups of 5-7 animals, all were active at the surface. Multiple calves were observed as well as white peduncle coloration.

Friday, J anuary 14, 2011 Sighting \# 1
Initial sighting on Track

Actual Time and Position of Sighting
Time: 8:56 WP\#: 5 Lat: 34.165669 Long: $\quad-76.482446$
Species:Stenella frontalis Numbers (Low/High/Best): 10/24/22
Features used in Species ID: Alternating light and dark pattern down the body, blaze before the dorsal fin, white tip on the rostrum.

Representative images used for Species ID:	$6937,6967,6968,6975$	
Photographer: Ryan \quad Frame numbers:	$6937-7000$	Spacer: 7001

Calculated distance from Trackline: $\quad 1.409 \mathrm{~km}$
Final Time and Position of Sighting
Time: 9:00 WP\#: $\quad 6 \quad$ Lat: $\quad 34.169625$ Long: $\quad-76.476628$
Calculated Distance Traveled: \qquad
Behavior and Additional Comments
Traveling very fast just below the surface, staying close together

Friday, J anuary 14, 2011 Sighting \# 2

Initial sighting on Track

Time: 9:04 WP\#: 9 Lat: 34.084928 Long: -76.366187
Vertical Angle: 2 Horizontal Bearing in Degrees: 90 Sighting Cue: 3 On/Off Effort: On Trackline: 10 Beaufort Sea State: 3 Observer: Erin Observer side: Left
Actual Time and Position of Sighting
Time: 9:05 WP\#:_10 Lat: $\quad 34.086145$ Long: $\quad-76.365575$
Species:Stenella frontalis Numbers (Low/High/Best): 19/28/26

Features used in Species ID: Alternating light and dark pattern down the body, blaze before the dorsal fin, white tip on the rostrum.
Representative images used for Species ID: \quad 7025, 7026, 7062
Photographer: Ryan Frame numbers: 7002-7063 Spacer: 7064

Calculated distance from Trackline: \qquad
Final Time and Position of Sighting
Time: 9:10 WP\#: 12 Lat: 34.086316 Long: $\quad-76.370189$

Calculated Distance Traveled: \qquad
-76.370189

Behavior and Additional Comments

Traveling at a fast pace, just below the surface. Animals are alternating between spaced out and coming together and then spreading out again. Lots of splashing and some darting in different directions.

Initial sighting on Track
Time: 10:33 WP\#: 26 Lat: 34.070788 Long: -76.739338

Vertical Angle: _ 2 Horizontal Bearing in Degrees: $\quad 90$ Sighting Cue:_ 3 On/Off Effort: On Trackline: $\quad 7 \quad$ Beaufort Sea State: $\quad 2$ Observer: Ryan Observer side: \qquad
Actual Time and Position of Sighting
Time: 10:35 WP\#: 27 Lat: 34.070243 Long: -76.725518 Species:Stenella frontalis Numbers (Low/High/Best): 20/30/25 Features used in Species ID: Alternating light and dark patterns down the body, blaze just before the dorsal fin, white tip on the rostrum.
Representative images used for Species ID: \quad 7079, 7147
Photographer: Ryan Frame numbers: 7065-7149 Spacer: 7150
Calculated distance from Trackline: $\quad 1.274 \mathrm{~km}$
Final Time and Position of Sighting
Time: 9:00 WP\#: 28 Lat: 34.071755 Long: $\quad-76.734126$
Calculated Distance Traveled: \qquad

Behavior and Additional Comments

Animals spaced out in groups of 2-4 and then one large group. Animals were staying close together and not traveling fast or any given direction. Some young animals in the group.

Friday, J anuary 14, 2011 Sighting \# 4

Initial sighting on Track

Time: 10:50 WP\#: 33 Lat: 34.029663 Long: -76.820548
Vertical Angle: 1 Horizontal Bearing in Degrees: 90 Sighting Cue: 3 On/Off Effort: On Observer: Ryan Trackline: 6 Beaufort Sea State: \qquad

Actual Time and Position of Sighting
Time: 10:51 WP\#: 34 Lat: 34.035643 Long: $\quad-76.822912$

Species:Stenella frontalis Numbers (Low/High/Best): 40/55/50
Features used in Species ID: Alternating light and dark patterns down the body, blaze just before the dorsal fin, white tip on the rostrum.
Representative images used for Species ID: $\quad 7169,7170,7192,7193,7196,7203$
Photographer: Ryan Frame numbers: 7151-7231 Spacer: 7232 Calculated distance from Trackline:

Final Time and Position of Sighting

Calculated Distance Traveled:
0.3907 km

Behavior and Additional Comments

One large group and several subgroups swimming just below the surface. Some doing deeper dives and clustered together, darting different directions, and some jumping.

Initial sighting on Track
Time: 11:29 WP\#: 47 Lat: 33.819754 Long: -76.678634
Vertical Angle: 3 Horizontal Bearing in Degrees: 90 Sighting Cue: 3 On/Off Effort: On Trackline:_5 Beaufort Sea State: 2 Observer: Ryan Observer side: \qquad
Actual Time and Position of Sighting
Time: 11:31 WP\#: 48 Lat: 33.833874 Long: -76.663780 Species:Stenella frontalis Numbers (Low/High/Best): 150/190/180 Features used in Species ID: Alternating light and dark pattern down the body, blaze just before the dorsal fin, white tip on rostrum.
Representative images used for Species ID: 7261, 7254, 7276
Photographer: Ryan Frame numbers: 7233-7306 Spacer: 7307
Calculated distance from Trackline: $\quad 2.085 \mathrm{~km}$
Final Time and Position of Sighting
Time: 11:35 WP\#: 49 Lat: $\quad 33.829618$ Long: $\quad-76.666739$
Calculated Distance Traveled: \qquad

Behavior and Additional Comments

Animals were playfully darting, circling and jumping. They were swimming just below the surface, traveling NW. There were 3 groups each having approximately 50 animals. Some animals were chasing and swimming belly to belly. Some calves present.

Friday, J anuary 14, 2011 Sighting \# 6
Initial sighting on Track
Time: 11:49 WP\#: 54 Lat: 33.975389 Long: -76.878983
Vertical Angle: 2 Horizontal Bearing in Degrees: 90 Sighting Cue: 3 On/Off Effort: On Trackline: 5 Beaufort Sea State: 3 Observer: Ryan Observer side: Right
Actual Time and Position of Sighting
Time: 11:51 WP\#: 55 Lat: 33.980883 Long: -76.883005
Species:Stenella frontalis Numbers (Low/High/Best): 20/28/25

Features used in Species ID: Alternating light and dark pattern down the body, blaze coming up just before the dorsal fin, while tip to rostrum.
Representative images used for Species ID: \quad 7325, 7328
Photographer: Ryan Frame numbers: 7308-7348 Spacer: 7349
Calculated distance from Trackline: \qquad

Final Time and Position of Sighting

Time: 11:53 WP\#: 56 Lat: 33.984980 Long: $\quad-76.875142$

Calculated Distance Traveled:
0.8562 km

Behavior and Additional Comments

Three groups of animals each with about 6-8 individuals swimming close together at a fast pace.

Initial sighting on Track
Time: 13:50 WP\#: 62 Lat: 33.916583 Long: -76.93154

Vertical Angle: 3 Horizontal Bearing in Degrees: $\quad 60$ Sighting Cue: $\quad 2$ On/Off Effort: On Trackline:_4 Beaufort Sea State: 3 Observer: Erin Observer side: Left
Actual Time and Position of Sighting
Time: 13:55 WP\#: 63 Lat: 33.921761 Long: -76.936736 Species:Stenella frontalis Numbers (Low/High/Best): 11/18/15 Features used in Species ID: Alternating light and dark pattern down the body, a blaze coming up just before the dorsal fin, white tip on rostrum.
Representative images used for Species ID: 7385, 7387, 7391, 7392
Photographer: Ryan Frame numbers: 7350-7392 Spacer: 7393
Calculated distance from Trackline: $\quad 0.7492 \mathrm{~km}$
Final Time and Position of Sighting
Time: 13:57 WP\#: 64 Lat: $33.930591 \quad$ Long: $\quad-76.928325$
Calculated Distance Traveled: \qquad
Behavior and Additional Comments
Animals swimming in a tightly packed group just below the surface. Normal surfacing and traveling at a somewhat fast pace.

Friday, J anuary 14, 2011 Sighting \# 8
Initial sighting on Track
Time: 14:12 WP\#: 66 Lat: 33.606519 Long: -76.523409
Vertical Angle: 3 Horizontal Bearing in Degrees: 90 Sighting Cue: 2
On/Off Effort: On Trackline: 4 Beaufort Sea State: 3
Observer: Erin Observer side: Left

Actual Time and Position of Sighting
Time: WP\#: Lat:
Lat: \quad Long:
Species:Unidentified Delphinid Numbers (Low/High/Best): 2/2/2
Features used in Species ID:
Representative images used for Species ID:
Photographer: Ryan Frame numbers:
Spacer:
Calculated distance from Trackline:
Final Time and Position of Sighting
Time: \qquad WP\#:
Lat: \square Long: \qquad
Calculated Distance Traveled: \qquad

Behavior and Additional Comments

No resight

Initial sighting on Track

Actual Time and Position of Sighting
Time: 9:22 WP\#:_10 Lat: 33.482840 Long: -76.753731 Species:Tursiops truncatus Numbers (Low/High/Best): 25/35/32 Features used in Species ID: Robust body appearance lateral blaze to mid dorsal fin. Large dorsal fin.
Representative images used for Species ID: 7461, 7462, 7443, 7464
Photographer: EWC Frame numbers: 7430-7474 Spacer: 7475
Calculated distance from Trackline:
Final Time and Position of Sighting
Time: 9:27 WP\#: 11 Lat: $\quad 33.490571$ Long: $\quad-76.761051$
Calculated Distance Traveled: \qquad
Behavior and Additional Comments
Slow traveling animals with regular surfacings - part of the group staying submerged below the other animals. Animals traveling in a loose group in side by side formation.

Animal with white peduncle patch
Thursday, February 24, 2011 Sighting \# 2
Initial sighting on Track
Time: 9:40 WP\#: 16 Lat: 33.495711 Long: -76.652164
Vertical Angle: 3 Horizontal Bearing in Degrees: 90 Sighting Cue: Splash On/Off Effort: On Observer: RJM Trackline: 2 Beaufort Sea State: \qquad

Actual Time and Position of Sighting
Time: 9:41 WP\#:_17 Lat: 33.492367 Long: $\quad-76.654561$ Species:Tursiops truncatus Numbers (Low/High/Best): 3/5/4
Features used in Species ID: Robust body appearance, large dorsal fin, white coloration to peduncle
Representative images used for Species ID: $\quad 7477$
Photographer: EWC Frame numbers: 7476-7479 Spacer: 7480 Calculated distance from Trackline: \qquad
Final Time and Position of Sighting
Time: 9:46 WP\#: 18 Lat: 33.493375 Long: $\quad-76.659808$

Calculated Distance Traveled: \qquad
ong. -76.659808

Behavior and Additional Comments

Group moving at a fairly high rate of speed, a few animals would hit the surface hard then dive down out of sight. We were only able to make a few circles before the animals moved off.

White peduncle patch present

Initial sighting on Track
Time: 10:21 WP\#: 33 Lat: 33.571529 Long: -76.618242
Vertical Angle: _ 3 Horizontal Bearing in Degrees: 90 Sighting Cue: Body On/Off Effort: On Trackline: $\frac{3}{}$ Beaufort Sea State: 2 Observer: RJM Observer side: Left
Actual Time and Position of Sighting
Time: 10:23 WP\#: 34 Lat: 33.574638 Long: -76.622563 Species:Tursiops truncatus Numbers (Low/High/Best): 14/20/18 Features used in Species ID: Robust body appearance, wide base dorsal fin. Light blaze on side of body trailing to mid dorsal fin.
Representative images used for Species ID: 7501, 7511, 7513, 7524
Photographer: EWC Frame numbers: 7481-7530 Spacer: 7531
Calculated distance from Trackline:
Final Time and Position of Sighting
Time:_10:26 WP\#: 35 Lat: 33.580020 Long: $\quad-76.623398$
Calculated Distance Traveled: \qquad

Behavior and Additional Comments

Group hanging at the surface with little to no direction of travel, animals widely spaced with many a single individuals but some in pairs. Group showed no changes in behavior upon circling them.

Thursday, February 24, 2011 Sighting \# 4
Initial sighting on Track
Time: 10:29 WP\#: 38 Lat: 33.507294 Long: -76.535076
Vertical Angle: 1 Horizontal Bearing in Degrees: 90 Sighting Cue: Body On/Off Effort: On Trackline: 3 Beaufort Sea State: 2 Observer: EWC Observer side: Right

Actual Time and Position of Sighting

Time: 10:31 WP\#: 39 Lat: 33.511343 Long: -76.545763
Species:Tursiops truncatus Numbers (Low/High/Best): 10/11/10

Features used in Species ID: Robust body appearance, lateral blaze to the level of mid dorsal fin.

Behavior and Additional Comments

Two small groups of 5 animals, slow direction of travel at the surface. Potentially one calf in the group.

Initial sighting on Track
Time: 10:45 WP\#: 44 Lat: 33.607698 Long: -76.528192

Vertical Angle: 1 Horizontal Bearing in Degrees: 45 Sighting Cue: Body On/Off Effort: On Trackline:_4 Beaufort Sea State: 2 Observer: ECW Observer side: \qquad
Actual Time and Position of Sighting
Time: 10:46 WP\#:_45 Lat: 33.614701 Long: $\quad-76.525724$
Species:Tursiops truncatus Numbers (Low/High/Best): 68/83/79

Features used in Species ID: Light lateral blaze along side up to the level of the mid dorsal. Large dorsal, white peduncle patch
Representative images used for Species ID: $\quad 7562,7563,7583,7595$
Photographer: EWC Frame numbers: 7562-7598 Spacer: 7599
Calculated distance from Trackline:
Final Time and Position of Sighting
Time: 10:49 WP\#: 46 Lat: $\quad 33.615189 \quad$ Long: $\quad-76.530863$
Calculated Distance Traveled: \qquad

Behavior and Additional Comments

Large group, well dispersed and moving at a moderate rate of travel. A few subgroups of densely packed animals and others in between 1-3 animals. Regular slow surfcaings. A few calves were seen in the group, no images of calves taken.

Thursday, February 24, 2011 Sighting \# 6
Initial sighting on Track
Time: 10:52 WP\#: 48 Lat: 33.680684 Long: -76.624144
Vertical Angle: _ 2 Horizontal Bearing in Degrees: 90 Sighting Cue: Body On/Off Effort: On Trackline: 4 Beaufort Sea State: 2 Observer: EWC Observer side: Right

Actual Time and Position of Sighting

Time: 10:55 WP\#: 49 Lat: 33.684479 Long: -76.620831
Species:Balaenoptera acutorostrata Numbers (Low/High/Best): 2/2/2

Features used in Species ID: White pectoral blazes, small dorsal fin place far back on the animals body, tapered shape to the head. Large body size.
Representative images used for Species ID: $\quad 7633,7696,7701,7702,7717,7719,7720$
Photographer: EWC Frame numbers: 7600-7733 Spacer: 7734
Calculated distance from Trackline: \qquad
Final Time and Position of Sighting
Time: 11:17 WP\#: 50 Lat: 33.688427 Long: -76.604171
Calculated Distance Traveled:
: $\quad 1.6 \mathrm{~km}$

Behavior and Additional Comments

Animals surfaced for a few breaths before diving to around 30-40ft below the surface - could still see the animals silhouette. Calf surfacing with mother and half way between mothers breaths. Mother surfaces 3 times during our observation period.

Initial sighting on Track
Time: 11:22 WP\#: 52 Lat: 33.791944 Long: -76.771217

Vertical Angle: 2 Horizontal Bearing in Degrees: 90 Sighting Cue: Splash On/Off Effort: On Observer: \qquad Trackline: $4 \quad$ Beaufort Sea State: $\quad 2$ Observer side: \quad Left

Actual Time and Position of Sighting
Time: 11:23 WP\#: 53 Lat: 33.788800 Long: -76.776595 Species:Tursiops truncatus Numbers (Low/High/Best): $10 / 11 / 10$
Features used in Species ID: Robust body appearance
Representative images used for Species ID: $\quad 7746,7762$
Photographer: EWC Frame numbers: 7742-7762 Spacer: 7763
Calculated distance from Trackline: $\quad 0.6 \mathrm{~km}$
Final Time and Position of Sighting
Time:_ 11:25 WP\#: 54 Lat: 33.789135 Long: $\quad-76.780603$
Calculated Distance Traveled: \qquad Long:

Behavior and Additional Comments

Disperse group traveling as singles at a moderate pace, animals difficult to photograph because only as singles.

Thursday, February 24, 2011 Sighting \# 8
Initial sighting on Track
Time: 11:33 WP\#: 58 Lat: 33.958550 Long: -76.993051
Vertical Angle: $\quad 3 \quad$ Horizontal Bearing in Degrees: 90 Sighting Cue: Splash On/Off Effort: On Trackline: 4 Beaufort Sea State: 3 Observer: \qquad Observer side: Left

Actual Time and Position of Sighting
Time: 11:34 WP\#: 59 Lat: 33.953879 Long: -76.990195

Species:Stenella frontalis Numbers (Low/High/Best): 25/32/29
Features used in Species ID: Light lateral blaze trailing to the level of mid dorsal fin. Alternating light and dark pattern down the body
Representative images used for Species ID: 7746, 7762
Photographer: EWC Frame numbers: 7742-7762 Spacer: 7763
Calculated distance from Trackline: $\quad 0.6 \mathrm{~km}$

Final Time and Position of Sighting

Time: 11:37 WP\#: 60 Lat: 33.952746 Long: -76.990692

Calculated Distance Traveled: \qquad Long. -76.990692

Behavior and Additional Comments

Dense group of animals moving at a high rate of speed just below the surface with frequent quick surfacings - at least one calf seen in group.

Initial sighting on Track
Time: 1:57 WP\#: 74 Lat: 33.683036 Long: -76.495812

Vertical Angle: _ 2 _Horizontal Bearing in Degrees: 60 Sighting Cue: Body On/Off Effort: On Trackline: $\quad 5 \quad$ Beaufort Sea State: $\quad 2$ Observer: RJM Observer side: Left
Actual Time and Position of Sighting
Time: 2:00 WP\#: 75 Lat: 33.690618 Long: $\quad-76.487107$
Species:Tursiops truncatus Numbers (Low/High/Best): 180/250/230
Features used in Species ID: Robust body, light grey lateral blaze along side to level of mid dorsal fin, white peduncle patch.
Representative images used for Species ID: $\quad 7837,7838,7842,7842,7845$
Photographer: EWC Frame numbers: 7813-7859 Spacer: 7860
Calculated distance from Trackline:
1.2 km

Final Time and Position of Sighting
Time: 2:04 WP\#: 76 Lat: $\quad 33.693116$ Long: $\quad-76.493962$
Calculated Distance Traveled: \qquad
Behavior and Additional Comments
Very large and disperse group - multiple groups of $\sim 25-30$ animals. Leisure rate of travel at the surface No response to circling.

White peduncle patch present.
Thursday, February 24, 2011 Sighting \# 10
Initial sighting on Track
Time:_ 2:19 WP\#: 81 Lat: 33.748130 Long: $\quad-76.453492$
Vertical Angle: 1 Horizontal Bearing in Degrees: 90 Sighting Cue: Body On/Off Effort: On
Observer: EWC Trackline: $\quad 6 \quad$ Beaufort Sea State: \qquad

Actual Time and Position of Sighting
Time: 2:19 WP\#: 82 Lat: 33.748897 Long: $\quad-76.455229$
Species:Balaenoptera acutorostrata Numbers (Low/High/Best): 1/1/1
Features used in Species ID: White pectoral blaze, large fusiform body, small dorsal fin placed far back on the animals body.
Representative images used for Species ID: \quad No images colleced
Photographer: \quad EWC \quad Frame numbers: \quad NA \quad Spacer: \quad NA

Calculated distance from Trackline: \qquad
Final Time and Position of Sighting
Time: 2:37 WP\#: 83 Lat: 33.746308 Long: $\quad-76.439363$

Calculated Distance Traveled:
$=0.3 \mathrm{~km}$

Long: -76.439363

Behavior and Additional Comments

Animal made on surfacing (initial observation) and then dove to $\sim 30-40 \mathrm{ft}$ below the surface. Beacues of the higher sea state we were unable to follow the animal while it stay submerged and despite circling for 18 min did not resight the animal.

Initial sighting on Track

Time: 3:10 WP\#: 92 Lat: 33.793790 Long: $\quad-76.375023$
Vertical Angle: _ 2 Horizontal Bearing in Degrees: 90 Sighting Cue: Body
On/Off Effort: On Trackline: $\quad 7 \quad$ Beaufort Sea State: $\quad 3$

Observer: RJM

Observer side: Left

Actual Time and Position of Sighting

Time: 3:20 WP\#: 93 Lat:
Species:
33.80018

Long: $\quad-76.365204$
Species:
Numbers (Low/High/Best):
2/2/2
Features used in Species ID: 2 animals, presumably different species with different diagnostic characteristics.
Representative images used for Species ID: No images collected
Photographer: EWC Frame numbers: NA Spacer:_NA Calculated distance from Trackline: \qquad
Final Time and Position of Sighting
Time: 3:22 WP\#: 94 Lat: \qquad Long: $\quad-76.367524$
Calculated Distance Traveled: \qquad

Behavior and Additional Comments

Light grey colored animal with a robust body appearance and a rounded head (no rostrum)
Approximately $10-12 \mathrm{ft}$ long, appeared to have a large squat body.
Additionally there appeared to be another animal submerged $\sim 30 \mathrm{ft}$ below the surface so no features could be distinguished. 1st animal seen twice and submerged animal did not surface and no relocated.

Initial sighting on Track
Time: 13:46 WP\#: 33 Lat: 33.711499 Long: -76.533645

Vertical Angle: _ 2 Horizontal Bearing in Degrees: $\quad 90$ Sighting Cue:_ 3 On/Off Effort: On Trackline: $\quad 5 \quad$ Beaufort Sea State: $\quad 2$ Observer: Erin Observer side: \qquad
Actual Time and Position of Sighting
Time: 13:47 WP\#: 34 Lat: 33.710799 Long: $\quad-76.537303$
Species:Tursiops truncatus Numbers (Low/High/Best): 8/12/12

Features used in Species ID: Robust grey animals with white peduncles
Representative images used for Species ID: 7873, 7882, 7898, 7899, 7901
Photographer: Ryan Frame numbers: 7816 to 7903 Spacer: 7904
Calculated distance from Trackline: $\quad 0.3472 \mathrm{~km}$
Final Time and Position of Sighting
Time: 13:50 WP\#: 35 Lat: 33.717697 Long: $\quad-76.531166$
Calculated Distance Traveled: \qquad

Behavior and Additional Comments

Animals traveling just below the surface with regular surfacing. Animals were staying close together. Animals had white peduncles and one calf was present. Animals were traveling NW.

Thursday, March 17, 2011 Sighting \# 2

Initial sighting on Track
Time: 14:08 WP\#: 41 Lat: 33.752791 Long: -76.459247
Vertical Angle: 2 Horizontal Bearing in Degrees: 45 Sighting Cue: 3 On/Off Effort: On Trackline: 6 Beaufort Sea State: 2 Observer: Erin Observer side: Left
Actual Time and Position of Sighting
Time: 14:10 WP\#: 42 Lat: 33.748012 Long: $\quad-76.463278$
Species:Tursiops truncatus Numbers (Low/High/Best): 28/35/33
Features used in Species ID: Robust grey animals with white peduncles
Representative images used for Species ID: $\quad 7911,7914,7920,7921,7945$
Photographer: Ryan Frame numbers: 7905 to 7950 Spacer: 7951
Calculated distance from Trackline: \qquad
Final Time and Position of Sighting
Time: 14:14 WP\#: 43 Lat: 33.752949 Long: $\quad-76.466130$
Calculated Distance Traveled:
0.6090 km

Behavior and Additional Comments

Animals broken into two groups and traveling slowly just below the surface. Some doing deeper dives. Animals have white peduncles. Two groups spaced farther apart but actually tightened within the group.

Initial sighting on Track

Actual Time and Position of Sighting
Time: 14:23 WP\#: 47 Lat: 33.906008 Long: $\quad-76.669755$
Species:Megaptera novaeangliae Numbers (Low/High/Best): 2/2/2
Features used in Species ID: Large black robust animal with long white pectoral fins
Representative images used for Species ID: $8023,8027,8029,8030,8041,8051,8054,8055$
Photographer: Ryan Frame numbers: 7952 to 8066 Spacer: 8067
Calculated distance from Trackline: $\quad 0.9977 \mathrm{~km}$
Final Time and Position of Sighting
Time: 14:35 WP\#: 48 Lat: 33.896470 Long: $\quad-76.674521$
Calculated Distance Traveled: \qquad
Long:

Behavior and Additional Comments

Animals hanging just below the surface with regular surfacing. Animals not moving very fast or at all Did one deep dive at 14:26 then surfaced at 14:34. We stayed on the animals for one more minute until they did another deep dive.

Thursday, March 17, 2011 Sighting \# 4
Initial sighting on Track
Time: 14:43 WP\#: 50 Lat: 34.047573 Long: -76.848943
Vertical Angle: 2 Horizontal Bearing in Degrees: 45 Sighting Cue: 2 On/Off Effort: On Trackline: $\quad 6 \quad$ Beaufort Sea State: 2 Observer: Erin Observer side: Left
Actual Time and Position of Sighting
Time: 14:44 WP\#: 51 Lat: 34.051842 Long: -76.857337
Species:Tursiops truncatus Numbers (Low/High/Best): 35/45/45
Features used in Species ID: Robust uniform grey animals
Representative images used for Species ID: 8069, 8075, 8076, 8077, 8089, 8090, 8093, 8094
Photographer: Ryan Frame numbers: 8068 to 8102 Spacer: 8103
Calculated distance from Trackline: \qquad
Final Time and Position of Sighting
Time: 14:47 WP\#: 52 Lat: 34.054682 Long: $\quad-76.853703$

Calculated Distance Traveled:
$\quad 0.4602 \mathrm{~km}$
ong: -76.853703

Behavior and Additional Comments

Animals scattered all over, hanging below the surface with regular surfacing. Some calves present.

Notes on the Sighting Summary Sheet

The Sighting Summary, adapted from the Sighting Data Sheet used in the field (Fig. 3), integrates data gathered in the field with results from lab analyses to provide a full summary of each marine mammal sighting. A Sighting Summary was completed for all sightings, including sightings made while off-effort during transits between survey legs, as well as sighting cues which were never relocated.

The Sighting Summary sheet is broken into four sections; "Initial Sighting on Track", "Time and Position of Sighting", "Final Time and Position of Sighting", and "Behavior and Additional Comments". Each section and sub headings will be detailed below.

Initial Sighting on Track

Time: The time the break track GPS way-point was taken
WP\#: GPS way-point number of the break track
Lat/Long: The latitude and longitude associated with the break track way-point
Track Line: The track line surveyed when the sighting was made
On/Off Effort: Whether the sighting was made during an active survey track line (i.e. On effort) or during transit BETWEEN track lines (i.e. off effort). Sightings made during off effort transit to and from the range are NOT included in the sighting summaries.
Sighting Cue: Whether the initial sighting was a splash, a breach or body part.
Vertical Angle: Vertical "angle" between 1 and 4 , the lower edge of view (" 1 ") to the horizon (" 4 "). A subjective and relative measure of how far away from the track line the initial sighting occurred.
Horizontal Bearing in Degrees: The horizontal degrees from front to back (0 to 180) at which the sighting occurred.
Observer: Three lettered initial of the observer who made the sighting
Observer Side: On which side of the plane in the direction of travel the sighting occurred.

Time and Position of Sighting

Time: The time the GPS way-point was taken while relocating animals and circling above
WP\#: GPS way-point number of the sighting
Lat/Long: The latitude and longitude associated with the way point obtained while circling over animals
Beaufort Sea State: The sea state observed during the sighting
Species: Scientific binomial name of the marine mammal species involved in the sighting. When species identity could not be established unequivocally, the next higher taxonomic level to which identity could be established was used. If a cetacean was identified as a dolphin but images obtained during the encounter were not sufficient to establish species ID, the designation "unidentified delphinid" or " T. truncatus/S. frontalis" was used. The next higher level used was unidentified cetacean. If a large body was observed but it could not be established whether a cetacean, fish/shark or turtle was involved in the sighting, the designation "unidentified marine vertebrate" was used.
Criteria used to identify species: Which species specific diagnostic features were used in classifying a sighting to species.
Best images used for species ID: The images obtained during the sighting that best displayed the features used to establish species.

Numbers (Low/ High/ Best): Low, high, and best estimate of number of animals involved in the sighting.
Calves observed? Whether any calves were observed during the encounter. A conservative measure was used, in that only animals roughly half the size of the associated larger animal (the presumed mother) were designated as calves.
Calculated Distance from Track Line: The distance between the break track way-point and the initial sighting way-point. For more information on how distance was calculated and errors inherent in this method, refer to the "Methods" section.
Photographer: Three lettered initials of observer seated in the right camera seat.
Card \#: Memory card on which the photos from the particular sighting was made.
Frame Numbers: Starting and ending frame number
Spacer: Image used to separate sighting to clarify when one sighting ends and the next begins. Image typically of interior of plane or a 45 degree angle shot of the horizon.

Final Time and Position of Sighting

Time: WP\#: Lat: Long: Calculated Distance traveled: $\boldsymbol{\rightarrow} \boldsymbol{s e e}$ section above

Behavior and Additional Comments

Any behavioral notes obtained during the sighting (e.g. group formation, relative travel speed, feeding events or presumed copulation attempts, presence of other cetaceans or sharks in or around the animal(s) in the sighting, interaction with inanimate objects such marine debris). This section also includes notes on altitude of the survey plane during the encounter as well as any indications (or lack thereof) of the animal(s) reacting evasively to the presence of the plane.

Summary of 21 August 2010

Species	Number of Sightings	Number of Individuals	Beaufort Sea State	Line number
Tursiops truncatus	1	8	2	4
Unidentified Delphinid	1	8	3	6
Unidentified Cetacean	1	7	2	2

Summary of 15 September 2010

21 October 2010

Species	Number of Sightings	Number of Individuals	Beaufort Sea State	Line number
Tursiops truncatus	1	18	2	3
Grampus griseus	1	2	2	3
Grampus griseus	1	10	2	9
Caretta caretta	10	10	2	
Manta birostris	3	3	2 to 4	
Unidentified Chondrichthyes	3	3	2	8

22 October 2010

Species	Number of Sightings	Number of Individuals	Beaufort Sea State	Line number
Caretta caretta	1	1	4	1

Summary of October 2010

19 November 2010

Species	Number of Sightings	Number of Individuals	Beaufort Sea State	Line number
Unidentified sea turtle	1	1	3	9
Manta birostris	1	1	4	10
Unidentified Chondrichthyes	1	1	4	9

Summary of November 2010

20 November 2010	Sumber of Sightings					Number of Individuals	Beaufort Sea State	Line number
Tursiops truncatus	1	25	1	3				
Tursiops truncatus	1	15	2	1				
Tursiops truncatus	1	9	2	1				
Tursiops truncatus	1	16	1	2				
Tursiops truncatus	1	12	1	2				
Tursiops truncatus	1	50	1	4				
Tursiops truncatus	1	4	1	4				
Tursiops truncatus	1	28	1	5				
Tursiops truncatus	1	21	2	10				
Caretta caretta	19	30	1 to 2	-				
Unidentified sea turtle	5	5	1	-				
Manta birostris	1	2	1 to 3	-				
Unidentified Chondrichthyes	1	1	1	-				

Survey Effort by Beaufort Sea State for 20 November 2010

Survey Effort by Beaufort Sea State for 19 November 2010

14 January 2011

Species	Number of Sightings	Number of Individuals	Beaufort Sea State	Line number
Stenella frontalis	1	26	3	10
Stenella frontalis	1	15	3	4
Stenella frontalis	1	50	2	6
Stenella frontalis	1	180	2	5
Unidentified Delphinid	1	2	3	4
Caretta caretta	21	36	2 to 3	-
Unidentified sea turtle	9	11	2 to 3	-
Manta birostris	2	2	2	-
Unidentified Chondrichthyes	3	3	2	-

Survey Effort by Beaufort Sea State for 14 January 2011

Summary of 14 January 2011

24 February 2011

Species	Number of Sightings	Number of Individuals	Beaufort Sea State	Line number
Balaenoptera acutorostrata	1	2	2	4
Balaenoptera acutorostrata	1	1	3	6
Tursiops truncatus	1	32	2	1
Tursiops truncatus	1	4	2	2
Tursiops truncatus	1	10	2	3
Tursiops truncatus	1	18	2	3
Tursiops truncatus	1	79	2	4
Tursiops truncatus	1	10	2	4
Tursiops truncatus	1	230	2	4
Stenella frontalis	1	29	3	4
Unidentified Cetacean	1	2	3	7
Caretta caretta	15	45	2 to 3	-
Unidentified sea turtle	14	25	2 to 3	-
Manta birostris	6	6	2	-
Mola mola	4	5	2 to 3	-
Unidentified Chondrichthyes	1	1	2	3

Survey Effort by Beaufort Sea State for 24 February 2011

Summary of 24 February 2011

17 March 2011

Species	Number of Sightings	Number of Individuals	Beaufort Sea State	Line number
Tursiops truncatus	1	12	2	5
Tursiops truncatus	1	33	2	6
Megptera novaeangliae	1	2	2	6
Tursiops truncatus	1	45	2	6
Caretta caretta	19	55	2 to 4	-
Unidentified sea turtle	6	8	2 to 3	-
Manta birostris	1	1	4	1
Mola mola	2	2	2	-
Unidentified Chondrichthyes	1	1	3	2

Survey Effort by Beaufort Sea State for 17 March 2011

Summary of 17 March 2011

Summary of 20 April 2011

20 April 2011				
Species	Number of Sightings	Number of Individuals	Beaufort Sea State	Line number
Unidentified sea turtle	3	3	3 to 4	-
Manta birostris	1	1	3	6

During the current reporting period additional effort was conducted in the waters offshore of the survey site in Onslow Bay. This effort was conducted to help establish potential distribution boundaries of those cetacean species that utilize deeper water habitats (Risso's dolphin, rough-toothed dolphin and short-finned pilot whales). Review of HARP acoustic recordings also suggested additional deeper water species may be present near the outer boundaries of the survey area, although they have not been observed during visual observations. Four 74 km tracklines were placed at 18.5 km increments and were laid out in a NE - SW orientation to more closely approximate the underlying bathymetry. The outer trackline extended beyond the 2000 m shelf break (Fig 1 App H). Sea state conditions dictated which day these surveys could be conducted. Three lines were flown between July 2010 and April 2011 (Table 1 App H). Five cetacean sightings were collected during this effort, which included one sighting of bottlenose dolphins (Tursiops truncatus) and four sightings of beaked whales (Mesoplodon spp.). All beaked whale sightings occurred between the 1000 and 2000m isobaths (Figure 2 App H and Table 2 App H).

Figure 1 Appendix H. Tracklines and coordinates for Onslow Bay, offshore survey effort.

Figure 2, Appendix H. All sightings recorded in the Onslow Bay, offshore survey area.

Table 1, Appendix H. Tracklines and km flown during offshore aerial surveys in Onslow Bay, North Carolina between July 2010 and April 2011.

Date	Tracklines flown AM	Tracklines flown PM	Total km flown W/O offshore
20-Aug-2010	1D, D, 10D		223.5
20-Nov-2010		1B, B, 10B	147.4
18-Mar-2011	1B, B, 10B		153.5

Table 2, Appendix H. All sightings recorded during offshore aerial surveys in Onslow Bay, North Carolina between July 2010 and April 2011.

$\begin{aligned} & \text { Q } \\ & 0 \\ & \hline \end{aligned}$	$\stackrel{\text { © }}{\underline{E}}$	$\begin{aligned} & \text { 등 } \\ & 0 \\ & \text { 相 } \\ & 3 \end{aligned}$					ت $\frac{3}{0}$ $\frac{0}{0}$ $\frac{5}{4}$		$\begin{aligned} & \infty \\ & .0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\#$ \# ¢ ¢
20-Nov-10	14:29	83	33.354651	-76.021376	N	B	2	90°	Mesoplodon spp.	2
20-Nov-10	14:40	86	33.440505	-75.914739	N	B	3	45°	Mesoplodon spp.	2
20-Nov-10	14:58	91	33.672114	-75.837265	NW	10B	3	90°	Mesoplodon spp.	6
20-Nov-10	14:08	77	33.305693	-76.521602	SE	1B	2	60°	T. truncatus	7
18-Mar-11	9:27	9	33.178846	-76.250955	N	B	1	90°	Mesoplodon spp.	1

Thursday, May 26, 2011 Sighting \# 1
Initial sighting on Track

Time: 10:18	WP\#:	Lat:	35.341992		-74.5	
Vertical Angle:	1	Horizontal Bearing in Degrees: Trackline: \qquad		1	Sighting Cue:	90
On/Off Effort:	On			Beaufort Sea State:		3
Observer:		Observ	Left			

Actual Time and Position of Sighting

Time:			
Species:Unidentified Mesoplodon	Lat:	NA	Long:
Numbers (Low/High/Best):	NA		
2/2/2			

Representative images used for Species ID
Photographer: Ryan Frame numbers
Calculated distance from Trackline:
$\mathrm{N} A$
NA

NA
Spacer: NA

Final Time and Position of Sighting
Time: NA WP\#: NA Lat:_NA Long: _ NA
Calculated Distance Traveled: NA

Behavior and Additional Comments

Animals swimming close together, larger than dolphins. No resight of the pair.

Thursday, May 26, 2011 Sighting \# 2
Initial sighting on Track
Time: 10:45 WP\#: 8 Lat: 35.408462 Long: -74.476301
Vertical Angle: 1 Horizontal Bearing in Degrees: 90 Sighting Cue: Body On/Off Effort: On Trackline: 35 Beaufort Sea State: 4 Observer: Ryan Observer side: Right
Actual Time and Position of Sighting
Time: NA WP\#: NA Lat: \qquad Long: NA
Species:Unidentified Cetacean Numbers (Low/High/Best): 1/1/1
Features used in Species ID: Looks like a smaller pilot whale, lighter in coloration behind the dorsal fin.
Representative images used for Species ID
Photographer: Ryan Frame numbers
Calculated distance from Trackline: \qquad NA

Final Time and Position of Sighting

Time: NA WP\#: NA Lat: NA Long: NA

Calculated Distance Traveled: NA

Behavior and Additional Comments

No resight, animals gave 3-4 blows during only observation before diving.

Thursday, May 26, 2011 Sighting \# 3
Initial sighting on Track
Time: 11:28 WP\#: 18 Lat: 35.484293 Long: -74.793554
Vertical Angle: _ 1 Horizontal Bearing in Degrees: 90 Sighting Cue: Body On/Off Effort: On Trackline: 36 Beaufort Sea State: 4 Observer: Erin Observer side: Left

Actual Time and Position of Sighting

Final Time and Position of Sighting
Time: N/A WP\#: N/A Lat: N/A Long: \quad N/A Calculated Distance Traveled: N/A

Behavior and Additional Comments
White peduncle, indicative of tursiops, no resight

Thursday, May 26, 2011 Sighting \# 4
Initial sighting on Track
Time: 14:31 WP\#: 27 Lat: 34.647059 Long: -74.926513
Vertical Angle: 3 Horizontal Bearing in Degrees: 100 Sighting Cue: Body On/Off Effort: Off Trackline: 27-26 Beaufort Sea State: 3 Observer: \qquad Observer side: __ Left

Actual Time and Position of Sighting
Time: N/A WP\#: N/A Lat: \qquad N/A Long: N/A
Species:Unidentified Cetacean Numbers (Low/High/Best): N/A
Features used in Species ID: N/A
Representative images used for Species ID:
Photographer: \quad Ryan \quad Frame numbers:
Calculated distance from Trackline:

Final Time and Position of Sighting

Time: N/A WP\#: N/A Lat: N/A Long: N/A

Calculated Distance Traveled:
N/A

Behavior and Additional Comments

No resight, large splash. Big bodied animal doing a deep dive, very streamlined, light grey. Looked like a torpedo going straight down.

Initial sighting on Track

Actual Time and Position of Sighting
Time: 9:41 WP\#:_4 Lat: 35.82443 Long: 74.86736
Species:Delphinus delphis Numbers (Low/High/Best): 250/300/300

Features used in Species ID: Grey animals with cream/tan colored blaze down the sides
Representative images used for Species ID: $\quad 8697,8709,8716,8718,8726$
Photographer: Erin Frame numbers: 8688-8726 Spacer: 8727
Calculated distance from Trackline:
0.9 km

Final Time and Position of Sighting
Time: 9:48 WP\#: 10 Lat: 35.82864 Long: $\quad-74.86492$
Calculated Distance Traveled: \qquad

Behavior and Additional Comments

Large line of hundreds of dolphins traveling at slow speed most well below the surface.
Multiple large groups of animals with one large group of 200+.
Lots of splashing at the surface, animals with definite direction of travel.

Friday, May 27, 2011 Sighting \# 2
Initial sighting on Track
Time:_9:52 WP\#: 8 Lat: 35.840419 Long: $\quad-74.832352$
Vertical Angle: 2 Horizontal Bearing in Degrees: 90 Sighting Cue: Body On/Off Effort: On Trackline: 41 Beaufort Sea State: 2 Observer: Ryan Observer side: Left

Actual Time and Position of Sighting

Time: 9:54 WP\#:_9 Lat: 35.847822 Long: $\quad-74.838262$

Species:Globicephala macrorhynchus Numbers (Low/High/Best): 25/46/46 Features used in Species ID: Large, black bodied animals with square head, wide dorsal fin placed $\sim 1 / 3$ back body, pectoral fins ending before leading edge of dorsal fin.
Representative images used for Species ID: $\quad 8729,8738,8746,8751$
Photographer: Erin Frame numbers: 8728-8751 Spacer: 8752 Calculated distance from Trackline: \qquad
Final Time and Position of Sighting
Time: 9:59 WP\#: 10 Lat: 35.853825 Long: $\quad-74.843747$
Calculated Distance Traveled:
0.8 km

Behavior and Additional Comments

Initially 2 groups of animals logging at the surface. Upon circling a third group was observed a short distance from the original 2.

Initial sighting on Track
Time: 10:07 WP\#: 13 Lat: 35.826662 Long: -74.753913
Vertical Angle:_ 2 Horizontal Bearing in Degrees: 90 Sighting Cue: Body On/Off Effort: On Trackline: 41 Beaufort Sea State: 2 Observer: Erin Observer side: Right
Actual Time and Position of Sighting
Time: 10:08 WP\#: 14 Lat: 35.823289 Long: -74.753615
Species:Globicephala macrorhynchus Numbers (Low/High/Best): 11/15/13
Features used in Species ID: Large, black bodied animal with big square head. Large dorsal fin $\sim 1 / 3$ back body. Pectoral fins trailing to leading edge of dorsal fin
Representative images used for Species ID: $\quad 8758,8765$
Photographer: Erin Frame numbers: 8753-8772 Spacer: 8773
Calculated distance from Trackline:
Final Time and Position of Sighting
Time: 10:11 WP\#: 15 Lat: $\quad 35.823229$ Long: $\quad-74.759432$ Calculated Distance Traveled: \qquad
\qquad
Behavior and Additional Comments
Lark dark bodied animals logging / slow travel at surface. Multiple size within the group.

Friday, May 27, 2011 Sighting \# 4
Initial sighting on Track
Time: 10:16 WP\#: 18 Lat: 35.827756 Long: $\quad-74.602622$
Vertical Angle: 2 Horizontal Bearing in Degrees: 90 Sighting Cue: Body On/Off Effort: On Trackline: 41 Beaufort Sea State: 2 Observer: Ryan Observer side: Left

Actual Time and Position of Sighting

Time: 10:18 WP\#:_19 Lat: 35.831716 Long: $\quad-74.600833$

Species:Physeter macrocephalus Numbers (Low/High/Best): 2/2/2
Features used in Species ID: Large grey body, bow hole off center and at a 45 degree forward angle. Wrinkled bodied, large head.

Calculated distance from Trackline: \qquad
Final Time and Position of Sighting
Time: 10:19 WP\#: 20 Lat: 35.833738 Long: $\quad-74.600985$
Calculated Distance Traveled:
: $\quad 0.2 \mathrm{~km}$

Behavior and Additional Comments

Single animal observed traveling just below the surface taking multiple breaths before diving again. A second animal was observed while circling the first. Both sightings occurred along a line of sargassum patches.

Initial sighting on Track
Time: 10:43 WP\#: 24 Lat: 35.761421 Long: -74.781425

Vertical Angle:_ 2 Horizontal Bearing in Degrees: 45 Sighting Cue: Body On/Off Effort: On Trackline: 40 Beaufort Sea State: 3 Observer: Erin Observer side: Right

Actual Time and Position of Sighting

Time: 10:45 WP\#: 25 Lat: 35.761017 Long: -74.779985
Species:Globicephala macrorhynchus Numbers (Low/High/Best): 12/14/13
Features used in Species ID: Large, black bodied animal with big square head. Large dorsal fin $\sim 1 / 3$ back body. Pectoral fins trailing to leading edge of dorsal fin
Representative images used for Species ID:
Photographer: Erin Frame numbers: 8793-8806 Spacer:
Calculated distance from Trackline:
0.1 km

Final Time and Position of Sighting
Time: 10:48 WP\#: 26 Lat: $\quad 35.761087$ Long: $\quad-74.771661$
Calculated Distance Traveled: \qquad

Behavior and Additional Comments

One group of pilot whales showing slow travel while surfacing regularly.

Friday, May 27, 2011 Sighting \# 6

Initial sighting on Track
Time: 10:50 WP\#: 28 Lat: 35.762952 Long: -74.832077
Vertical Angle: $1 \quad$ Horizontal Bearing in Degrees: 90 Sighting Cue: Body On/Off Effort: On Trackline: 40 Beaufort Sea State: 3 Observer: Erin Observer side: Right

Actual Time and Position of Sighting

Time: 10:52 WP\#: 29 Lat: 35.76707 Long: -74.82998
Species:Globicephala macrorhynchus Numbers (Low/High/Best): 20/24/23
Features used in Species ID: Large, black bodied animal with big square head. Large dorsal fin $\sim 1 / 3$ back body. Pectoral fins trailing to leading edge of dorsal fin
Representative images used for Species ID: $\quad 8810,8812,8816$
Photographer: Erin Frame numbers: 8808-8822 Spacer: 8823
Calculated distance from Trackline: \qquad
Final Time and Position of Sighting
Time: 10:53 WP\#: 30 Lat: 35.764896 Long: -74.835937
Calculated Distance Traveled: \qquad

Behavior and Additional Comments

Single, large group of animals closely packed showing slow travel with regular surfacings.

Initial sighting on Track
Time: 11:15 WP\#: 37 Lat: 35.691801 Long: -74.741405
Vertical Angle:_ 2 Horizontal Bearing in Degrees: 90 Sighting Cue: Body On/Off Effort: On Trackline: 39 Beaufort Sea State: 3 Observer: Ryan Observer side: Left

Actual Time and Position of Sighting
Time: 11:21 WP\#: 38 Lat: 35.688751 Long: -74.748692
Species:Globicephala macrorhynchus Numbers (Low/High/Best): 12/15/13
Features used in Species ID: Large, black bodied animal with big square head. Large dorsal fin $\sim 1 / 3$ back body. Pectoral fins trailing to leading edge of dorsal fin
Representative images used for Species ID: 8826, 8831, 8834, 8835, 8841
Photographer: Erin Frame numbers: 8824-8843 Spacer: 8844
Calculated distance from Trackline:
Final Time and Position of Sighting
Time:_ 11:21 WP\#: 39 Lat: 35.707327 Long: $\quad-74.74025$
Calculated Distance Traveled: \qquad
Behavior and Additional Comments
Initial sighting of 2 animals, upon circling more animals were encountered that joined the initial pair.

Friday, May 27, 2011 Sighting \# 8
Initial sighting on Track
Time: 11:24 WP\#: 41 Lat: 35.702547 Long: -74.720478
Vertical Angle: 3 Horizontal Bearing in Degrees: 90 Sighting Cue: Body On/Off Effort: On Trackline: 40 Beaufort Sea State: 3 Observer: Erin Observer side: Right

Actual Time and Position of Sighting

Time: 11:25 WP\#: 42 Lat: 35.70088 Long: -74.72344

Species:Physeter macrocephalus Numbers (Low/High/Best): 1/1/1
Features used in Species ID: Large grey body blow hole off center and angled forward 45 degrees
Some wrinkles seen on the body, low dorsal ridge and "knuckles" on dorsal peduncle
Representative images used for Species ID: No images collected
Photographer: Erin Frame numbers:_NA Spacer:_NA
Calculated distance from Trackline: \qquad
Final Time and Position of Sighting
Time: 11:25 WP\#: 43 Lat: 35.703143 Long: $\quad-74.723494$
Calculated Distance Traveled: $\quad 0.25 \mathrm{~km}$

Behavior and Additional Comments

Animal was observed as it dove from the surface.

$$
\text { Friday, May 27, } 2011 \text { Sighting \# } 9
$$

Initial sighting on Track
Time: 11:31 WP\#: 46 Lat: 35.68981 Long: -74.52118

Vertical Angle: $\quad 2$ Horizontal Bearing in Degrees: 90 Sighting Cue: Body On/Off Effort: On Trackline: $\quad 39$ Beaufort Sea State: $\quad 4$ Observer: Ryan Observer side: \qquad
Actual Time and Position of Sighting
Time: 11:40 WP\#: 47 Lat: 35.69827 Long: -74.53404
Species:Globicephala macrorhynchus Numbers (Low/High/Best): 9/10/10
Features used in Species ID: Large, black bodied animal with big square head. Large dorsal fin $\sim 1 / 3$ back body. Pectoral fins trailing to leading edge of dorsal fin
Representative images used for Species ID:
Photographer: Erin Frame numbers

8845,8847	
$8845-8853$	
$1.5 \mathrm{~km}^{*}$	
Spacer: $\quad 8854$	

Calculated distance from Trackline:
$1.5 \mathrm{~km}^{*}$
Final Time and Position of Sighting
Time: 11:41 WP\#: 48 Lat: $35.70351 \quad$ Long: $\quad-74.52034$
Calculated Distance Traveled:
1.3 km*

Behavior and Additional Comments

Observed animals at surface logging.

Friday, May 27, 2011 Sighting \# 10

Initial sighting on Track
Time: 11:31 WP\#: 46 Lat: 35.68981 Long: -74.52118
Vertical Angle: 1 Horizontal Bearing in Degrees: 90 Sighting Cue: Body On/Off Effort: Off Trackline: 39 Beaufort Sea State: 4 Observer: Ryan Observer side: Right

Actual Time and Position of Sighting

Time: 11:40 WP\#: 47 Lat: 35.69827 Long: -74.53404
Species:Steno bredanensis Numbers (Low/High/Best): 4/4/4

Features used in Species ID: Dark grey animals with large pectoral fins, large triangular dorsal fin. White lower jaw, low sloping melon.
Representative images used for Species ID: \quad 8849, 8850
Photographer: Erin Frame numbers: 8845-8853 Spacer: 8854 Calculated distance from Trackline: \qquad
Final Time and Position of Sighting
Time: 11:41 WP\#: 48 Lat: 35.70351 Long: $\quad-74.52034$

Calculated Distance Traveled:
: NA

Long. $\quad-74.52034$

Behavior and Additional Comments

While circling for sighting \#9 observed a tight group of 4 animals traveling at a moderate rate of speed below the surface. We made a single circle on animals to collect photos after which the group was not observed again. Location of animals is identical to those in sighting \#9- no distance from trackline or distance traveled was calculated as sighting occurred within the range of sighting \#9.

Initial sighting on Track
Time: 11:58 WP\#: 53 Lat: 35.62272 Long: -74.68595
Vertical Angle: $1 \quad$ Horizontal Bearing in Degrees: 45 Sighting Cue: Body On/Off Effort: On Trackline: $\quad 38$ Beaufort Sea State: 3 Observer: Erin Observer side: Right
Actual Time and Position of Sighting
Time: 12:07 WP\#: 54 Lat: 35.63006 Long: -74.68479
Species:Stenella frontalis Numbers (Low/High/Best): 40/50/50
Features used in Species ID: Light lateral blaze trailing to midpoint of dorsal fin, white tip to rostrum, light appearance of spots on larger animals.
Representative images used for Species ID: $\quad 8857,8859,8861-64,8881$ and 8886
Photographer: Erin Frame numbers: 8855-8889 Spacer: 8890
Calculated distance from Trackline:
Final Time and Position of Sighting
Time: 12:07 WP\#: 55 Lat: 35.63107 Long: $\quad-74.71327$
Calculated Distance Traveled: \qquad
Behavior and Additional Comments
Single large group of animals moderately spaced apart surfacing regularly.

Friday, May 27, 2011 Sighting \# 12

Initial sighting on Track
Time: 11:58 WP\#: 53 Lat: 53.62272 Long: -74.68595
Vertical Angle: 1 Horizontal Bearing in Degrees: 90 Sighting Cue: Body On/Off Effort: Off
Observer: Erin Trackline: 38 Beaufort Sea State: \qquad
Actual Time and Position of Sighting
Time: 12:07 WP\#: 54 Lat: 35.63006 Long: -74.68479

Species:Unidentified Mesoplodon Numbers (Low/High/Best): 1/1/1
Features used in Species ID: Tiny dorsal fin placed far back on the body, tiny pectoral fins, small pointed rostrum sloping smoothly into rostrum. Darker coloration around eye. Representative images used for Species ID: $\quad 8867-69,8871$ and 8874
Photographer: Erin Frame numbers: 8855-8889 Spacer: 8890 Calculated distance from Trackline: \qquad

Final Time and Position of Sighting

Time: 12:07 WP\#: $\quad 55$ Lat: $35.63107 \quad$ Long: \quad-74.71327

Calculated Distance Traveled:
: NA

Long. -74.71327

Behavior and Additional Comments

While circling for sighting \#11 observed a large single animal traveling below the surface. Animal surfaced and was photographed before diving out of sight. Animals location is the same as that given for sighting \#11 as it occurred in the same area and no additional waypoints were recorded for this animal.

Friday, May 27, 2011 Sighting \# 13

Initial sighting on Track

$\begin{array}{lc}\text { Time: } & \text { 14:12 } \\ \text { Vertical Angle: } & \text { WP\#: } \\ \frac{62}{\text { Horizontal Bearing in Degrees: }} \quad \text { 90 } & \text { Lang: } \\ \text { Sighting Cue: } & -74.60432 \\ \text { Splash }\end{array}$
On/Off Effort: On Trackline: $\quad 37$ Beaufort Sea State: $\quad 4$

Observer:
Observer side: Left
Actual Time and Position of Sighting
Time: 14:20 WP\#: 63 Lat: 35.56299 Long: $\quad-74.60435$
Species:Lagenodelphis hosei Numbers (Low/High/Best): 60/75/75
Features used in Species ID: Small rostrum, robust body with small triangular dorsal fin placed far back on the body. Some animals with dark bilge line from eye down sides with lighter boarder
Representative images used for Species ID: 8893-8895, 8898, 8899
Photographer: Erin Frame numbers: 8891-8934 Spacer:
893 Calculated distance from Trackline: \qquad
Final Time and Position of Sighting
Time: NA WP\#: NA Lat:
NA

Long: \qquad
Calculated Distance Traveled: \qquad NA

Behavior and Additional Comments
Observed a large group of animals splashing at the surface showing some directional movement as well as milling behavior. Group appeared to slow down and fan out during our encounter.

Tuesday, J une 14, 2011 Sighting \# 1
Initial sighting on Track

Actual Time and Position of Sighting

Final Time and Position of Sighting

Time: 10:18 WP\#: $\quad 5 \quad$ Lat: $\quad 34.782421 \quad$ Long: $\quad-75.319607$ Calculated Distance Traveled: \qquad 1.1 km

Behavior and Additional Comments

Large, black bodied animal. No resight.

Tuesday, J une 14, 2011 Sighting \# 2

Initial sighting on Track

Time: 11:35 WP\#: 22 Lat: 34.930132 Long: -75.117213
Vertical Angle: 3 Horizontal Bearing in Degrees: 90 Sighting Cue: Splash On/Off Effort: On Trackline: 28 Beaufort Sea State: 3 Observer: Ryan Observer side: ___ Right

Actual Time and Position of Sighting
Time: 11;36 WP\#: 23 Lat: 34.928116 Long: $\quad-75.116029$
Species:Tursiops truncatus Numbers (Low/High/Best): 15/20/18
Features used in Species ID: Dark grey animals, some with white peduncles but more uniform.
Representative images used for Species ID: \quad 8966, 8973, 8995, 8996, 9001
Photographer: Ryan Frame numbers: $\quad 8936-9018 \quad$ Spacer: $\quad 9018$

Calculated distance from Trackline: \qquad

Final Time and Position of Sighting

Time: 11:45 WP\#: 24 Lat: 34.922955 Long: $\quad-75.124287$ Calculated Distance Traveled: \qquad -75.124287

Behavior and Additional Comments

One calf, two groups of two traveling in pairs close together, regular surfacing. Other animals spread out, not traveling in a specific direction. Showing avoidance.

Tuesday, J une 14, 2011 Sighting \# 3
Initial sighting on Track
Time: 11:48 WP\#: 25 Lat: 34.985284 Long: -75.185588

Vertical Angle: _ 2 Horizontal Bearing in Degrees: $\quad 90$ Sighting Cue:_ 2
On/Off Effort: On Trackline: 28 Beaufort Sea State: 3 Observer: Erin Observer side: Left
Actual Time and Position of Sighting
Time: WP\#: Lat: \qquad Long:
Species:Tursiops truncatus Numbers (Low/High/Best): 2/2/2
Features used in Species ID: Uniform grey animals with white peduncles
Representative images used for Species ID: No photos
Photographer: \qquad Frame numbers: \qquad Spacer: \qquad
Calculated distance from Trackline:
Final Time and Position of Sighting
Time: WP\#: Lat \qquad Long: \qquad
Calculated Distance Traveled: \square

Behavior and Additional Comments

Tuesday, J une 14, 2011 Sighting \# 4
Initial sighting on Track
Time: 14:53 WP\#: 44 Lat: 35.153779 Long: -75.020784
Vertical Angle: $\quad 2$ Horizontal Bearing in Degrees: 90 Sighting Cue: 2 On/Off Effort: On Trackline: 31 Beaufort Sea State: 3 Observer: Erin Observer side: Left

Actual Time and Position of Sighting

Time: WP\#: Lat: \qquad Long:
Species:Ziphius cavirostris Numbers (Low/High/Best): 4/4/4
Features used in Species ID: Large animal with brown body and white colored head
Representative images used for Species ID:
Photographer: \qquad Frame numbers: \qquad Spacer: \qquad
Calculated distance from Trackline:

Final Time and Position of Sighting

Time: 15:12 WP\#: 46 Lat: 35.148997 Long: $\quad-75.012569$

Calculated Distance Traveled: \qquad

Behavior and Additional Comments

Large brown bodied animal with white colored head. Rounded dorsal fin set far back on body. All swimming together about 1-2 body lengths apart. Definitely Ziphius. They dove and were not resighted for photos. There was another species sighted during the search for the beaked whales which is designated as sighting 5

Initial sighting on Track
Time: 14:53 WP\#: 44 Lat: 35.153779 Long: -75.020784

Vertical Angle: $\quad 2$ Horizontal Bearing in Degrees: 90 Sighting Cue: 2 On/Off Effort: On Trackline: 31 Beaufort Sea State: 3 Observer: Erin Observer side: Left
Actual Time and Position of Sighting
Time: 15:03 WP\#:_45 Lat: 35.154789 Long: $\quad-75.023044$
Species:Tursiops truncatus Numbers (Low/High/Best): 7/7/7
Features used in Species ID: Uniform grey animals with a slightly white peduncle
Representative images used for Species ID: 9041, 9042, 9044
Photographer: Ryan Frame numbers: 9019-9053 Spacer: 9053
Calculated distance from Trackline: $\quad 0.2342 \mathrm{~km}$
Final Time and Position of Sighting
Time: 15:12 WP\#: 46 Lat: 35.148997 Long: $\quad-75.012569$
Calculated Distance Traveled: \qquad
Behavior and Additional Comments
Milling at the surface or subsurface. This sighting popped up in the search for sighting 4, the beaked whales.

Tuesday, J une 14, 2011 Sighting \# 6
Initial sighting on Track
Time: 15:15 WP\#: 48 Lat: 35.105851 Long: -74.961873
Vertical Angle: 2 Horizontal Bearing in Degrees: 100 Sighting Cue: 2 On/Off Effort: On Trackline: 31 Beaufort Sea State: 3 Observer: Erin Observer side: Left
Actual Time and Position of Sighting
Time: 15:19 WP\#: 49 Lat: 35.116018 Long: -74.960536
Species:Globicephala macrorhynchus Numbers (Low/High/Best): 9/11/10
Features used in Species ID: Large, dark body, blunt head, small pecks
Representative images used for Species ID: \quad 9077, 9076, 9075, 9063, 9059, 9054
Photographer: Ryan Frame numbers: \quad 9054-9081 \quad Spacer: 9081

Calculated distance from Trackline: \qquad
Final Time and Position of Sighting
Time: 15:26 WP\#: 50 Lat: 35.123212 Long: -74.945967
Calculated Distance Traveled:

- $\quad 1.548 \mathrm{~km}$

Behavior and Additional Comments

Darting through the water, staying subsurface. Possible avoidance behavior.

Wednesday, J une 15, 2011 Sighting \# 1

Initial sighting on Track

Time: 10:43 WP\#: 13 Lat: 35.476630 Long: $\quad-74.5149$
Vertical Angle: _ 2 Horizontal Bearing in Degrees: 90 Sighting Cue: Body On/Off Effort: On Trackline: 36 Beaufort Sea State: $\quad 4$
Observer: Erin

Observer side: Right
Actual Time and Position of Sighting
Time: 10:43 WP\#: 14 Lat: 35.47301 Long: $\quad-74.51978$
Species:Unidentified Delphinid Numbers (Low/High/Best): 1/1/1
Features used in Species ID: Light grey to white animal with blunt head ~size of a pilot whale
Representative images used for Species ID:

None
NA \quad Spacer: \quad NA

Calculated distance from Trackline: \qquad
Final Time and Position of Sighting
Time: 10:56 WP\#: 15 Lat: 35.464768 Long: $\quad-74.51472$
Calculated Distance Traveled: \qquad

Behavior and Additional Comments

Animal never surfaced during our observations. Displayed highly variable direction of travel. Dove from view during our initial observation and was not resighted during our search of the area for ~13 minutes.

Initial sighting on Track
Time: 10:07 WP\#: 4 Lat: 35.832214 Long: -74.856326

Vertical Angle: 3 Horizontal Bearing in Degrees: 90 Sighting Cue:_ 3
On/Off Effort: On Trackline: 40 _ Beaufort Sea State: _ 2 Observer: Ryan Observer side: \quad Right

Actual Time and Position of Sighting
Time: 10:09 WP\#: 5 Lat: 35.827493 Long: -74.853076 Species:Globicephala macrorhynchus Numbers (Low/High/Best): 80/100/90 Features used in Species ID: Large black bodied animals with a blunt head and small pectoral fins

Representative images used for Species ID: $\quad 9702,9703,9704,9725$
Photographer: Ryan Frame numbers: 9696-9743 Spacer: 9744
Calculated distance from Trackline: $\quad 0.6012 \mathrm{~km}$
Final Time and Position of Sighting
Time: 10:15 WP\#: $\quad 6 \quad$ Lat: 35.819436 Long: $\quad-74.874566$
Calculated Distance Traveled: \qquad

Behavior and Additional Comments

Animals milling on surface, widely spaced, groups of 8-15. There were tursiops in the mix as well. They were tightly spaces and splashing with a group size of 10/12/11.

Saturday, J uly 30, 2011 Sighting \# 2
Initial sighting on Track
Time: 10:17 WP\#: 8 Lat: 35.830465 Long: -74.819771
Vertical Angle: 3 Horizontal Bearing in Degrees: 100 Sighting Cue: 3 On/Off Effort: On Trackline: 40 Beaufort Sea State: 2 Observer: Erin Observer side: Left
Actual Time and Position of Sighting
Time: 10:19 WP\#: 9 Lat: 35.839234 Long: -74.818899
Species:Globicephala macrorhynchus Numbers (Low/High/Best): 20/30/25
Features used in Species ID: Large black bodied animals with blunt heads and small pectoral fins

Representative images used for Species ID: \quad\begin{tabular}{l}
9753, 9754

Photographer: \quad Ryan \quad Frame numbers: $\frac{9745-9758}{0.9782 \mathrm{~km}}$

Calculated distance from Trackline:

$.$

Spacer: $\quad 9759$
\end{tabular}

Final Time and Position of Sighting

Time: 10:29 WP\#: 10 Lat: 35.821433 Long: -74.839890

Calculated Distance Traveled: \qquad
Long: -74.839890

Behavior and Additional Comments

Widely spaced, scattered, milling around on surface or just subsurface. Making deeper dives and resurfacing.

Initial sighting on Track
Time: 10:32 WP\#: 12 Lat: 35.831852 Long: -74.757788

Vertical Angle: _ 2 _Horizontal Bearing in Degrees: 90 Sighting Cue:_ 3 On/Off Effort: On Trackline: 40 Beaufort Sea State: 2 Observer: Erin Observer side: Left
Actual Time and Position of Sighting
Time: 10:34 WP\#: 13 Lat: 35.842294 Long: -74.763221
Species:Tursiops truncatus Numbers (Low/High/Best): 20/30/25

Features used in Species ID: Robust grey bodied animals
Representative images used for Species ID: \quad 9772, 9773,9775
Photographer: \quad Ryan \quad Frame numbers: $\frac{9760-9809}{1.260 \mathrm{~km}}$ Spacer: $\quad 9810$
Calculated distance from Trackline:

Final Time and Position of Sighting
Time: 10:39 WP\#: 14 Lat: 35.835807 Long: $\quad-74.762225$
Calculated Distance Traveled: \qquad
Behavior and Additional Comments
Widely spaced, multiple subgroups, splashing, breaching, belly rubbing

Saturday, J uly 30, 2011 Sighting \# 4
Initial sighting on Track
Time: 10:46 WP\#: 17 Lat: 35.830749 Long: -74.523249
Vertical Angle: 2 Horizontal Bearing in Degrees: 90 Sighting Cue: 2 On/Off Effort: On Trackline: 40 Beaufort Sea State: 2 Observer: Erin Observer side: Left

Actual Time and Position of Sighting
Time: 10:48 WP\#: 18 Lat: 35.837776 Long: -74.534692
Species:Tursiops truncatus Numbers (Low/High/Best): 8/10/8
Features used in Species ID: Robust grey animals, white blaze trailing to post dorsal fin

Calculated distance from Trackline: \qquad
Final Time and Position of Sighting
Time: 10:53 WP\#: 19 Lat: 35.840409 Long: $\quad-74.536985$

Calculated Distance Traveled: \qquad
Long: -74.536985

Behavior and Additional Comments

Animals traveling in tight group

Initial sighting on Track
Time: 10:55 WP\#: 21 Lat: 35.831379 Long: -74.482425

Vertical Angle: _ 2 Horizontal Bearing in Degrees: $\quad 45$ Sighting Cue:_ 3 On/Off Effort: On Trackline: 40 Beaufort Sea State: 2 Observer: Ryan Observer side: \quad Right

Actual Time and Position of Sighting
Time: 10:56 WP\#: 22 Lat: 35.829427 Long: -74.482279
Species:Tursiops truncatus Numbers (Low/High/Best): 10/15/12
Features used in Species ID: Robust grey bodied animals with a lighter blaze trailing to just post dorsal fin
Representative images used for Species ID: \quad 9880, 9881, 9885, 9886
Photographer: Ryan Frame numbers: 9863-9895 Spacer: 9896
Calculated distance from Trackline:
0.2175 km

Final Time and Position of Sighting
Time: 10:59 WP\#: 23 Lat: 35.824477 Long: _74.490404
Calculated Distance Traveled: \qquad
Behavior and Additional Comments
Belly rubbing, tightly packed, splashing and swimming in circles

Saturday, J uly 30, 2011 Sighting \# 6
Initial sighting on Track
Time: 11:07 WP\#: 28 Lat: 35.762600 Long: -74.374819
Vertical Angle: _ 2 Horizontal Bearing in Degrees: 45 Sighting Cue: 2
On/Off Effort: On Trackline: 39 Beaufort Sea State: 3 Observer: Ryan Observer side: Right

Actual Time and Position of Sighting

Time: 11:08 WP\#: 29 Lat: 35.769256 Long: -74.376584
Species:Physeter macrocephalus Numbers (Low/High/Best): 1/1/1

Features used in Species ID: Large grey bodied animals with large forward blow and blunt head

Representative images	Sp	9897, 9904, 9929, 9936		
Photographer: Ryan	Frame numbers:	9897-9945	Spacer:	9946
Calculated distance	Trackline:	71 km		

Final Time and Position of Sighting
Time: 11:09 WP\#: 30 Lat: 35.762356 Long: -74.385283

Calculated Distance Traveled:
1.098 km

Behavior and Additional Comments

Logging at the surface

Initial sighting on Track
Time: 11:10 WP\#: 18 Lat: 35.763268 Long: -74.413674

Vertical Angle: 1 Horizontal Bearing in Degrees: 90 Sighting Cue: $\quad 2$ On/Off Effort: On Trackline: 39 Beaufort Sea State: 3 Observer: Erin Observer side: Left
Actual Time and Position of Sighting
Time: 11:11 WP\#: 32 Lat: 35.764706 Long: -74.414867
Species:Physeter macrocephalus Numbers (Low/High/Best): 3/3/3
Features used in Species ID: Large grey bodied animal will large forward blow and blunt head
Representative images used for Species ID: \quad 9947, 9951, 9959
Photographer: Ryan \quad Frame numbers: $\frac{9947-9974}{0.1928 \mathrm{~km}}$ Spacer: $\quad 9975$
Calculated distance from Trackline:
Final Time and Position of Sighting
Time: 11:16 WP\#: 33 Lat: 35.760384 Long: $\quad-74.412399$
Calculated Distance Traveled: \qquad
Behavior and Additional Comments
Logging at the surface

Saturday, J uly 30, 2011 Sighting \# 8
Initial sighting on Track
Time: 11:18 WP\#: 36 Lat: 35.761286 Long: -74.500437
Vertical Angle: 2 Horizontal Bearing in Degrees: 90 Sighting Cue: 3 On/Off Effort: On Trackline: 39 Beaufort Sea State: 2 Observer: Ryan Observer side: Right

Actual Time and Position of Sighting

Time: 11:19 WP\#: 37 Lat: 35.766473 Long: -74.508376
Species:Tursiops truncatus Numbers (Low/High/Best): 28/35/30
Features used in Species ID: Robust grey animals with lighter color blaze from rostrum to post dorsal fin
Representative images used for Species ID: $\quad 0003,0004,0016,0017,9998$
Photographer: Ryan Frame numbers: 0001-9998 Spacer: 9999
Calculated distance from Trackline: \qquad
Final Time and Position of Sighting
Time: 11:21 WP\#: 38 Lat: 35.761723 Long: -74.508473
Calculated Distance Traveled: \qquad

Behavior and Additional Comments

Widely spaced, lots of splashing. A couple of groups of 10 or so. Belly to belly swimming, swimming subsurface.

Initial sighting on Track
Time: 11:27 WP\#: 40 Lat: 35.764230 Long: -74.702959

Vertical Angle:_ 3 _Horizontal Bearing in Degrees: 90 Sighting Cue:_ 3 On/Off Effort: On Trackline: 39 Beaufort Sea State: 2 Observer: Erin Observer side: Left

Actual Time and Position of Sighting
Time: 11:29 WP\#: 41 Lat: 35.753212 Long: -74.701881
Species:Globicephala macrorhynchus Numbers (Low/High/Best): 3/5/4
Features used in Species ID: Large black animals with small pectoral fins and blunt head
Representative images used for Species ID: \quad 0038,0039,0044,0045
Photographer: \quad Ryan \quad Frame numbers: $\frac{0033-0048}{1.229 \mathrm{~km}}$ Spacer: 0049
Calculated distance from Trackline:
Final Time and Position of Sighting
Time: 11:37 WP\#: 42 Lat: 35.754312 Long: $\quad-74.710280$
Calculated Distance Traveled: \qquad

Behavior and Additional Comments

Moving at a fast pace, widely spaced.

Saturday, J uly 30, 2011 Sighting \# 10
Initial sighting on Track
Time: 11:39 WP\#: 44 Lat: 35.765238 Long: 74.794349
Vertical Angle: 1 Horizontal Bearing in Degrees: 45 Sighting Cue: 3 On/Off Effort: On Trackline: 39 Beaufort Sea State: 2 Observer: Ryan Observer side: Right

Actual Time and Position of Sighting

Time: 11:41 WP\#: 45 Lat: 35.758390 Long: -74.789591
Species:Globicephala macrorhynchus Numbers (Low/High/Best): 5/7/6
Features used in Species ID: Large black animal with small pectoral fins and a blunt head

Representative images	for Species ID:	0050,0051, 0072,0073		
Photographer: Ryan	Frame numbers:	0050-0086	Spacer:	0087
Calculated distance fro	Trackline:	41 km		

Final Time and Position of Sighting

Time: 11:48 WP\#: 46 Lat: 35.760698 Long: -74.800063

Calculated Distance Traveled:
0.9791 km

Long: -74.800063

Behavior and Additional Comments

Widely spaced, doing deeper dives then swimming subsurface.

Initial sighting on Track
Time: 13:56 WP\#: 57 Lat: 35.690898 Long: -74.535851

Vertical Angle: 3 Horizontal Bearing in Degrees: 60 Sighting Cue: 2 On/Off Effort: On Trackline: 38 Beaufort Sea State: 3 Observer: Ryan Observer side: \quad Right

Actual Time and Position of Sighting
Time: 13:56 WP\#:_58 Lat: 35.681309 Long: $\quad-74.533918$
Species:Physeter macrocephalus Numbers (Low/High/Best): 2/2/2
Features used in Species ID: Large grey animals with large forward blow and blunt head
Representative images used for Species ID: 0102,0106, 0110
Photographer: Ryan Frame numbers: 0088-0114 Spacer: 0115
Calculated distance from Trackline:
1.080 km

Final Time and Position of Sighting
Time: 13:59 WP\#: 59 Lat: $\quad 35.692302 \quad$ Long: $\quad-74.534939$
Calculated Distance Traveled: \qquad
Behavior and Additional Comments
Logging at the surface

Saturday, J uly 30, 2011 Sighting \# 12
Initial sighting on Track
Time: 14:21 WP\#: 66 Lat: 35.621053 Long: $\quad-74.782324$
Vertical Angle: 3 Horizontal Bearing in Degrees: 90 Sighting Cue: 2 On/Off Effort: On Trackline: 37 Beaufort Sea State: 3 Observer: Ryan Observer side: Right

Actual Time and Position of Sighting

Time: 14:23 WP\#: 67 Lat: 35.619175 Long: $\quad-74.785925$
Species:Globicephala macrorhynchus Numbers (Low/High/Best): 40/45/43
Features used in Species ID: Large black animals with small pectoral fins and a blunt head

Representative images used for Species ID: $\frac{0126,0133,0137-0139}{}$| Frame numbers: $\frac{0116-0144}{0.3867 \mathrm{~km}}$ |
| :--- |
| Photographer: \quad Ryan |\quad Spacer: 0145

Calculated distance from Trackline:

Final Time and Position of Sighting
Time: 14:26 WP\#: 68 Lat: 35.627991 Long: $\quad-74.784884$

Calculated Distance Traveled:
0.9848 km

Long: -74.784884

Behavior and Additional Comments

2 groups logging at the surface

Saturday, J uly 30, 2011 Sighting \# 13
Initial sighting on Track

Time: 15:01	WP\#:	75	Lat:	35.551567		Long: -74.40	-74.405722
Vertical Angle:	3	Horizontal Bearing in Degrees:			90	Sighting Cue:	2
On/Off Effort:	On		acklin	36		fort Sea State:	3

Observer: Erin Observer side: Left
Actual Time and Position of Sighting

Final Time and Position of Sighting
Time: 15:05 WP\#: 77 Lat: 35.563116 Long: $\quad-74.405971$
Calculated Distance Traveled: \qquad
Behavior and Additional Comments
Logging at the surface close together

Initial sighting on Track
Time: 10:13 WP\#: 14 Lat: 35.143615 Long: -74.875296

Vertical Angle: _ 2 Horizontal Bearing in Degrees: 90 Sighting Cue: Splash On/Off Effort: On Trackline: 32 Beaufort Sea State: 3 Observer: RJM Observer side: \qquad
Actual Time and Position of Sighting
Time: 10:16 WP\#:_15 Lat: 35.146405 Long: -74.870301 Species:Physeter macrocephalus Numbers (Low/High/Best): 3/3/3
Features used in Species ID: Large square head, Blowhole off center with 45 degree forward blow wrinkles along caudal are of body, "knuckles" on dorsal peduncle, no dorsal fin.
Representative images used for Species ID: 4036, 4062, 4072
Photographer: EWC Frame numbers: 4032-4074 Spacer: 4075
Calculated distance from Trackline:
0.5 km

Final Time and Position of Sighting
Time: 10:25 WP\#: 18 Lat: 35.157699 Long: $\quad-74.880452$
Calculated Distance Traveled: \qquad Long:

Behavior and Additional Comments

Initial observation was of a single animal hanging just below the surface. Upon circling a total of 3 animals were observed logging at the surface. All animals approximately the same size.

Sunday, July 31, 2011 Sighting \# 1

Initial sighting on Track
Time: 10:13 WP\#: 14 Lat: 35.143615 Long: -74.875298
Vertical Angle: ___ Horizontal Bearing in Degrees: ___ Sighting Cue: splash On/Off Effort: Off Observer: RJM Trackline: 32 Beaufort Sea State: 3 Observer side: Left

Actual Time and Position of Sighting
Time: 10:20 WP\#: 16 Lat: 35.147153 Long: -74.870689
Species:Globicephala macrorhynchus Numbers (Low/High/Best): 8/12/10
Features used in Species ID: Large square heads, dark black bodies with large dorsal fin placed approximately $1 / 3$ back animals body.
Representative images used for Species ID
Photographer: NA Frame numbers
Calculated distance from Trackline: \qquad
Final Time and Position of Sighting
Time: 10:25 WP\#: 18 Lat: 35.157699 Long: -74.880452

Calculated Distance Traveled:
: NA

NA
Spacer: NA Spacer

Behavior and Additional Comments

Group of pilot whales observed in the same area as sperm whales. Observation was made while circling on sperm whales, as such it will be listed as an off effort sighting and is only included to show distribution of animals.

Initial sighting on Track
Time: 10:45 WP\#: 23 Lat: 34.878139 Long: -74.627305

Vertical Angle: 2 Horizontal Bearing in Degrees: 90 Sighting Cue: Blow On/Off Effort: Off Trackline: between 32-31 Beaufort Sea State: $\quad 2$ Observer: Erin Observer side: Right
Actual Time and Position of Sighting
Time: 10:45 WP\#: 24 Lat: 34.867745 Long: -74.645303 Species:Physeter macrocephalus Numbers (Low/High/Best): 2/2/2
Features used in Species ID: Large square head, grey body with wrinkles along caudal area of animal. blow hole at 45 degrees forward and off center to left. "Knuckles" on dorsal caudal region.
Representative images used for Species ID: 4078, 4079, 4082, 4078
Photographer: Erin Frame numbers: 4076-4099 Spacer: 4100
Calculated distance from Trackline:
2 km
Final Time and Position of Sighting
Time: NA WP\#: NA Lat:_NA Long: _ NA Calculated Distance Traveled: \quad NA

Behavior and Additional Comments

Pair of animals traveling side by side both almost stationary in the water taking frequent breaths.
\qquad

Sunday, J uly 31, 2011 Sighting \# 3

Initial sighting on Track
Time: 11:00 WP\#: 26 Lat: 35.13326 Long: -74.99565
Vertical Angle: 1 Horizontal Bearing in Degrees: 90 Sighting Cue: Body On/Off Effort: On Observer: Erin Trackline: 31 Beaufort Sea State: \qquad Observer side: \qquad
Actual Time and Position of Sighting
Time: 11:01 WP\#:_27 Lat: 35.14314 Long: $\quad-74.982232$
Species:Physeter macrocephalus Numbers (Low/High/Best): 1/1/1

Features used in Species ID: Blowhole forward at 45 degrees and off center, "knuckles" from mid back down tail stock. grey wrinkled body.
Representative images used for Species ID: $\quad 4121$
Photographer: Erin Frame numbers: 4101-4128 _ Spacer: 4129
Calculated distance from Trackline: \qquad
Final Time and Position of Sighting
Time: 11:03 WP\#: 28 Lat: 35.137896 Long: -74.987758
Calculated Distance Traveled: \qquad

Behavior and Additional Comments

Logging at the surface.

Initial sighting on Track

Time: 14:56 WP\#: 55 Lat: 34.827275 Long: $\quad-75.235589$
Vertical Angle: $\quad 1 \quad$ Horizontal Bearing in Degrees: 90 Sighting Cue: Body On/Off Effort: On Trackline: $\quad 3 \quad$ Beaufort Sea State: 26 Observer: Erin

Observer side: Right

Actual Time and Position of Sighting

Time: 14:57 WP\#: 56 Lat: 34.825875 Long: -74.238322
Species:Unidentified Mesoplodon Numbers (Low/High/Best): 3/3/3
Features used in Species ID: Tiny dorsal fin placed far back on the animals body, tapering head into rostrum, tiny pectoral fins.
Representative images used for Species ID:

4166-4168
$4166-4168 \quad$ Spacer: $\quad 4169$

Photographer: Erin Frame numbers: 0.3 km

Calculated distance from Trackline: \qquad
Final Time and Position of Sighting
Time: 15:11 WP\#: 57 Lat: \qquad Long: -75.244736
Calculated Distance Traveled: \qquad

$$
0-10-0
$$

Long \qquad

Behavior and Additional Comments

Animals light in color and easy to see beneath the surface. A pair of animals was observed first which was joined by a third. Animals moving very fast beneath the surface and changed directions quickly and sporadically. Surfaced briefly making pictures of animals heads difficult to obtain.

Initial sighting on Track
Time: 11:27 WP\#: 3 Lat: 35.478465 Long: -74.779912

Vertical Angle: $\quad 1 \quad$ Horizontal Bearing in Degrees: 90 Sighting Cue: $\quad 2$ On/Off Effort: On Trackline: 36 Beaufort Sea State: $\quad 5$ Observer: Erin Observer side: Left
Actual Time and Position of Sighting
Time: WP\#: Lat:
Long:
Species:Unidentified Delphinid Numbers (Low/High/Best): 2/2/2
Features used in Species ID:
Representative images used for Species ID:
Photographer: Ryan Frame numbers: \qquad Spacer:
Calculated distance from Trackline:
Final Time and Position of Sighting
Time: WP\#: Lat \qquad Long: \qquad
Calculated Distance Traveled: \qquad

Behavior and Additional Comments

Swimming as a pair. No resight. No photos

Tuesday, October 25, 2011 Sighting \# 2

Initial sighting on Track
Time: 11:38 WP\#: 5 Lat: 35.476317 Long: -74.667290
Vertical Angle: _ 2 Horizontal Bearing in Degrees: 90 Sighting Cue: 2 On/Off Effort: On Trackline: 36 Beaufort Sea State: $\quad 5$ Observer: Erin Observer side: Left

Actual Time and Position of Sighting

Time: 11:40 WP\#:_6 Lat: 35.468725 Long: $\quad-74.668304$
Species:Ziphius cavirostris Numbers (Low/High/Best): 2/2/2
Features used in Species ID:
Representative images used for Species ID:
Photographer: Ryan Frame numbers: \square Spacer:
Calculated distance from Trackline: $\quad 0.8492 \mathrm{~km}$

Final Time and Position of Sighting

Time: \qquad WP\#: \qquad
\square Long: \qquad
Calculated Distance Traveled: \square

Behavior and Additional Comments

Swimming like a mom/calf pair, darting around. Possibly beaked whales, dark spot behind melon with lighter body. No photos

Tuesday, October 25, 2011 Sighting \# 3

Initial sighting on Track

Time: 12:32 WP\#: 12 Lat: 35.620374 Long: -74.773549

Observer: Erin

Observer side: Left
Actual Time and Position of Sighting
Time: 12:33 WP\#: 13 Lat: 35.623382 Long: $\quad-74.785817$
Species:Globicephala macrorhynchus Numbers (Low/High/Best): 12/15/13
Features used in Species ID: Large, dark bodied animals with blunt heads
Representative images used for Species ID:

5698,5706,5711
$5698-5719 \quad$ Spacer: $\quad 5720$

Calculated distance from Trackline: $\quad 1.158 \mathrm{~km}$
Final Time and Position of Sighting
Time: 13:39 WP\#: 14 Lat: 35.622434 Long: -74.783915
Calculated Distance Traveled: $\quad 0.2017 \mathrm{~km}$

Behavior and Additional Comments

Logging at the surface, multiple sub-groups. One large tight group.

Initial sighting on Track

Actual Time and Position of Sighting
Time: 10:14 WP\#: 7 Lat: 76.03329 Long: 74.456628
Species:Stenella coeruleoalba Numbers (Low/High/Best): 125/170/150
Features used in Species ID: Dark central line on rostrum with lighter white on either side. Darkened stripe from jaw line through eye down to insertion of pectoral fins.
Representative images used for Species ID:
$\frac{5724,5738,5742,5758,5759,5781,5795}{5721 \text { to } 5836}$ Spacer: $\frac{5836}{1.0 \mathrm{~km}}$

Photographer: Erin Frame numbers: 5721 to 5836 Spacer: 5836
Calculated distance from Trackline:
1.0 km

Final Time and Position of Sighting
Time: 10:27 WP\#: $\quad 8 \quad$ Lat: $\quad 36.02695$ Long: $\quad-74.46127$
Calculated Distance Traveled: \qquad

Behavior and Additional Comments

Two species separated into smaller, species specific groups within the larger group. Two species were identified through photo examination once back in the lab.

Wednesday, October 26, 2011 Sighting \# 2
Initial sighting on Track
Time: 10:13 WP\#: 6 Lat: 36.0424 Long: -74.458536
Vertical Angle: _ 2 Horizontal Bearing in Degrees: 90 Sighting Cue: Splash On/Off Effort: On Trackline: 44 Beaufort Sea State: 4 Observer: Ryan Observer side: Left
Actual Time and Position of Sighting
Time: 10:14 WP\#: 7 Lat: 36.03329 Long: -74.456628
Species:Stenella longirostris Numbers (Low/High/Best): 125/170/150
Features used in Species ID: Long narrow rostrum, dorsal fins of some animals canted forward*

Calculated distance from Trackline: $\quad 1.0 \mathrm{~km}$

Final Time and Position of Sighting

Time: 10:27 WP\#: 8 Lat: 36.02695 Long: $\quad-74.46127$

Calculated Distance Traveled:
0.8 km

Long: -74.46127

Behavior and Additional Comments

Two species separated into smaller, species specific groups within the larger group. Two species were identified through photo examination once back in the lab.

Initial sighting on Track
Time: 10:29 WP\#: 10 Lat: 36.04262 Long: -74.506917
Vertical Angle: $\quad 2$ Horizontal Bearing in Degrees: 90 Sighting Cue: Body On/Off Effort: On Trackline: 44 Beaufort Sea State: 4 Observer: Erin Observer side: \qquad
Actual Time and Position of Sighting
Time: 10:35 WP\#:_11 Lat: 36.05366 Long:_-74.497680
Species:Unidentified Kogia Numbers (Low/High/Best): 1/1/1
Features used in Species ID: Kogia sp. Small d-fin far back on animals body, head comes to a tapered rounded point with no rostrum, blowhole off center on the head
Representative images used for Species ID:
$\frac{5842,5843,5849-51,5859-61,5864-66}{5837 \text { to } 5870}$ Spacer: $\frac{5870}{1.5 \mathrm{~km}}$
Photographer: \quad Erin
Calculated distance from Trackline: $\frac{5837 \text { to } 5870}{1.5 \mathrm{~km}}$ Spacer: $\quad 5870$

Calculated distance from Trackline:
Final Time and Position of Sighting
Time:_10:38 WP\#:_12 Lat: $36.05101 \quad$ Long: $\quad-74.464421$
Calculated Distance Traveled: \qquad

Behavior and Additional Comments

Animal surfacing with an arched back ducking head below surface before diving. Stayed within veiw when it dove ($\sim 10 \mathrm{ft}$ underwater). tapered "shark-like" profile to head. Small pectoral fins.

Wednesday, October 26, 2011 Sighting \# 4

Initial sighting on Track

Time: 12:07 WP\#: 22 Lat: 35.8277 Long: -74.42841
Vertical Angle: _ 2 Horizontal Bearing in Degrees: 60 Sighting Cue: Body On/Off Effort: On Trackline: 41 Beaufort Sea State: 5 Observer: Ryan Observer side: Left
Actual Time and Position of Sighting
Time: $12: 14$ WP\#: $\frac{23}{\text { Species:Globicephala macrorhynchus }}$ Lat: $\frac{35.83453}{\text { Long: }} \frac{-74.419}{\text { Numbers (Low/High/Best): }} \frac{3 / 4 / 3}{}$

Species:Globicephala macrorhynchus Numbers (Low/High/Best): 3/4/3
Features used in Species ID: Dark body with large square head, large dorsal fin placed $1 / 3$ back on the animals body

Representative images used for Species ID: \quad| 5871 to 5874 | | |
| :--- | :--- | :--- |
| Photographer: \quad Erin \quad Frame numbers: | 5871 to 5874 | Spacer: $\quad 5874$ |l

Calculated distance from Trackline:
Final Time and Position of Sighting
Time: 12:24 WP\#: 24 Lat: 35.83216 Long: -74.427113
Calculated Distance Traveled: \qquad

Behavior and Additional Comments

More animals appearing during our circling.

Initial sighting on Track
Time: 12:31 WP\#: 28 Lat: 35.75848 Long: -74.372751

Vertical Angle: _ 1 Horizontal Bearing in Degrees: 90 Sighting Cue: Body On/Off Effort: On Trackline: 40 Beaufort Sea State: 5 Observer: \qquad Observer side: \quad Right

Actual Time and Position of Sighting
Time: 12:35 WP\#: 29 Lat: 35.76767 Long: -74.360549
Species:Globicephala macrorhynchus Numbers (Low/High/Best): 4/5/5
Features used in Species ID: large square head, dark bodied, large dorsal fin placed $1 / 3$ back on the animals body.
Representative images used for Species ID:

Photographer: Erin Frame numbers
Calculated distance from Trackline:
$\frac{5875 \text { to } 5891}{1.5 \mathrm{~km}}$

Final Time and Position of Sighting
Time: 12:39 WP\#: $\quad 30$ Lat: $\quad 35.7709$ Long: $\quad-74.335$
Calculated Distance Traveled: \qquad
Behavior and Additional Comments
Four larger animals plus one smaller.

Wednesday, October 26, 2011 Sighting \# 6

Initial sighting on Track

Time: 14:33 WP\#: 37 Lat: 35.20441 Long: -74.994379
Vertical Angle: 2 Horizontal Bearing in Degrees: 90 Sighting Cue: Body On/Off Effort: On Trackline: 32 Beaufort Sea State: 5 Observer: Ryan Observer side: Left

Actual Time and Position of Sighting

Time: 14:35 WP\#: 38 Lat: 35.20945 Long: -74.983697
Species:Balaenoptera physalis Numbers (Low/High/Best): 1/1/1
Features used in Species ID: Long bodied animal with white coloration along the right mandible
Representative images used for Species ID: \quad 5897,5898,5900,5902,5903
Photographer: \quad Erin \quad Frame numbers: $\quad 5892$ to 5904 Spacer: $\quad 5904$

Calculated distance from Trackline:

Final Time and Position of Sighting

Time: 14:44 WP\#: 39 Lat: 35.22604 Long: -74.971381

Calculated Distance Traveled: \qquad
-74.971381

Behavior and Additional Comments

Long bodied animal with white coloration along the right mandible. Animal maintained body position just below the surface.

Wednesday, October 26, 2011 Sighting \# 7
Initial sighting on Track
Time: 16:07 WP\#: 50 Lat: 35.408013 Long: $\quad-74.901949$
Vertical Angle: $\quad 2$ Horizontal Bearing in Degrees: 100 Sighting Cue: Body On/Off Effort: On Trackline: 49 Beaufort Sea State: 5
Observer: Erin

Observer side: Right
Actual Time and Position of Sighting
Time: 16:09 WP\#: 51 Lat: 35.420941 Long: $\quad-74.881285$
Species:Unidentified Delphinid Numbers (Low/High/Best): 1/1/1
Features used in Species ID: Small bodied animal deep below surface.
Representative images used for Species ID: $\quad 5905$
Photographer: Erin Frame numbers: $\quad 5905$ Spacer: 5906
Calculated distance from Trackline: \qquad
Final Time and Position of Sighting
Time: 16:15 WP\#: 52 Lat: 35.43085 Long: $\quad-74.879787$
Calculated Distance Traveled: $\quad 1.1 \mathrm{~km}$

Behavior and Additional Comments

Difficult to photograph, animal spent lots of time deep below the surface.

Initial sighting on Track

Actual Time and Position of Sighting

Time: 9:25	WP\#: 4	Lat:	35.551333	Long:	-74.834995
Species:Unide	Delphinid		Numbe	High/	3/3

Features used in Species ID: Animals not reencountered

Final Time and Position of Sighting

Time: 9:29 WP\#: $\quad 5 \quad$ Lat: $\quad 35.545212 \quad$ Long: $\quad-74.830687$ Calculated Distance Traveled: \qquad

Behavior and Additional Comments

Initial sighting of three delphinids swimming towards the line. Difficult to relocate even with low sea states. No photos collected.

Sunday, November 13, 2011 Sighting \# 2

Initial sighting on Track
Time: 9:38 WP\#: 7 Lat: 35.552292 Long: -74.485738
Vertical Angle: 1 Horizontal Bearing in Degrees: 100 Sighting Cue: Body On/Off Effort: On Observer: Erin Erin Trackline: 37 Beaufort Sea State \qquad

Actual Time and Position of Sighting
Time: 9:42 WP\#: 8 Lat: 35.545902 Long: $\quad-74.476016$
Species:Stenella frontalis Numbers (Low/High/Best): 8/13/13
Features used in Species ID: Alternating light and dark pattern along the length of the animal. White tip to rostrum.
Representative images used for Species ID: $\quad 5917,5918,5925,5927$
Photographer: Erin Frame numbers: 5911-5935 Spacer: 5936
Calculated distance from Trackline: $\quad 1.1 \mathrm{~km}$

Final Time and Position of Sighting

Time: 9:57 WP\#: 10 Lat: 35.548380 Long: $\quad-74.461638$

Calculated Distance Traveled: \qquad -74.461638

Behavior and Additional Comments

Animals running below the surface - avoidance behavior. Second group of about eight animals seen while returning to trackline.

Initial sighting on Track
Time: 10:00 WP\#: 12 Lat: 35.549678 Long: -74.367727

Vertical Angle: 3 Horizontal Bearing in Degrees: 100 Sighting Cue: Splash On/Off Effort: On Trackline: 37 Beaufort Sea State: $\quad 2$ Observer: Ryan Observer side: \quad Left

Actual Time and Position of Sighting
Time: 10:05 WP\#: 13 Lat: 35.562103 Long: -74.373883
Species:Stenella frontalis Numbers (Low/High/Best): 20/23/21

Features used in Species ID: White tip to rostrum, faint spotting pattern on some animals
Representative images used for Species ID: $\quad 5939,5940,5956,5959$
Photographer: Erin Frame numbers: 5937-5967 Spacer: 5968
Calculated distance from Trackline:
1.5 km

Final Time and Position of Sighting
Time: NA WP\#: NA Lat:_NA Long: NA Calculated Distance Traveled: NA

Behavior and Additional Comments

Dense groups but spread out.

Sunday, November 13, 2011 Sighting \# 4

Initial sighting on Track
Time: 10:18 WP\#: 20 Lat: 35.482878 Long: -74.701317
Vertical Angle: $1 \quad$ Horizontal Bearing in Degrees: 90 Sighting Cue: Body On/Off Effort: On Trackline: 36 Beaufort Sea State: 2 Observer: Erin Observer side: Right

Actual Time and Position of Sighting

Time: 10:25 WP\#: 21 Lat: 35.504660 Long: -74.699905
Species:Tursiops truncatus Numbers (Low/High/Best): 10/30/30
Features used in Species ID: Robust body appearance, uniform grey body coloration.

Representative image	ed for Species ID:	5971, 5974, 5985, 5996, 6000		
Photographer: Erin	Frame numbers:	5969-6002	Spacer:	6003
Calculated distance from	Trackline:	2.4 km		

Calculated distance from Trackline:

Final Time and Position of Sighting

Time: 10:25 WP\#: 22 Lat: 35.504537 Long: -74.695135

Calculated Distance Traveled: \qquad
Long. -74.695135

Behavior and Additional Comments

Three groups of animals.

Initial sighting on Track
Time: 10:43 WP\#: 26 Lat: 35.410232 Long: -75.071594

Vertical Angle: 3 Horizontal Bearing in Degrees: 90 Sighting Cue: Splash On/Off Effort: On Trackline: 35 Beaufort Sea State: 2 Observer: _ Erin Observer side: \quad Right

Actual Time and Position of Sighting
Time: 10:44 WP\#: 27 Lat: 35.402847 Long: -75.072340
Species:Tursiops truncatus Numbers (Low/High/Best): 15/20/20

Features used in Species ID: Robust body appearance, white peduncle
Representative images used for Species ID: $6008,6011,6018,6025$
Photographer: Erin Frame numbers: 6004-6027 Spacer: 6028
Calculated distance from Trackline:
2.7 km

Final Time and Position of Sighting
Time: 10:48 WP\#: 28 Lat: $\quad 35.399598$ Long: $\quad-75.081818$
Calculated Distance Traveled: \qquad
Behavior and Additional Comments
Animals moving fast and in multiple directions, big arching surfacings, scattered group.

Sunday, November 13, 2011 Sighting \# 6

Initial sighting on Track
Time: 10:52 WP\#: 30 Lat: 35.409467 Long: -74.916612
Vertical Angle: $\quad 2$ Horizontal Bearing in Degrees: 100 Sighting Cue: Splash On/Off Effort: On Trackline: 35 Beaufort Sea State: 2 Observer: Erin Observer side: Right

Actual Time and Position of Sighting

Time: 10:53 WP\#: 31 Lat: 35.404918 Long: -74.930050
Species:Tursiops truncatus Numbers (Low/High/Best): 38/42/40
Features used in Species ID: Robust body appearance, lighter grey coloration high on animals sides

Representative image	for Species ID:		6040, 60	
Photographer: Erin	Frame numbers:	6029-6053	Spacer:	6054
Calculated distance fion	Trackline:	3 km		

Calculated distance from Trackline:

Final Time and Position of Sighting

Time: 10:55 WP\#: 32 Lat: 35.411736 Long: -74.924551

Calculated Distance Traveled:
0.9 km

Long. -74.924551

Behavior and Additional Comments

Scattered group of dolphins moderate rate of travel hanging below surface.
Multiple groups surrounding initial sighting.

Initial sighting on Track
Time: 10:58 WP\#: 35 Lat: 35.408925 Long: -74.816425

Vertical Angle: 3 _Horizontal Bearing in Degrees: 90 Sighting Cue: Wake On/Off Effort: On Trackline: 35 Beaufort Sea State: 2 Observer: Ryan Observer side: Left

Actual Time and Position of Sighting
Time: 10:59 WP\#: 36 Lat: 35.424983 Long: -74.824943
Species:Physeter macrocephalus Numbers (Low/High/Best): 1/1/1
Features used in Species ID: large body size, blunt square head, blow forward at 45 degrees

Representative images	Species ID:	6056,6067,6072		
Photographer: Erin	Frame numbers:	6055-6075	Spacer:	6076
Calcula	m Trackline:	km		

Calculated distance from Trackline:
1.9 km

Final Time and Position of Sighting
Time: 11:01 WP\#: 37 Lat: 35.422714 Long: $\quad-74.825082$
Calculated Distance Traveled: \qquad

Behavior and Additional Comments

Saw animals wake and then blow at initial sighting. Single animal at surface taking a series of breaths.

Sunday, November 13, 2011 Sighting \# 8

Initial sighting on Track
Time: 11:03 WP\#: 38 Lat: 35.425236 Long: -74.797940
Vertical Angle: _ 2 Horizontal Bearing in Degrees: 90 Sighting Cue: Body On/Off Effort: Off Trackline: 35 Beaufort Sea State: 2 Observer: Ryan Observer side: Left
Actual Time and Position of Sighting
Time: 11:03 WP\#: 39 Lat: 35.424565 Long: -74.794380
Species:Tursiops truncatus Numbers (Low/High/Best): 15/20/15
Features used in Species ID: Robust body appearance, white peduncle

Behavior and Additional Comments

Opportunistic sighting while heading back to trackline.

Initial sighting on Track
Time: 11:13 WP\#: 42 Lat: 35.415418 Long: -74.511513

Vertical Angle: 3 _ Horizontal Bearing in Degrees: 90 Sighting Cue: Splash On/Off Effort: On Trackline: 35 Beaufort Sea State: 2 Observer: Ryan Observer side: Left

Actual Time and Position of Sighting
Time: 11:14 WP\#: 43 Lat: 35.420423 Long: -74.509397
Species:Tursiops truncatus Numbers (Low/High/Best): 10/13/12

Features used in Species ID: Robust body appearance, short rostrum, uniform grey coloration
Representative images used for Species ID: $\quad 6107,6115,6122$
Photographer: Erin Frame numbers: 6097-6133 Spacer: 6134
Calculated distance from Trackline:
Final Time and Position of Sighting
Time:_ 11:15 WP\#: 44 Lat: $35.421509 \quad$ Long: $\quad-74.502041$
Calculated Distance Traveled: \qquad
Behavior and Additional Comments
Lots of splashing at the surface, group maintained stationary position throughout sighting.

Sunday, November 13, 2011 Sighting \# 10

Initial sighting on Track
Time: 11:33 WP\#: 51 Lat: 35.341709 Long: -74.716800
Vertical Angle: 1 Horizontal Bearing in Degrees: 90 Sighting Cue: Body On/Off Effort: On Trackline: 34 Beaufort Sea State: 2 Observer: Erin Observer side: Right

Actual Time and Position of Sighting

Time: 11:33 WP\#: 52 Lat: 35.349782 Long: -74.721951
Species:Globicephala macrorhynchus Numbers (Low/High/Best): 3/3/3
Features used in Species ID: Black body, blunt head, short pectoral fins.

Calculated distance from Trackline:
Final Time and Position of Sighting
Time: 11:35 WP\#: 53 Lat: 35.347382 Long: -74.721988
Calculated Distance Traveled:
0.3 km

Behavior and Additional Comments

Spread out group.

Initial sighting on Track
Time: 11:37 WP\#: 54 Lat: 35.347230 Long: -74.758430
Vertical Angle: _ 3 Horizontal Bearing in Degrees: 90 Sighting Cue: Body On/Off Effort: Off Trackline: 34 Beaufort Sea State: _ 2 Observer: Erin Observer side: Right

Actual Time and Position of Sighting
Time: 11:38 WP\#: 55 Lat: 35.351769 Long: -74.756597 Species:Tursiops truncatus Numbers (Low/High/Best): 10/15/12
Features used in Species ID: Robust body appearance
Representative images used for Species ID: 6152, 6154, 6167
Photographer: Erin Frame numbers: 6151-6167 Spacer: 6168
Calculated distance from Trackline:
Final Time and Position of Sighting
Time: NA WP\#: NA Lat:_NA Long: _ NA Calculated Distance Traveled: NA

Behavior and Additional Comments

Very spread out group.

Sunday, November 13, 2011 Sighting \# 12

Initial sighting on Track
Time: 11:42 WP\#: 57 Lat: 35.342631 Long: -74.854017
Vertical Angle: 2 Horizontal Bearing in Degrees: 45 Sighting Cue: Splash On/Off Effort: On Trackline: 34 Beaufort Sea State: 2 Observer: Erin Observer side: Right

Actual Time and Position of Sighting

Time: 11:43 WP\#: 58 Lat: 35.349374 Long: $\quad-74.864955$
Species:Tursiops truncatus Numbers (Low/High/Best): 30/35/30

Features used in Species ID: Robust body appearance, white peduncle patch, short rostrum.

Representative images	Species ID:	6176,6177, 6184, 6190		
Photographer: Erin	Frame numbers:	6169-6191	Spacer:	6192
Calculated distance fro	Trackline:	2 km		

Final Time and Position of Sighting

Time: 11:45 WP\#: 59 Lat: 35.354141 Long: -74.863779

Calculated Distance Traveled: \qquad
Long: -74.863779

Behavior and Additional Comments

Group spread out into smaller groups.

Initial sighting on Track

Time: 13:47	WP\#:	66 Lat:	35.245516	-74.885482		
Vertical Angle:	1	Horizontal Bearing in Degrees:		90	Sighting Cue:	Body
On/Off Effort:	On	Trackli	33		ort Sea State:	3

Observer:
Observer side: Left

Actual Time and Position of Sighting

Time: $13: 48$ WP\#: $\quad 67$ Lat: 35.247398 Long: $\quad-74.884306$

Species:Unidentified Delphinid Numbers (Low/High/Best): $12 / 15 / 15$
Features used in Species ID: no photos

Calculated distance from Trackline: $\quad 0.2349 \mathrm{~km}$
Final Time and Position of Sighting
Time: 13:53 WP\#: 68 Lat: 35.253920 Long: -74.896304
Calculated Distance Traveled: \qquad
Behavior and Additional Comments
Tightly packed group just below the surface - no resight.

Summary of 26 May 2011
26 May 2011

Species	Number of Sightings	Number of Individuals	Beaufort Sea State	Line number
Mesoplodon	1	2	3	34
Unidentified Cetacean	1	1	4	35
Unidentified Cetacean	1	1	-	-
Unidentified delphinid	1	4	4	36

Survey Effort by Beaufort Sea State for 26 May 2011

Species	Number of Sightings	Number of Individuals	Beaufort Sea State	Line number
Stenella frontalis	1	2	3	34
Steno bredanensis	1	4	4	39
Lagenodelphis hosei	1	75	4	37
Delphinus delphis	1	300	2	41
Globicephala macrorhynchus	1	46	2	41
Globicephala macrorhynchus	1	13	2	41
Globicephala macrorhynchus	1	13	3	40
Globicephala macrorhynchus	1	23	3	40
Globicephala macrorhynchus	1	13	3	39
Globicephala macrorhynchus	1	10	4	39
Physeter macrocephalus	1	2	2	41
Physeter macrocephalus	1	1	3	39
Mesoplodon	1	1	3	38
Caretta caretta	7	15	1 to 2	-
Unidentified sea turtle	1	1	2	39
Manta birostris	2	2	2 to 3	-

Survey Effort by Beaufort Sea State for 27 May 2011

Summary of 27 May 2011

14 June 2011

Species	Number of Sightings	Number of Individuals	Beaufort Sea State	Line number
Tursiops truncatus	1	18	3	28
Tursiops truncatus	1	2	3	28
Tursiops truncatus	1	7	3	31
Globicephala macrorhynchus	1	10	3	31
Ziphius cavirostris	1	4	3	31
Unidentified Cetacean	1	1	4	25
Caretta caretta	5	6	2	-
Unidentified sea turtle	3	3	2	-
Manta birostris	1	1	2	33
Chondrichthyes	2	2	2	-

Survey Effort by Beaufort Sea State for 14 June 2011

Summary of 14 June 2011

Summary of 15 June 2011
15 June 2011

Species	Number of Sightings	Number of Individuals	Beaufort Sea State	Line number
Unidentified delphinid	1	1	4	36
Caretta caretta	2	2	4	34
Manta birostris	1	1	4	37

Survey Effort by Beaufort Sea State for 15 June 2011

30 July 2011

Species	Number of Sightings	Number of Individuals	Beaufort Sea State	Line number
Tursiops truncatus	1	11	2	40
Tursiops truncatus	1	25	2	40
Tursiops truncatus	1	8	2	40
Tursiops truncatus	1	12	2	40
Tursiops truncatus	1	30	2	39
Globicephala macrorhynchus	1	90	2	40
Globicephala macrorhynchus	1	25	2	40
Globicephala macrorhynchus	1	4	2	39
Globicephala macrorhynchus	1	6	2	39
Globicephala macrorhynchus	1	43	3	37
Physeter macrocephalus	1	1	3	39
Physeter macrocephalus	1	3	3	39
Physeter macrocephalus	1	2	3	38
Physeter macrocephalus	1	2	3	36
Unidentified sea turtle	1	1	2	40
Manta birostris	1	1	2	40

Survey Effort by Beaufort Sea State for 30 July 2011

Summary of 30 July 2011

31 July 2011

Species	Number of Sightings	Number of Individuals	Beaufort Sea State	Line number
Globicephala macrorhynchus	1	8	3	32
Physeter macrocephalus	1	3	3	32
Physeter macrocephalus	1	2	3	31
Physeter macrocephalus	1	1	3	31
Mesoplodon	1	3	3	26
Caretta caretta	4	4	2 to 3	-
Unidentified sea turtle	2	2	2	34

Survey Effort by Beaufort Sea State for 31 July 2011

Summary of 31 July 2011

Summary of 25 October 2011

Species	Number of Sightings	Number of Individuals	Beaufort Sea State	Line number
Globicephala macrorhynchus	1	13	5	38
Ziphius cavirostris	1	1	5	36
Unidentified delphinid	1	2	5	36
Dermochelys coriacea	1	1	5	38
Manta birostris	2	2	4 to 5	-

26 October 2011

Species	Number of Sightings	Number of Individuals	Beaufort Sea State	Line number
Stenella clymene	1	70	4	44
Stenella logirostris	1	70	4	44
Kogia spp	1	1	4	44
Globicephala macrorhynchus	1	3	5	41
Globicephala macrorhynchus	1	4	5	40
Balaenoptera physalus	1	1	5	32
Unidentified delphinid	1	9	5	35
Manta birostris	1	1	5	34
Chondrichthyes	1	1	4	42

Survey Effort by Beaufort Sea State for 26 October 2011

Summary of 26 October 2011

Summary of 12 November 2011

12 November 2011

Species	Number of Sightings	Number of Individuals	Beaufort Sea State	Line number
Caretta caretta	1	1	4	45
Mola mola	1	1	4	39

Survey Effort by Beaufort Sea State for 12 November 2011

13 November 2011

Species	Number of Sightings	Number of Individuals	Beaufort Sea State	Line number
Tursiops truncatus	1	30	2	36
Tursiops truncatus	1	20	2	35
Tursiops truncatus	1	40	2	35
Tursiops truncatus	1	12	2	34
Tursiops truncatus	1	30	2	34
Tursiops truncatus	1	15	2	35
Tursiops truncatus	1	12	2	35
Stenella frontalis	1	13	2	37
Stenella frontalis	1	21	2	37
Globicephala macrorhynchus	1	3	2	34
Physeter macrocephalus	1	1	2	35
Unidentified delphinid	1	3	2	35
Unidentified delphinid	1	13	13	37
Caretta caretta	1	1	2	37
Dermochelys coriacea	2	2	2	35
Mola mola	1	1	2	35
Chondrichthyes	1	2	1	34

Survey Effort by Beaufort Sea State for 13 November 2011

Summary of 13 November 2011

Wednesday, J uly 28, 2010 Sighting \# 1
Initial Sighting on Track
Time: _12:49_ W P\#. _12___ Lat: $30.569710 \quad$ Long: _-80.552614 V ertical Angle: _3_-_Horizontal B earing in Degrees: $90 \quad \ldots \quad$ Sighting Cue: Body On/Off Effort: __On__ Track Line: 10 Observer: \qquad Observer Side: Left

Actual Time and Position of Sighting
Time: _12:52_ WP\#: 13
L at: 30.576911
Long: -80.551686
Species: Stenella frontalis
Numbers (Low/High/Best): $25 / 35 / 31$
Features used in Species ID: Alternating light and dark "banding" dorsally, long,
white-tipped rostrum, obvious spotting pattern
Representative images used for Species ID: 1743, 1744, 1746-1749, 1753

Calculated Distance from Track Line: 0.8 km

Final Time and Position of Sighting

Time: $12: 53$ WP\#, 14 L at: 30.568629
Calculated D istance Traveled: 1.2 km

Behavior and Additional Comments

Two large groups, leisurely travel

Wednesday, J uly 28, 2010 Sighting \# 2
Initial Sighting on Track
Time: _12:58_ WP\#. 20__ Lat: 30.566608 Long: _-80.406468
\checkmark ertical Angle: 2 . Horizontal Bearing in Degrees: $90-1$
On/Off Effort: _on

Actual Time and Position of Sighting

Time: _12:58_ W P\#, 21___ Lat: 30.559232_ Long: _80.409551
Species: Stenella frontalis Numbers (Low/High/Best): 8 - $10 / 9$
F eatures used in Species ID: Spotted pattern, light and dark alternating "banding"dorsally, long and white-tipped rostrum
Representative images used for Species ID: $17 \overline{17} 9,17 \overline{2} 2,1784,1790$
Photographer: PBN__ Frame Numbers: $1755-1800$
Spacer: 1801
Calculated Distance from Track Line: 0.9 km

Final Time and Position of Sighting

Time: _13:01_ W P\#: 22 L Lat: 30.562598__ Long: -80.410155
Calculated Distance Traveled: 0.4 km

Behavior and Additional Comments

Active surface travel

Wednesday, J uly 28, 2010 Sighting \# 3

Initial Sighting on Track

Time: _13:02_ W P\#, _24_ Lat: 30.566528 Long: -80.363193 V ertical Angle: _3_-_Horizontal B earing in Degrees: $120 \ldots \ldots$ Sighting Cue: Body On/Off Effort: _-_On Track Line: 10 Observer: PBN Observer Side: Right

Actual Time and Position of Sighting

Time: _13:03_ WP\#. 25
L at: 30.561963
Long: - 80.362140
Species: Tursiops truncatus
Features used in Species ID: Short, stubby rostrum, wide flukes, well defined crease at base of melon, overall gray coloration
Representative images used for Species ID: $1816-1820$
Photographer: PBN__ Frame Numbers: 1802-1824
Spacer: 1825
Calculated Distance from Track Line: 0.5 km

Final Time and Position of Sighting

Time: _13:05_ W P\#, 26__ Lat: 30.562966___ Long: _-80.363824
C alculated D istance Traveled: 0.2 km

Behavior and Additional Comments

Elusive, two adults and two juveniles/calves

Wednesday, J uly 28, 2010 Sighting \#4

Initial Sighting on Track

Time: 13:41 W P\#. 36 Lat: 30.500034 L ong: -80.319854
\checkmark ertical A ngle: $2, \quad$ Horizontal Bearing in Degrees: $90-\quad$ Sighting Cue: Body O n/Off Effort: --On_-_ B Track Line: ${ }^{9}$

Actual Time and Position of Sighting

Time: _13:41_ WP\#, 37
L at: 30.495012
Long: -80.321756
Species: Steno bredanensis
Numbers (Low/High/Best): $2 \overline{3} / 28 / 2 \overline{2}$
F eatures used in Species ID: ĒTongated beak, absence of melon, "suspender" shaped
cape, white lower jaw
Representative images used for Species ID: $1841,1842,1847,1852,1857,1859,1864$
Photographer: PBN__ Frame Numbers: 1826-1906----_ Spacer: 1907
Calculated Distance from Track Line: 0.6 km

Final Time and Position of Sighting

Time: _13:45_ W P\#: 38__ Lat: 30.494119__ Long: -80.319644
Calculated Distance T raveled: 0.2 km

Behavior and Additional Comments

Mixed group of S. bredanensis ($n=23-28$) and T. truncatus (4/5/4) - see images 1864 through 1872. Partof S. bredanensis group in tight formation with pectoral fins overlapping

Wednesday, J uly 28, 2010 Sighting \# 5

Initial Sighting on Track

Time: _13:50_ W P\#, _41__ Lat: 30.499735 Long: -80.496615 V ertical Angle: _3__-_Horizontal B earing in Degrees: $90 \quad \ldots \quad$ Sighting Cue: Body
 Observer: PBN Observer Side: Right

Actual Time and Position of Sighting

Time: _13:54_ W P\#: 42
L at: 30.503798
Long: -80.489435
Species: Unidentified Delphinid
Features used in Species ID: n/a
Representative images used for Species ID: n/a
Photographer: PBN__ Frame Numbers: 1908-1932
Spacer: 1933
Calculated Distance from Track Line: 0.8 km

Final Time and Position of Sighting

Time: _13:56_ WP\#. 43 _ Lat: 30.498507___ Long: -80.490609
C alculated D istance Traveled: 0.6 km

Behavior and Additional Comments

Deep diving

Wednesday, July 28, 2010 Sighting \#6

Initial Sighting on Track

Time: $14: 30$ W P\#, $61 \quad$ Lat: 30.432832 Long: _-79.904533
V ertical A ngle: _2 Horizontal Bearing in Degrees: 90
On/Off Effort: _on
O bserver: ___ $\bar{P} \bar{B} \bar{N}-\quad$ O

Actual Time and Position of Sighting

Time: _14:30_ WP\#, $62 \quad$ Lat: $30.428555 \ldots$ Long: -79.904506
Species: Globicephala macrorhynchus
Features used in Species ID: Large black depphinids, bulbous foreheads, broad based dorsal
fins
Representative images used for Species ID: $19341936,1939,1941$
Photographer: PBN___ Frame Numbers: 1934-2002
Spacer: 2003
Calculated Distance from Track Line: 0.5 km

Final Time and Position of Sighting

Time: _14:35_ W P\#, $63 \quad$ Lat: 30.434440 ___ Long: -79.902242
C alculated Distance T raveled: 0.7 km

Behavior and Additional Comments

Group spread out over one km, a few calves observed

Wednesday, J uly 28, 2010 Sighting \# 7
Initial Sighting on Track
Time: 15:05_ W P\#, 72 L at: $30.365482 \quad$ Long: _- 80.667379 V ertical A ngle: __1_-_ Horizontal Bearing in Degrees: _90 On/Off Effort: __On Track Line: ___ Beaufort Sea State: ___ Observer: \qquad Observer Side:

Actual Time and Position of Sighting
Time: _15:09_ WP\#. 73
L at: 30.362017
Long: - 80.658427
Species: Iursiops truncatus
F eatures used in Species ID: Sturdy looking animals with relatively large flukes, overall gray
coloration, stubby rostrum
Representative images used for Species ID: 20242026
Photographer: _PBN Frame Numbers: _-_ 20032027
Calculated Distance from Track Line: 0.9 km
Final Time and Position of Sighting
Time: _15:12_ W P\#, 74 Calculated Distance T raveled: $\quad 0.7 \mathrm{~km}$

Behavior and Additional Comments
Surface travel, active and fast

Thursday, July 29, 2010 Sighting \# 1

Initial Sighting on Track

Time: _11:01_ WP\#, _12 Lat: $30.036093 \quad$ Long: -80.609298
V ertical Angle: _2__ Horizontal Bearing in Degrees: $140 \quad$ Sighting Cue: Splash On/Off Effort: _On Track Line: $2 \ldots$ Observer: PBN Observer Side: \qquad
Actual Time and Position of Sighting
Time: 11:02 WP\#. 13
L at: 30.037309
Long: -80.606967
Species: Unidentified Delphinid Numbers (Low/High/Best): $1 / 1 / 1$
Features used in Species ID: n/a
Representative images used for Species ID: n/a
Photographer: No images Frame Numbers: n/a
Spacer: n/a
Calculated Distance from Track Line: 0.3 km

Final Time and Position of Sighting

Time: none_ WP\#, n/a__ Lat: n/a
Long: n/a
Calculated Distance Traveled: n/a

Behavior and Additional Comments

Short surface intervals, hard to relocate

Thursday, J uly 29, 2010 Sighting \# 2

Initial Sighting on Track

Time: 11:43 WP\#. 26 Lat: $30.140674 \quad$ Long: -79.784082
V ertical A ngle: _2___ Horizontal Bearing in Degrees: _90___ Sighting Cue: Body O n/Off Effort: ${ }_{\text {- Off }}$ Observer: ___PBN__ Observer Side: _____ Left

Actual Time and Position of Sighting

Time: _11:45_ WP\#. 27
L at: 30.136391
Species: Tursiops truncatus
Long: -79.783961
Features used in Secies ID: Light colored caudal peduncle, wide flukes, short and stubby
rostrum, gray with darker gray cape with cape line close to blow hole
\bar{R} epresentative images used for Species ID: $2 \overline{0} \overline{3} \overline{3}-2 \overline{2} \overline{3} \overline{3} \overline{6}, 2 \overline{2} \overline{4} \overline{0}$
Photographer: RCH__ Frame Numbers: 2029-2092
Spacer: 2093
Calculated Distance from Track Line: 0.5 km

Final Time and Position of Sighting

Time: _11:55_ W P\#: 28___ Lat: 30.133304___ Long: -79.779049
C alculated Distance T raveled: 0.6 km

Behavior and Additional Comments

Spread out group, fast travel

Thursday, J uly 29, 2010 Sighting \# 3

Initial Sighting on Track

Time: _12:03_ WP\#, _30__ Lat: $30.166684 \ldots$ Long: _-80.039347 V ertical A ngle: _2___ Horizontal Bearing in Degrees: _90__ Sighting Cue: Body On/Off Effort: _On Track Line: $4 \ldots \ldots$ Observer: PBN Observer Side: \qquad
Actual Time and Position of Sighting
Time: _12:04_ W P\#: 31
Species: Tursiops truncatus
L at: 30.163065
Long: - 80.034489

eatures used in Species ID: Light colored caudal peduncle, short and stubby rostrum, robust gray dolphins with darker gray cape
Representative images used for Species ID: 2114, 2125,
Photographer: RCH_ Frame Numbers: 2094 to 2141
Spacer: 2142
Calculated Distance from Track Line: 0.6 km

Final Time and Position of Sighting

Time: none_ WP\#, n/a__ Lat: n/a
Long: n/a
Calculated Distance T raveled: n/a

Behavior and Additional Comments

Fast surface travel, including leaping in unison. Group split up in smaller sub-groups.

Thursday, J uly 29, 2010 Sighting \#4

Initial Sighting on Track

Time: $13: 03$ W P\#, $39 \quad$ Lat: $30.232282 \ldots$ Long: _-79.943071
V ertical A ngle: _1_ Horizontal Bearing in Degrees: _90_ Sighting Cue: Body
On/Off Effort: --On ${ }^{-1}$

Actual Time and Position of Sighting
Time: _13:04 WP\#, 40 Lat: $30.232059 \quad$ Long: -79.946156
Species: Tursiops truncatus
Numbers (Low/High/Best): 6/8/7
Features used in Species ID: Robust gray animals, with lighter colored caudal peduncle,
relatively wide flukes
Representative images used for Species ID: $2143,2144,2158$
Photographer: RCH__Frame Numbers: 2143 to 2172
Spacer: 2173
Calculated Distance from Track Line: 0.3 km

Final Time and Position of Sighting

Time: _13:13_ W P\#, 41___ Lat: 30.222435___ Long: -79.945056
C alculated Distance T raveled: 1.0 km

Behavior and Additional Comments

Fast travel, barely showing body - difficult to photograph.

Tuesday, August 3, 2010 Sighting \# 1
Initial Sighting on Track
Time: _13:49_ W P\#, _26__ Lat: 30.099407 Long: -80.665150 V ertical Angle: 2 Horizontal Bearing in Degrees: 90

- Sighting Cue: Body On/Off Effort: _On Track Line: $3^{2} \ldots$ Observer: \qquad Observer Side: \qquad
Actual Time and Position of Sighting
Time: _13:50_ WP\#, 21
Lat: 30.103074
Long: - 80.669104
Species: Tursiops truncatus Numbers (Low/High/Best):
Features used in Species ID: Sturdy gray dolphins, with darker gray dorsal cape, short, stubby rostrum, well-defined crease at base of melon
Representative images used for Species ID: 2179, 2189, 2190, 2221, 2191

Calculated Distance from Track Line: 0.6 km

Final Time and Position of Sighting

Time: _13:54_ WP\#, 28__ Lat: 30.101804___-_ Long: _80.668211
Calculated D istance Traveled: $\underline{0.2} \mathrm{~km}$

Behavior and Additional Comments

Some leaping observed by two dolphins, rolling, showing bellies.

Tuesday, August 3, 2010 Sighting \#2

Initial Sighting on Track

Time: _13:56_ WP\#, 30__ Lat: 30.099779__ Long: _-80.604907
\checkmark ertical Angle: _2 Horizontal Bearing in Degrees: 110
On/Off Effort: _On Track Line: ${ }^{3}$
Observer: ___ $\bar{P} \bar{B} \bar{N}{ }^{-1----}$ Observer Side: _-_Left
Actual Time and Position of Sighting
Time: _13:58_ WP\#, 31
L at: 30.102898
Long: - 80.611146
Species: Tursiops truncatus
Numbers (Low/High/Best): 7/9/8
Features used in Species ID: Robust gray dolphins, broad flukes, well defined crease at base
of melon, short and stubby rostrum
Representative images used for Species ID: 2242 - 2244
Photographer: HJ_ Frame Numbers: 22
Spacer: 2284
Calculated Distance from Track Line: 0.7 km

Final Time and Position of Sighting

Time: _14:00_ W P\#: 32 L at: 30.108929__ L ong: -80.612981
Calculated Distance Traveled: 0.7 km

Behavior and Additional Comments

Fairly active group with leaps observed.

Tuesday, August 3, 2010 Sighting \# 3

Initial Sighting on Track

Time: _14:18_ W P\#, _42__ Lat: 30.100066_ Long: _-80.025498 V ertical A ngle: _2_-_ Horizontal B earing in Degrees: $100 \ldots \ldots$ Sighting Cue: Body On/Off Effort: __On___ Track Line: $\mathbf{3}^{\ldots}$ Observer: PBN Observer Side: \qquad
Actual Time and Position of Sighting
Time: 14:19_ W P\#, 43
Species: Tursiops truncatus
L at: 30.100609
Long: - 80.031909
Features used in Species ID: Broad flukes, gray dolphins, well-defined crease at base of melon
Representative images used for Species ID: 2303,2308
Photographer: HJ F__ Frame Numbers: 2285-2319
Spacer: 2320
Calculated Distance from Track Line: 0.6 km

Final Time and Position of Sighting

Calculated Distance T raveled: 0.2 km

Behavior and Additional Comments

Leisurely travel

Tuesday, August 3, 2010 Sighting \#4

Initial Sighting on Track

Time: $14: 41$ W P\#, 48__ Lat: 30.166306 Long: _-80.117655
V ertical A ngle: _2_ Horizontal Bearing in Degrees: _140_-_ Sighting Cue: Splash

Observer: ___ $\bar{P} \bar{B} \bar{N}-\quad$ O

Actual Time and Position of Sighting

Time: _14:43_ WP\#. 49
L at: 30.161981
Long: -80.109361
Species: Tursiops truncatus Numbers (Low/High/Best): $12 / 15 / 14$
Features used in Species ID: Broad flukes, gray dolphins with darker gray dorsal cape, light colored caudal peduncle
Representative images used for Species ID: 2352
Photographer: HJ F__ Frame Numbers: $2321-23 \overline{3} 2$
Spacer: 2363
Calculated Distance from Track Line: 0.9 km

Final Time and Position of Sighting

Time: _14:45_ W P\#: 50 L Lat: 30.162545 Long: - 80.111521
Calculated Distance T raveled: 0.2 km

Behavior and Additional Comments

Initial splashing, then subsurface, slow travel. J uvenile present.
\qquad

Tuesday, August 3, 2010 Sighting \# 5

Initial Sighting on Track

Time: _14:56_ W P\#, _55 Lat: 30.166536 Long: -80.508454 V ertical Angle: _3 _-_ Horizontal Bearing in Degrees: 45 Sighting Cue: Body O n/Off Effort: __On___ Track Line: 4______ Beaufort Sea State: ___ Observer:

HJ F Observer Side: Right

Actual Time and Position of Sighting

Time: 14:57 W P\#, 56
Lat: 30.174048
Long: - 80.522888
Species: Stenella frontalis
Numbers (Low/High/Best): 6/7/6
Features used in Species ID: Alternating light and dark "banding" dors ally, white-tipped beak, spotted pattern observed
Representative images used for Species ID: $2368,2378,2382,2387,2396$
Photographer: HJ F__ Frame Numbers: 2364 to 2399
Calculated Distance from Track Line: 1.6 km

Final Time and Position of Sighting

Calculated D istance Traveled: 0.4 km

Behavior and Additional Comments

Tuesday, August 3, 2010 Sighting \#6

Initial Sighting on Track

Time: $15: 14$ W P\#, $57 \quad$ Lat: 30.232668 Long: _-80.441607
V ertical A ngle: _3__ Horizontal B earing in Degrees: _90__ Sighting Cue: Splash
On/Off Effort: On Track Line: 5
O bserver: ___ $\bar{H} \bar{J} \bar{F}^{-1----}$ O O bserver Side: _-_Right
Actual Time and Position of Sighting
Time: _15:15_ W P\#, 69___ Lat: 30.227601__ Long: _-80.443721
Species: Stenella frontalis
F eatures used in Species ID: Long rostrum with white tip, alternating dark and light dorsal "banding"
Representative images used for Species ID: 2413,2421

Calculated Distance from Track Line: 0.6 km

Final Time and Position of Sighting

Time: _15:18_ W P\#, 70__ Lat: 30.229359__ Long: -80.444142
Calculated Distance T raveled: 0.2 km

Behavior and Additional Comments

\qquad

Tuesday, August 3, 2010 Sighting \# 7
Initial Sighting on Track
Time: 15:46 WP\#, 79__ Lat: $30.300425 \quad$ Long: _80.063086 V ertical A A ngle: 3 Horizontal Bearing in Degrees: 135 Sighting Cue: Body On/Off Effort: ${ }^{--0 n}$ Track Line: 6 B eaufort Sea State: 2 Observer: PBN Observer Side: \qquad
Actual Time and Position of Sighting
Time: _15:46_ WP\#. 80
L at: 30.293612
Long: _-80.058466

Features used in Species ID: Large black cetaceans with square bulbous melons
Representative images used for Species ID: $243 \overline{3}, 244 \overline{6}, 2453,2455,2458$
Photographer: HJ F__ Frame Numbers: _-_ 2431 to 2467
C alculated Distance from Track Line: 0.9 km
Final Time and Position of Sighting
Time: 15:48 WP\#. 81 Lat:
at: 30.293886___
L ong: _-80.060340
Calculated Distance Traveled: 0.2 km
Behavior and Additional Comments
Lined up in a long line, juveniles observed.

Wednesday, August 4, 2010 Sighting \# 1

Initial Sighting on Track

Time: 9:29 WP\#. 4 Lat: 30.566632 Long: - 80.443982
\checkmark ertical Angle: $1 \quad$ Horizontal Bearing in Degrees: $90-\quad$ Sighting Cue: Body On/Off Effort: __On___ Track Line: 10

Actual Time and Position of Sighting
Time: __9:31_ WP\#, _5
L at: 30.569290
Long: -80.443675
Species: Stenella frontalis Numbers (Low/High/Best): 8 -12/12
F eatures used in Species ID: long, white-tipped rostrum and visible spotting pattern
Representative images used for Species ID: $2476,2483,2493,2502$
Photographer: RCH_ Frame Numbers: 2469-2506-_-- Spacer: 2507
Calculated Distance from Track Line: 0.3 km

Final Time and Position of Sighting

Calculated Distance T raveled: 0.2 km

Behavior and Additional Comments

Several groups of 3-4 individuals spaced widely apart.

Wednesday, August 4, 2010 Sighting \#2

Initial Sighting on Track

Time: 10:06 WP\#, 13_ Lat: 30.499765 Long: -80.024208
V ertical A ngle: _2___ Horizontal Bearing in Degrees: _75__-_ Sighting Cue: Body
O n/Off Effort: __On__ Track Line: 9

Actual Time and Position of Sighting
Time: _10:07_ W P\#, 14
L at: 30.503344
Long: - 80.022060
Species: Grampus griseus Numbers (Low/High/Best): $13 / 15 / 14$
Features used in Species ID: cleft in melon, scarring pattern on animals, tall dorsāI fin
Representative images used for Species ID: $2515,2520,2547,2527$
Photographer: RCH Frame Numbers: $2500-2547$
Spacer: 2548
Calculated Distance from Track Line: 0.5 km

Final Time and Position of Sighting

Time: _10:09_ W P\#: 15__ Lat: 30.506114___ Long: -80.022831
Calculated Distance T raveled: 0.3 km

Behavior and Additional Comments

Large group with individuals fairly close together in duos and trios. No mother/calf pairs ōbserved.

Wednesday, August 4, 2010 Sighting \# 3

Initial Sighting on Track

Time: 10:17 WP\#, 18 L at: 30.499877 Long: -80.268265 \checkmark ertical Angle:
1-_- Horizontal B earing in Degrees
es: 90 Sighting Cue: Body On/Off Effort: On Track Line: 9 \qquad B eaufort Sea State: 2 Observer: \qquad Observer Side: \qquad
Actual Time and Position of Sighting
Time: _10:21_ WP\#, 19
L at: 30.508844
Long: -80.265349
Species: Tursiops truncatus Numbers (Low/High/Best): 3 3/3/3
Features used in Species ID: slate gray coloration, broad flukes, robust body, defined crease between melon and snout
Representative images used for Species ID: 2553, 2554, 2562, 2563
Photographer: RCH
Frame Numbers: 2549-2565 Spacer: 2566
Calculated Distance from Track Line: 1.0 km

Final Time and Position of Sighting

Time: $10: 22$ WP\#, 20 Lat: 30.505130 ____ Long: _ 80.261766
Calculated Distance T raveled: 0.5 km

Behavior and Additional Comments

Trio close together, but very little time spent at the surface. Final 2.42 assumed based on final observed location.

Wednesday, August 4, 2010 Sighting \#4

Initial Sighting on Track

Time: $10: 28$ W P\#, 22 Lat: 30.498333 Long: - 80.461189
V ertical A ngle: _1_ Horizontal Bearing in Degrees: 100
On/Off Effort: -_On_-_ Track Line: $\underline{9}^{9}$
Observer: ____- $\bar{J} \overline{\mathrm{~F}}$ -
Actual Time and Position of Sighting
Time: 10:30 WP\#, 23 Lat: 30.492811 Long: -80.456700
Species: Iursiops truncatus Numbers (Low/High/Best): $2 / 2 / 2$
Features used in Species ID: slate gray coloration, broad flukes, robust body
Representative images used for Species ID: $2569,2570,2585,2584$
Photographer: RCH ___ Frame Numbers: 2567-2587
Spacer: 2588
Calculated Distance from Track Line: 0.75 km

Final Time and Position of Sighting

Time: _10:33_ W P\#: 24 L Lat: 30.497790__ Long: - 80.452187
C alculated Distance T raveled: 0.70 km

Behavior and Additional Comments

Quick moving; individuals were covering lots of ground. Fairly elusive with little time spent at the surface. Traveled from south of the trackline to north of the trackline.

Wednesday, August 4, 2010 Sighting \# 5

Initial Sighting on Track

Time: _10:52_ W P\#, _30__ Lat: $30.433109 \quad$ Long: _-80.422447 \checkmark ertical A ngle: _2 Horizontal Bearing in Degrees: $120 \quad$ Sighting Cue: Body
 Observer:

Hj Observer Side: \qquad
Actual Time and Position of Sighting
Time: 10:53 WP\#. 31
Lat: 30.428820
Long: -80.410074
Species: Tursiops truncatus
Lat. 30.428820 Numbers (Low/High/Best): $2 / 2 / 2$
Features used in Species ID: robust bodies with broad flukes, slate gray coloration
Representative images used for Species ID: 2599, 2600, 2603,2604
Photographer: RCH Frame Numbers:- 2589 - $2 \overline{6} 06$
Spacer: 2607
Calculated Distance from Track Line: 1.3 km

Final Time and Position of Sighting

Calculated Distance Traveled: 0.4 km

Behavior and Additional Comments

Very quick travel observed. Individuals were mostly subsurface with quick breaths while swimming.

Wednesday, August 4, 2010 Sighting \# 6

Initial Sighting on Track

Time: $10: 57$ W P\#, 38 Lat: 30.433162 Long: -80.385133
V ertical Angle: _1_ Horizontal Bearing in Degrees: $90 \quad$ Sighting Cue: Body On/Off Effort: _on__ Track Line: $\underline{8}_{\text {_ }}$ Observer:

HJ F Observer Side: _-__Left

Actual Time and Position of Sighting
Time: _11:00_ WP\#, 34__ Lat: 30.435945_ Long: _-80.390245
Species: Iursiops truncatus
Features used in Species ID: Targe, robust bodies with slate gray coloration, defined crease between melon and rostrum, broad flukes
Representative images used for Species ID: $2 \mathrm{~L} 15,2621,2622,2623$
Photographer: RCH__Frame Numbers: 26002626
Spacer: 2627
Calculated Distance from Track Line: 0.6 km

Final Time and Position of Sighting

Time: _11:01_ W P\#: 35 L at: 30.435452___ Long: -80.386525
C alculated Distance T raveled: 0.4 km

Behavior and Additional Comments

At least one mother/juvenile pair observed. Animals were elusive and difficult to photograph with lots of subsurface travel.

Wednesday, August 4, 2010 Sighting \# 7

Initial Sighting on Track

Time: _11:04_ WP\#, _37__ Lat: $30.433262 \ldots$ Long: - 80.298047 V ertical A ngle: _1___ Horizontal Bearing in Degrees: _145__ Sighting Cue: Body On/Off Effort: _On Track Line: 8 _ Beaufort Sea State: ___ Observer: \qquad Observer Side: \qquad
Actual Time and Position of Sighting
Time: 11:11 W P\#, 38
L at: 30.431232
Long: - 80.311753
Species: Unidentified Dēphinid
 Numbers (Low/High/Best): $1 / 1 / 1$
Features used in Species ID: N/A
Representative images used for Species ID: N/A
Photographer: N/A__ Frame Numbers: N/A
Spacer: N/A
Calculated Distance from Track Line: N/A

Final Time and Position of Sighting

Time: _N/A _ WP\#, N/A _ Lat: N/A
Long: N/A
Calculated Distance T raveled: N/A

Behavior and Additional Comments

Animal was elusive and never relocated for photo documentation.

Wednesday, August 4, 2010 Sighting \#8

Initial Sighting on Track

Time: 11:43 WP\#, 46 Lat: 30.366118 Long: -80.206106 V ertical A ngle: _2___ Horizontal Bearing in Degrees: $90 \quad$ Sighting Cue: Body On/Off Effort: _On__ Track Line: $\underline{7}^{\ldots}$

Actual Time and Position of Sighting

Time: _11:46_ W P\#, 47__ Lat: 30.365388__ Long: _-80.204530
Species: Tursiops truncatus
Long. -80.204530
Featurs usd in pill (Low)
Features used in Species ID: stout bodies, uniform gray coloration with dark gray cape, broad flukes
Representative images used for Species ID: $2 \mathrm{2} 42,2660,2634,2665$
Photographer: RCH Frame Numbers: $\overline{2} \overline{2} 28$ - $\mathbf{2} \overline{6} \overline{7} \overline{8}$
Spacer: 2679
Calculated Distance from Track Line: 0.2 km

Final Time and Position of Sighting

Time: _11:47_ W P\#, 48___ Lat: 30.361074___ Long: -80.203204
Calculated Distance T raveled: 0.5 km

Behavior and Additional Comments

Two groups packed fairly tight with lots of surface activity and feeding observed.
\qquad

Wednesday, August 4, 2010 Sighting \# 9

Initial Sighting on Track

Time: _12:10_ W P\#, _59__ Lat: $30.302369 \quad$ Long: _-80.562138 V ertical Angle: _1_-_ Horizontal Bearing in Degrees: $90 \quad$ Sighting Cue: Body On/Off Effort: __On___ Track Line: $\underline{6}^{\ldots}$ Observer:

HJ F Observer Side: \qquad
Actual Time and Position of Sighting
Time: _12:16 W P\#, 60
L at: 30.302515
Long: -80.573540
Species: Stenella frontalis Numbers (Low/High/Best): 2 /3/3
Features used in Species ID: spotted pattern, long white-tipped rostrum, alternating light and dark banding
Representative images used for Species ID: 2680, 2681,2694
Photographer: RCH_Frame Numbers: $2680-2696$
Calculated Distance from Track Line: 1.1 km

Final Time and Position of Sighting

Time: _12:18_ W P\#, 61___ Lat: 30.306569___ L ong: _-80.567389
Calculated Distance Traveled: $\underline{0.7 \mathrm{~km}}$

Behavior and Additional Comments

Individuals were widely spread out.

Wednesday, August 4, 2010 Sighting \# 10

Initial Sighting on Track

Time: $13: 09$ W P\#, 78 Lat: $30.232690 \quad$ Long: _-80.622519
\checkmark ertical Angle: _1 Horizontal Bearing in Degrees: 110
On/Off Effort: --On_-_ Track Line: 5
Observer: ___ $\overline{\mathrm{R}} \overline{\mathrm{C}} \mathrm{H}$
Actual Time and Position of Sighting
Time: _13:10_ W P\#, 79__ Lat: 30.235185__ Long: _-80.625116
Species: Tursiops truncatus
F eatures used in Species ID: slate gray coloration with dark gray cape, defined melon, and broad flukes
Representative images used for Species ID: $2698,2703,2715$
Photographer: RCH__ Frame Numbers: 2698
Spacer: 2716
Calculated Distance from Track Line: 0.3 km

Final Time and Position of Sighting

Time: _13:17_ W P\#: $81 \quad$ Lat: 30.240662 Long: - -80.621428
Calculated Distance T raveled: 0.7 km

Behavior and Additional Comments

At least one mom/calf pair and a single individual observed diving frequently and fairly deep.

Wednesday, August 4, 2010 Sighting \# 11

Initial Sighting on Track

Time: _13:19_ W P\#, _77 Lat: 30.232586 Long: - 80.656360 V ertical A ngle: _1 Horizontal Bearing in Degrees: 95
O. -80.656360
\square B eaufort Sea State: __1_-_ Observer:
\square Track Line: 5 \qquad Observer Side: _-_Le Left

Actual Time and Position of Sighting
Time: 13:20 WP\#. 83 \qquad Lat: 30.230547
Long: -80.650354
Species: Tursiops truncatus \qquad Numbers (Low/High/Best): 4/6/5
Features used in Species ID: robust bodies with gray coloration, defined melon and broad flukes
R-epresentative images used for Species ID: $2717,2721,2730,2731$
Photographer: RCH__ Frame Numbers: $2717-2732$
Spacer: 2733
Calculated Distance from Track Line: 0.6 km

Final Time and Position of Sighting

Time: _13:21_ WP\#, $84 \quad$ Lat: 30.226300 Long: _ 80.655421
Calculated Distance Traveled: $\underline{0.7 \mathrm{~km}}$

Behavior and Additional Comments

One to two mom/calf pairs observed. Animals were spaced widely apart with very little time spent at the surface of the water.

Wednesday, August 4, 2010 Sighting \# 12

Initial Sighting on Track

Time: 15:02 W P\#, $93 \quad$ Lat: 30.165946 Long: -80.545882
V ertical Angle: _2___ Horizontal Bearing in Degrees: $90 \quad$ Sighting Cue: Body
 Observer: ___ $\overline{\mathrm{R}} \overline{\mathrm{C}} \mathrm{H}$

Actual Time and Position of Sighting

Time: _15:03 W P\#, 94
L at: 30.157833
Long: -80.547499
Species: Tursiops truncatus
Numbers (Low/High/Best): 6/8/7
F eatures used in Species ID: slate gray coloration on robust, large bodies with broad flukes, dark gray cape
Representative images used for Species ID: $2759,2763,2764,2765$
Photographer: RCH Frame Numbers: $2734-27 \overline{6} 5$
Spacer: 2766
Calculated Distance from Track Line: 0.9 km

Final Time and Position of Sighting

Time: _15:06_ W P\#, $95 \quad$ L at: 30.156846___ Long: -80.546041
Calculated Distance T raveled: 0.2 km

Behavior and Additional Comments

One to two mom/calf pairs observed.

Wednesday, August 4, 2010 Sighting \# 13

Initial Sighting on Track

Time: _16:23_ W P\#, _111__L Lat: $30.031227 \quad$ Long: _-79.9228885
V ertical A ngle: _3____ Horizontal Bearing in Degrees: _100__ Sighting Cue: Body On/Off Effort: _On B Observer: _-_ $\overline{\mathrm{R}} \mathrm{CH}$

Actual Time and Position of Sighting
Time: _16:25_ WP\#, _112
Species: Grampus griseus
L at: 30.029908
L ong: --79.927285
Features used in Species ID: scarring visible on bodies, cleft in melon, tall large dorsal fin
Representative images used for Species ID: 2779, 2780, 2786, 2787

Calculated Distance from Track Line: 0.5 km

Final Time and Position of Sighting

C alculated D istance Traveled: 0.4 km

Behavior and Additional Comments

Lots of duos and trios observed diving with very little time spent at the water's surface.

Wednesday, August 4, 2010 Sighting \# 14

Initial Sighting on Track

Time: 16:32_ W P\#, 116_ Lat: 29.992618__ Long: -79.759833
V ertical A ngle: _2___ Horizontal Bearing in Degrees: _135___ Sighting Cue: Body
On/Off Effort: -_Off Track Line: between 1\&2_ B eaufort Sea State: ___
Observer

Actual Time and Position of Sighting

Time: _16:34_ W P\#, _117__ Lat: 30.003451__ Long: _-79.761480

Features used in Species ID: large black animals with square, bulbous, large-based melons
Representative images used for Species ID: $2791,2792,2800,2801$
Photographer: RCH Frame Numbers: ${ }^{-1788-2806}$
Calculated Distance from Track Line: 1.2 km -off

Final Time and Position of Sighting

Time: _16:35_ W P\#: 118__ Lat: 30.001405__ Long: -79.760326
Calculated Distance T raveled: 0.3 km

Behavior and Additional Comments

A close group of duos and trios.

Thursday, August 5, 2010 Sighting \# 1
Initial Sighting on Track
Time: 10:01_ WP\#, 8 Lat: 30.433442 Long: - 80.012274 V ertical A Angle: __2_-_ Horizontal Bearing in Degrees: _q0 O n/Off Effort: __O_ Track Line: ___ Beaufort Sea State: ___ Observer: HJ F Observer Side:----- Right

Actual Time and Position of Sighting

Time: _10:03_ WP\#. 9
Lat: 30.438946
L ong: - 80.008208
Species: _Grampus griseus
Features used in Species ID: Overall white coloration, visible scarring, rounded head with cleft
Representative images used for Species ID: $2815,2819,2826$
Photographer: _HJ F__ Frame Numbers: _-_ $2808-2835$
Calculated Distance from Track Line: 0.7 km
Final Time and Position of Sighting
Time: _10:04_ W P\#, 10___ Lat: _30.436028___ L ong: _-80.011669
Calculated Distance Traveled: $\quad 0.5 \mathrm{~km}$
Behavior and Additional Comments
\qquad
\qquad

Wednesday, September 8, 2010 Sighting \# 1

Initial Sighting on Track

Time: 12:53 WP\#, 3 Lat: 29.966991 Long: -80.580044
V ertical A ngle: _1____ Horizontal B earing in Degrees: _110___ Sighting Cue: Body
On/Off Effort: On Track Line: 1
 B eaufort Sea State: Observer: \qquad Observer Side: \qquad
Actual Time and Position of Sighting
Time: 12:54_W P\#. 4
L at: 29.965209
Long: -80.584939
Species: Tursiops truncatus Numbers (Low/High/Best): $3 / 4 / 3$
Features used in Species ID: Broad flukes, distinctly darker gray cape, robust bodies crease at bottom of melon clearly visible
Representative images used for Species ID: 2842, 2843, 2848, 2849, 2856
Photographer: REH ___ Frame Numbers: 2841-2861
Calculated Distance from Track Line: 0.5 km

Final Time and Position of Sighting

Time: _13:06_ WP\#, 5 L__ Lat: 29.965133___-_ Long: -80.585026
Calculated Distance T raveled: 0.01 km

Behavior and Additional Comments

Skittish - possible avoidance behavior - count as a "take". One calf observed in group. Multiple birds feeding on a concentration of fish in the area.

Wednesday, September 8, 2010 Sighting \# 2

Initial Sighting on Track

Time: 13:21 WP\#, 9 Lat: 29.967653 Long: -80.076484
V ertical Angle: 3 3 On/Off Effort: -_On Track Line: ${ }^{1} \ldots \ldots$ Observer: _-_REM

Actual Time and Position of Sighting

Time: _13:21_ W P\#, _10__ Lat: 29.958024__ Long: _80.078054
Species:
Features used in Species ID: Large black ceetaceans with elongated bodies, and square bulbous foreheads
Representative images used for Species ID: $2 \overline{2} 6 \overline{2}, 2864-2 \overline{2} \overline{6} 7$
Photographer: REH___ Frame Numbers: 2862-2867
Spacer: 2869
Calculated Distance from Track Line: 1.0 km

Final Time and Position of Sighting

Time: _13:40_ WP\#, 11__ Lat: 29.946080__ L ong: -80.095558
Calculated Distance T raveled: 2.1 km

Behavior and Additional Comments

Note: Final time and position is estimated (2.41) since the animals were not relocated for an àctual final time/location. Animals in three, roughly equally sized groups. One group very tightly packed. SW overall direction of travel. Lost animals, searched for ca: 10 min, then took 2.41.

Wednesday, September 8, 2010 Sighting \# 3

Initial Sighting on Track

Time: _14:41_WP\#, 24 Lat: 30.101830_ Long: -80.036194 V ertical Angle: _2 Horizontal Bearing in Degrees: 75 Sighting Cue: Body On/Off Effort: _on___ Track Line: ${ }^{3}$ Observer: \qquad Observer Side: _Right

Actual Time and Position of Sighting

Time: _14:45 W P\#: 25
L at: 30.101518
Long: - 80.033725
Species: Globicephala macrorhynchus Numbers (Low/High/Best): Gm: 20/40/30 Features used in Species ID: Globicephala: black large cetaceans, with broad base dorsal fins, and large, square heads, Tursiops; gray robust dolphins, well-dēfined crease at base of melon Representative images used for Species ID: Glo :2940-2942,2955, 2959; Ttr: 2876 -2877, 2880 Photographer: REH Frame Numbers: 2870-3027

Spacer: 3028
Calculated Distance from Track Line: 0.2 km

Final Time and Position of Sighting

C alculated D istance Traveled: 5.3 km

Behavior and Additional Comments

Mixed group of G lobicephala and Tursiops, or at least in close proximity. Active animals, fast
travel. Several G ma calves. Tursiops and pilot whales in same image: 2876 -2879. Group
sizes: Globicephala: 20/40/30, Tursiops: 3/10/6. Hard to follow, lost animals several times.

Wednesday, September 8, 2010 Sighting \#4
Initial Sighting on Track
Time: 15:38 W P\#, 30 Lat: 30.151249 Long: -79.776363
\checkmark ertical Angle: $2, \quad$ Horizontal B earing in Degrees: 105 Sighting Cue: Body On/Off Effort: - Off Track Line: B/TTL 3 \& 4__ B eaufort Sea State: ___ O bserver: ___ REH-_-_ Observer Side: _-_Right

Actual Time and Position of Sighting

Time: _15:39_W P\#, 31
L at: 30.152859
L ong: -79.769391
Species: Grampus griseus Numbers (Low/High/Best): $13 / 25 / 19$
F eatures used in Species ID: Large dolphins with blunt head with cleft in melon, many animals
scarred, coloration ranging from dark gray to a very light, almost white gray, relatively tall dorsal
Representative images used for Species ID: $303 \overline{3} \overline{3}, 3054,3063-30 \overline{6} \overline{5}$
Photographer: REH
Frame Numbers: ${ }^{-3029-3067}$
Spacer: 3068
C alculated Distance from T rack Line: off effort

Final Time and Position of Sighting

Time: _15:41_ WP\#, 32__ L at: 30.152791___ Long: -79.772249
Calculated Distance T raveled: off effort

Behavior and Additional Comments

Off-effort sighting during transit between off-shore ends of track lines 3 and 4. Medium paced travel, mainly sub-surface.

Wednesday, September 8, 2010 Sighting \# 5

Initial Sighting on Track

Time: 15:51_ WP\#. 34 Lat: $30.164957 \quad$ Long: -80.102705 V ertical A ngle: __ 1 On/Off Effort: ___On__ Track Line: _______ Beaufort Sea State: ___ Observer: REH Observer Side: _-_Right

Actual Time and Position of Sighting
Time: _15:53_ WP\#, 35___ Lat: _ $30.166545 \quad$ Long: - 80.104081
Species: _Grampus griseus
Features used in Species ID: Large dolphins, gray dorsally with lighter colored "suspenders" bulbous heads with cleft in melon, variable coloration, some scarring apparent Representative images used for Species ID: $3072-3078$
Photographer: _REH Frame Numbers: _- $3069-3080$
Calculated Distance from Track Line: 0.2 km
Final Time and Position of Sighting
Time: 15:55 WP\#. 36 Lat: Lat: 30.167249 Long: _-80.103061 Calculated Distance T raveled: $\quad 0.1 \mathrm{~km}$

Behavior and Additional Comments
Fast travel, "rooster-tailing".

Thursday, September 9, 2010 Sighting \# 1
Initial Sighting on Track
Time: _8:48 WP\#, _ Lat: 30.568120 Long: -80.479944

On/Off Effort: \quad On Track Line: 10
O__ B eaufort Sea State: __1
Observer: \qquad Observer Side: \qquad
Actual Time and Position of Sighting
Time: _8:49 W P\#. 8
Species: Tursiops truncatus
L at: 30.559272
Long: -80.481691
Features used in Species ID: Broad flukes, short stubby rostrum, gray animals with darker gray cape
Representative images used for Species ID: $3092,3094,3109,3119$
Photographer: RCH__ Frame Numbers: 3082 to 136
Calculated Distance from Track Line: 1.0 km

Final Time and Position of Sighting

C alculated Distance T raveled: 0.9 km

Behavior and Additional Comments

Animals were porpoising and active at the surface and started making deeper dives after a few minutes of circling-possible avoidance. Calves were present.

Thursday, September 9, 2010 Sighting \# 2

Initial Sighting on Track

Time: $9: 01$ W P\#, 12__ Lat: 30.568486__ Long: -80.388614 V ertical A Angle: _2 Horizontal Bearing in Degrees: 75 O n/Off Effort: -_On Observer: \qquad Observer Side: Right

Actual Time and Position of Sighting

Time: $9: 02$ W P\#, 13
Species: Stenella frontalis
L at: 30.561181
Long: - 80.384668
Features used in Specia
eatures used in Species ID: Alternating light and dark "banding" dorsally, long white-tipped rostrum, slender caudal peduncle
Representative images used for Species ID: $3144,3146,3147,3157,3159$
Photographer: RCH Frame Numbers: 3138 to 3185
Calculated Distance from Track Line: 0.9 km

Final Time and Position of Sighting

Time: _9:08_ W P\#, 14___ Lat: 30.569044___ Long: -80.385824
Calculated Distance Traveled: 0.9 km

Behavior and Additional Comments

2 sub-groups of 2 and 9 animals. Porpoising and active at the surface, one group was tightly grouped. Some jumpingobserved. Calves were present

Thursday, September 9, 2010 Sighting \# 3

Initial Sighting on Track

Time: 9:11 WP\#, 17 Lat: 30.568664 Long: -80.306548
V ertical A ngle: _1___ Horizontal B earing in Degrees: _90___ Sighting Cue: Body On/Off Effort: _On Track Line: 10

Actual Time and Position of Sighting

Time: _q:12_ W P\#: 18
Species: Stenella frontalis
 beak
Representative images used for Species ID: $3209,3215,3216$
Photographer: RCH__ Frame Numbers: 3187 to 3232
Track Line: 0.2 km
Calculated Distance from Track Line: 0.2 km

Final Time and Position of Sighting

Time: _9:23_ WP\#, 19__ Lat: 30.571372___ Long: -80.308883
Calculated Distance T raveled: 0.2 km

Behavior and Additional Comments

Animals spread out, multiple direction of travel. E nergetic porpoising. In sub-groups of 2 to 4.

Thursday, September 9, 2010 Sighting \#4
Initial Sighting on Track
Time: 11:16 WP\#. 34 Lat: 30.497842 Long: - 80.634766
V ertical A ngle: _3___ Horizontal Bearing in Degrees: $90 \quad$ Sighting Cue: Body
On/Off Effort: -_On Track Line: 9
Observer: _-_ $\overline{\mathrm{R}} \overline{\mathrm{C}} \mathrm{H}^{----}$Observer Side:
Actual Time and Position of Sighting
Time: _11:17_ W P\#, 35__ Lat: 30.502875_ Long: -80.628567
Species: Stenella frontalis
Features used in Species ID: Spotted pattern, long and white-tipped rostrum
Representative images used for Species ID: $3234,3247,3248,3249$
Photographer: RCH__ Frame Numbers: 3234 to 3256
Spacer: 3257
Calculated Distance from Track Line: 0.8 km

Final Time and Position of Sighting

Time: _11:22_ W P\#: 36__ Lat: 30.502546__ Long: -80.625706
Calculated Distance T raveled: 0.3 km

Behavior and Additional Comments

Foraging, spread out and energetic, multi-directional travel. Other animals present: birds \& fish.
\qquad

Thursday, September 9, 2010 Sighting \# 5

Initial Sighting on Track

Time: _11:25_ WP\#, _38__ Lat: 30.497642__ Long: _-80.690207 V ertical Angle: 2 Horizontal Bearing in Degrees: 60
80.6902 Síghting Cue: Body On/Off Effort: _On Track Line: 9 Observer: \qquad Observer Side: \qquad
Actual Time and Position of Sighting
Time: _11:28_ W P\#, 39
L at: 30.500845
Long: -80.681718
Species: Stenella frontalis Numbers (Low/High/Best): $19 / 19 / 19$
Features used in Species ID: Long, white-tipped rostrum, spotted pattern, alternating light and dark "banding" dorsally
Representative images used for Species ID: $3301,3305,3306,3307,3311,3312,3314$
Photographer: RCH_ Frame Numbers: 32598-3315
Calculated Distance from Track Line: 0.9 km

Final Time and Position of Sighting

Time: _11:36_ W P\#, 40___ Lat: 30.488969___ Long: _-80.683587
Calculated Distance Traveled: 1.3 km

Behavior and Additional Comments

Circled on 2 mother/calf pairs before locating another group of 15 animals.
2-3 D-co were also present.

Thursday, September 9, 2010 Sighting \# 6
Initial Sighting on Track
Time: 11:43 WP\#, 45 Lat: 30.434568 Long: - 80.555706
V ertical A ngle: _2_-_ Horizontal Bearing in Degrees: 85
On/Off Effort: _on Track Line: 8

Actual Time and Position of Sighting
Time: 11:45 WP\#, 46 Lat: 30.438106 Long: -80.552150
Species: Iursiops truncatus
Features used in Species ID: R- Robust, gray animals with broad flukes and short, stubby rostrums
Representative images used for Species ID: $3 \overline{3} \overline{1}, 33 \overline{3} 2,3333,3336$
Photographer: RCH
Frame Numbers: $3317-33 \overline{1}$
Spacer: 3342
Calculated Distance from Track Line: 0.5 km

Final Time and Position of Sighting

Time: _11:52_ W P\#, 47___ Lat: 30.435896___ Long: -80.543466
Calculated Distance T raveled: 0.9 km

Behavior and Additional Comments

Animals were possibly foraging. Birds were present and plunge-diving. Two Dco also present.
\qquad

Thursday, September 9, 2010 Sighting \# 7

Initial Sighting on Track

Time: 12:33 W P\#, 58 Lat: 30.364541 Long: -80.317237 V ertical Angle: _3__-_Horizontal B earing in Degrees: $90 \quad \ldots \quad$ Sighting Cue: Body
 Observer: \qquad Observer Side: _Right

Actual Time and Position of Sighting
Time: _12:36_ W P\#: 59
Species: Tursiops truncatus
L at: 30.369277
Long: - 80.314187
Features used in Species ID: Broad flukes, gray body with darker gray cape, crease at base of melon, short and stubby rostrum
Representative images used for Species ID: $3353,3380,3390,3472$
Photographer: RCH \quad Frame Numbers: $3343-3485$
Calculated Distance from Track Line: 0.6 km

Final Time and Position of Sighting

Time: _12:56_ WP\#, $60 \quad$ Lat: $30.361252 \ldots \quad$ Long: _-80.328629
C alculated D istance Traveled: 1.6 km

Behavior and Additional Comments

Multiple sub-groups, very active, lots of splashing. Some possible avoidance.
Cca alsopresent.

Thursday, September 9, 2010 Sighting \# 8
Initial Sighting on Track
Time: 13:06 WP\#, $63 \quad$ Lat: 30.363942 Long: - 80.661456
V ertical A ngle: _2_-_ Horizontal Bearing in Degrees: 120
O n/Off Effort: _on_ Beaufort Sea State: ___
Observer: ___ RĒH
Actual Time and Position of Sighting
Time: _13:10_ W P\#, 64___ Lat: 30.355374_ Long: _-80.663553
Species: Tursiops truncatus
Species: Tursiops truncatus \quad Numbers (Low/High/B est): $5 / 8 / 6$
Features used in Species ID: Gray body with darker gray cape, broad flukes, hortand stubby rostrum
Representative images used for Species ID: $3522,3523,3524,3525$
Photographer: RCH__ Frame Numbers: 3486-3527
Spacer: 3528
Calculated Distance from Track Line: 1.0 km

Final Time and Position of Sighting

Time: _13:18_ W P\#: 65 Lat: 30.362913 Long: - 80.657331
Calculated Distance T raveled: 1.0 km

Behavior and Additional Comments

Animals were elusive, possibly foraging. Fish and turtles (2Cca, 1Dco) were present.

Thursday, September 9, 2010 Sighting \# 9

Initial Sighting on Track

Time: $14: 59$ W P\#, 74 Lat: 30.301295 Long: -80.636374 V ertical Angle: _3 _ Horizontal Bearing in Degrees: _110_ Sighting Cue: Splash On/Off Effort: _On Track Line: 6 Observer: \qquad Observer Side: \qquad
Actual Time and Position of Sighting
Time: _15:01_ W P\#, 15
L at: 30.307905
Long: - 80.637999
Species: Stenella frontalis
-30.301905 Numbers (Low/High/Best): $17 / 30 / 27$
Features used in Species ID: Alternating light and dark "banding", white-tipped rostrum, spots
Representative images used for Species ID: $3539-3544,3601,3602$
Photographer: RCH Frame Numbers: $3529-3641$
Calculated Distance from Track Line: 0.8 km

Final Time and Position of Sighting

Time: _15:07_ W P\#, _77__ Lat: 30.312839___ Long: _-80.634428
C alculated D istance Traveled: 0.6 km

Behavior and Additional Comments

2 sub-groups, some animals in one group were extremely active- changing direction, lots of splashing and thrashing, circling.
Birds and 1 Dco were also present.

Thursday, September 9, 2010 Sighting \# 10
Initial Sighting on Track
Time: 15:09 WP\#, 79_ Lat: 30.301579_ Long: -80.564921
V ertical A ngle: _2_-_ Horizontal Bearing in Degrees: 130 -_ Sighting Cue: O_ther* O n/Off Effort: _on_ Beaufort Sea State: ___

Actual Time and Position of Sighting
Time: 15:11 WP\#, 80 Lat: 30.285440 Long: -80.572777
Species: Stenella frontalis Numbers (Low/High/Best): $20 / 22 / 22$
Features used in Species ID: Alternating light and dark "banding" dorsally, slender, white-tipped rostrums
Representative images used for Species ID: $3668,3672,3674,3675,3676$
Photographer: RCH__ Frame Numbers: 3642
Calculated Distance from Track Line: 1.9 km

Final Time and Position of Sighting

Time: _15:15_ W P\#, 81 L at: 30.285433___ Long: -80.580083
Calculated Distance T raveled: 0.7 km

Behavior and Additional Comments

Animals were moving very quickly, one direction of travel. Calves were present.
C̄ ca, D'co and birds were also present.
*O-ther cue is for birds.

Thursday, September 9, 2010 Sighting \# 11

Initial Sighting on Track

Time: _15:22_ W P\#, 85__ Lat: 30.301929 Long: _-80.333509 V ertical Angle: _2_ Horizontal Bearing in Degrees: _45 Sighting Cue: S_plash On/Off Effort: _On Track Line: 6 Observer: \qquad Observer Side: \qquad
Actual Time and Position of Sighting
Time: 15:24 W P\#. 86
Species: Tursiops truncatus
Lat: 30.302525
Long: - 80.331754 Numbers (Low/High/Best): 4/9/8
Features used in Species ID: Robust, gray animals with broad flukes and short, stub̄by rostrums
Representative images used for Species ID: $3700-3702$
Photographer: RCH__ Frame Numbers: $3685-3707$
Spacer: 3707
Calculated Distance from Track Line: 0.2 km

Final Time and Position of Sighting

Calculated Distance T raveled: 0.6 km

Behavior and Additional Comments

Small sub-groups spread out.
Cca present.

Thursday, September 9, 2010 Sighting \# 12
Initial Sighting on Track
Time: 15:39 W P\#, 90_L Lat: 30.302095 Long: -80.226422
V ertical Angle: _2_ Horizontal Bearing in Degrees: _120_ Sighting Cue: Splash
O n/Off Effort: _on_ Track Line: $\underline{6}$
Observer: ___ RĒH
Actual Time and Position of Sighting
Time: 15:41 WP\#, 91 Lat: 30.306444 Long: -80.233738
Species: Tursiops truncatus
Numbers (Low/High/Best):
Features used in Species ID: Overall gray color, short rostrums, broad flukes, obvious crease at base of melon
Representative images used for Species ID: $3716,3721,3722$
Photographer: RCH___ Frame Numbers: 3708-3724
Spacer: 3725
Calculated Distance from Track Line: 0.9 km

Final Time and Position of Sighting

Time: _15:47_ W P\#, 93 Lat: 30.305116__ Long: -80.233048
Calculated Distance T raveled: 0.2 km

Behavior and Additional Comments

One group, slow single direction of travel. Calves were present.
\qquad

Thursday, September 9, 2010 Sighting \# 13

Initial Sighting on Track

Time: 15:53 W P\#, 95 Lat: 30.301531 Long: -80.000819 V ertical A ngle: _1_ Horizontal Bearing in Degrees: $100 \quad$ Sighting Cue: Body On/Off Effort: ${ }^{-10 n}$ Track Line: 6 B eaufort Sea State: 1 Observer: \qquad Observer Side: \qquad
Actual Time and Position of Sighting
Time: _15:55_ W P\#. _9
L at: 30.306173
Long: -80.002039
Species: Globicephala macrorhynchus Numbers (Low/High/Best): $21 / 21 / 21$
Features used in Species ID: Large black animals, with bulbous melons and broad-based dorsal fins
R-epresentative images used for Species ID: $3732,3733,3739,3746$
Photographer: RCH Frame Numbers: $3726-3767$
Calculated Distance from Track Line: 0.5 km

Final Time and Position of Sighting

Calculated Distance T raveled: 0.7 km

Behavior and Additional Comments

Calves present. Two sub-groups of animals.

Thursday, September 9, 2010 Sighting \# 14

Initial Sighting on Track

 V ertical Ā ngle: ___ Horizontal Bearing in Degrees: __-_-_-_-_ Sighting Cue: Body On/Off Effort: - Off Track Line: btw6\&5_ B eaufort Sea State: __ Observer: _-_RET---_

Actual Time and Position of Sighting

Time: 16:08 WP\#, 100 Lat: 30.259573 Long: -79.765893
Species: Grampus griseus
Features used in Species ID: Robust dolphins with square foreheads, lighter colored
"suspenders" on flanks when viewed from above, variable whitish, grey to almost black color
Representative images used for Species ID: $3769,3780,3783,3787$
Photographer: RCH Frame Numbers: $3769-3790$
Spacer: 3791
Calculated Distance from Track Line: \qquad

Final Time and Position of Sighting

Time: _NA WP\#. NA Lat:____ Long: Calculated Distance T raveled: NA

Behavior and Additional Comments

Off-effort, hence, only one way point taken for the encounter. Calves present.
\qquad

Thursday, September 9, 2010 Sighting \# 15

Initial Sighting on Track

Time: NA WP\# NA
\checkmark ertical A Angle: \qquad Long:

O n/Off Effort: __Off__ Track Line: btw 4\& ${ }^{\text {_ }}$ Observer: \qquad
On/Off Effort: __Off__ Track Line: btw4_\&
On/Off Effort: -_Off_-_ Track Line: btw4\&3__ B eaufort Sea State: __
\qquad Observer Side \qquad
Actual Time and Position of Sighting
Time: 17:14_ WP\#. 114
Species: Tursiops truncatus
Lat: 30.110498___ L ong: -79.790738
Sighting Cue: Body

$$
\text { ron }-
$$

Features used in Species ID: Crease at base of melon, short rostrum, gray with darker gray cape, broad flukes
Representative images used for Species ID: $3792,3793,3797,3801,3802$
Photographer: RCH \quad Frame Numbers: $3792-3805$
Calculated Distance from Track Line: \qquad

Final Time and Position of Sighting

Time: NA WP\#, NA Lat \qquad Long: \qquad C al culated D īstance T raveled: \qquad

Behavior and Additional Comments

Very energetic, lots of splashing and porpoising. Calves were present. Dark animals with light peduncle patch. Off effort, only one way point taken.

Thursday, September 9, 2010 Sighting \# 16
Initial Sighting on Track
Time: 17:26 WP\#, 116_ Lat: 30.098959_ Long: -80.076030
V ertical A ngle: _3___ Horizontal Bearing in Degrees: $90 \quad$ Sighting Cue: Body
On/Off Effort: _on__ Track Line: $\mathbf{3}^{3}$
Observer: _-_ $\overline{\mathrm{R}} \mathrm{CH}$

Actual Time and Position of Sighting

Time: _17:27_ W P\#, _117_ Lat: 30.104426_ Long: -80.076755
Species: Tursiops truncatus Numbers (Low/High/Best): $18 / 30 / 25$
Features used in Species ID: Gray with darker gray cape, broad flukes, short and stubby rostrum
Representative images used for Species ID: $3 \overline{8} 25-3 \overline{8} 2 \overline{7}, 3 \overline{4} \overline{3}-3846$
Photographer: RCH__ Frame Numbers: $3807-3846$
Calculated Distance from Track Line: 0.6 km

Final Time and Position of Sighting

Time: _17:31_ W P\#: 118__ Lat: 30.115523__ Long: -80.076053
Calculated Distance T raveled: 1.2 km

Behavior and Additional Comments

Multiple sub-groups and singletons and pairs. Calves present.
\qquad

Monday, October 18, 2010 Sighting \# 1

Initial Sighting on Track

Actual Time and Position of Sighting

Time: _12:32_ W P\#, 6
L at: 29.955300
Long: - 80.533353
Species: Stenella frontalis
Numbers (Low/High/Best): $14 / 15 / 14$
Features used in Species ID: Spotted body, long and white tipped beak,
Representative images used for Species ID: $4145,4155,4156,4161,4165$

Calculated Distance from Track Line: 1.2 km

Final Time and Position of Sighting

Time: _12:33_ W P\#, _ \quad Lat: 29.958640___ Long: _-80.536872
C alculated Distance Traveled: 0.5 km

Behavior and Additional Comments

Monday, October 18, 2010 Sighting \# 2

Initial Sighting on Track

Time: _13:01_ W P\#, 18__ Lat: 30.032547_ Long: _79.956286 V ertical A ngle: _3 Horizontal Bearing in Degrees: 90 O n/Off Effort: \quad On Observer: __ $\bar{H} \bar{J} \mathrm{~F}--\quad$ Observer Side:

Actual Time and Position of Sighting

Time: 13:02 W P\#, 19_L Lat: 30.038068_ Long: -79.950917
Species: Tursiops truncatus
Numbers (Low/High/Best): 8/8/8
F eatures used in Species ID: Robust dolphins with elongated bodies, relatively short snouts, gray body color with darker gray dorsal cape
Representative images used for Species ID: $4170,4183,4184,4190,4192$
Photographer: HJ F__ Frame Numbers: 4170 to 4193
Calculated Distance from Track Line: 0.8 km

Final Time and Position of Sighting

Time: 13:05 WP\#: 20__ Lat: 30.035505__ L ong: -79.953804
Calculated D istance T raveled: 0.4 km

Behavior and Additional Comments

Throwing around a lot of white water, some leaping at the end of the encounter

Monday, October 18, 2010 Sighting \# 3

Initial Sighting on Track

Time: _13:27_ W P\#, _24__ Lat: 30.030517 Long: - 80.516704 V ertical A ngle: _3___ Horizontal Bearing in Degrees: _120___ Sighting Cue: Body On/Off Effort: _On Track Line: $2 \ldots$ Observer: PBN Observer Side: \qquad
Actual Time and Position of Sighting
Time: _13:28_ W P\#, _25
L at: 30.025375
Long: -80.512558
Species: Steno bredanensis Numbers (Low/High/Best): 40/50/45
F eatures used in Species ID: Absence of a distinct melon, white lower jaw, "hour glass" shaped dorsal cape,
Representative images used for Species ID: 4204, 4209, 4211, 4236, 4239
Photographer: H J F__ Frame Numbers: $4195-4241$
Calculated Distance from Track Line: 0.7 km

Final Time and Position of Sighting

Time: _13:30_ W P\#, 26__ Lat: 30.018592___ Long: _-80.507421
C alculated D istance Traveled: 0.9 km

Behavior and Additional Comments

Many sub-groups, spread out, lots of splashing

Monday, October 18, 2010 Sighting \#4

Initial Sighting on Track

Time: 13:44_W P\#, $33 \quad$ Lat: $30.093749 \quad$ Long: -80.680797
\checkmark ertical A ngle: _1 Horizontal Bearing in Degrees: 90

Observer: ___ $\bar{P} \bar{B} \bar{N}-\quad$ O
Actual Time and Position of Sighting
Time: _13:45 W P\#, 34
L at: 30.101437
Long: -80.691499
Species: Unidentified Delphinid Numbers (Low/High/Best): $2 / 2 / 2$
Features used in Species ID:
Representative images used for Species ID: $4818-4 \overline{8} 22$
Photographer: H J F___ Frame Numbers: 4816
Spacer: 4824
Calculated Distance from Track Line: 1.3 km

Final Time and Position of Sighting

Time: _n/a _WP\#, n/a__ Lat: n/a
Long: n/a
Calculated Distance Traveled: n/a

Behavior and Additional Comments

Final position not taken. Animals uncooperative and difficult to work.

Monday, October 18, 2010 Sighting \# 5

Initial Sighting on Track

Time: 14:13 W P\#. 42 Lat: 30.100658

Long: - 80.010955
\checkmark ertical A Angle:
-1----- Horizontal Bearing in Degrees: -90 B eaufort Sea State: __1__ On/Off Effort: -----Track Line: 3 \qquad Observer:

PBN

 Observer Side: \qquad Left
Actual Time and Position of Sighting

Time: _14:14_ WP\#, 43 \qquad L at: 30.105502
Long: - 80.013435
Species: Tursiops truncatus Numbers (Low/High/Best): 7/9/8
Features used in Species ID: Short and stubby rostrums, robust and gray dolphins, large flukes
Representative images used for Species ID: 4833, 4836, 4837, 4839, 4840
Photographer: HJ F__ Frame Numbers: 4825-4846
Calculated Distance from Track Line: 0.6 km

Final Time and Position of Sighting

Time: _14:16_ W P\#, 44__ Lat: 30.104476___-_ Long: -80.010561
C alculated D istance Traveled: 0.3 km

Behavior and Additional Comments

Medium-paced travel

Monday, October 18, 2010 Sighting \#6

Initial Sighting on Track

Time: 14:17 WP\#. 46 Lat: 30.099569 Long: -79.995947
V ertical A ngle: _1_ Horizontal Bearing in Degrees: 110
On/Off Effort: _On Track Line: $\mathbf{3}^{3}$

Actual Time and Position of Sighting
Time: _14:20_ WP\#, 47
L at: 30.095035
Long: - 80.001863
Species: Tursiops truncatus Numbers (Low/High/Best): $6 / 10 / 8$
Features used in Species ID: Overall gray coloration with darker gray dorsal capes, broad
flukes, short rostrums
Representative images used for Species ID: 4862, 4864, 4872,4877

Calculated Distance from Track Line: 0.8 km

Final Time and Position of Sighting

Time: _14:23_ WP\#, 48__ L at: 30.102304___ Long: _80.005149
C alculated D istance T raveled: 0.9 km

Behavior and Additional Comments

Smaller sub-groups - spread out

Monday, October 18, 2010 Sighting \# 7

Initial Sighting on Track

Time: _14:36_ W P\#, _53__ Lat: $30.167474 \ldots$ Long: _-79.893239 V ertical A ngle: _2_-_ Horizontal Bearing in Degrees: $70 \quad$ Sighting Cue: Body
 Observer:

HJ F Observer Side: Right

Actual Time and Position of Sighting
Time: _14:36 W P\#: 54
L at: 30.173050
Long: -79.894166
Species: Globicephala macrorhynchus Numbers (Low/High/Best): 9/13/11
Features used in Species ID: Large black cetaceans with bulbous foreheads, broad-based dorsal fins
Representative images used for Species ID: 4894, 4895, 4898, 4899
Photographer: HJ F_ Frame Numbers: $4887-4899$
Calculated Distance from Track Line: 0.6 km

Final Time and Position of Sighting

Time: _14:39_ W P\#, 55 L at: 30.170570
C alculated D istance Traveled: 0.3 km

Behavior and Additional Comments

Monday, O ctober 18, 2010 Sighting \#8

Initial Sighting on Track

Time: 14:44 W P\#, $57 \quad$ Lat: 30.171362 Long: -80.072027
\checkmark ertical A ngle: _1_ Horizontal Bearing in Degrees: _90_ Sighting Cue: Body On/Off Effort:

On Track Line: 4 B eaufort Sea State: _1
Observer: \qquad Observer Side: \qquad

Actual Time and Position of Sighting

Time: _14:46 W P\#, 58
L at: 30.170842
Long: - 80.066972
Species: Tursiops truncatus
Features used in Species ID: Gray dolphins with darker gray cape, broad flukes, short and stubby rostrums
Representative images used for Species ID: 4907 to 4910
Photographer: HJ F___ Frame Numbers: $4901-4913$
Spacer: 4914
Calculated Distance from Track Line: 0.5 km

Final Time and Position of Sighting

Time: _n/a _WP\#, n/a__ Lat: n/a
Long: n/a
Calculated Distance Traveled: n/a

Behavior and Additional Comments

Final position not obtained. Two mother/calf pairs observed.
\qquad

Monday, October 18, 2010 Sighting \# 9
Initial Sighting on Track
Time: 15:02 WP\#, 64 Lat: 30.162535 Long: - 80.474755 V ertical Ā On/Off Effort: ___On__ Track Line: ________ Beaufort Sea State: ___ Observer: PBN Observer Side: _-_-_-_-_

Actual Time and Position of Sighting Time: 15:03 W P\#, 65 Lat: 30.161994 Long: _-80.466740
Species: _Stenella frontalis Features used in Species ID: Alternating dark and light dorsal "banding", spots, white-tipped beak
Representative images used for Species ID: $4927,4930,4931,4938$
Photographer: _HJF__ Frame Numbers: __-_4915-4941 Spacer: 4942 C alculated Distance from Track Line: 0.8 km

Final Time and Position of Sighting
Time: 15:07 WP\#. 66 Lat: at: 30.164913 Long: _-80.465188 Calculated Distance T raveled: $\quad 0.4 \mathrm{~km}$

Behavior and Additional Comments
Fairly tight group, looks like they are feeding on something. \qquad

Tuesday, October 19, 2010 Sighting \# 1

Initial Sighting on Track

Time: 10:53_W P\#, 26_ L at: 30.569164_ L ong: -79.886665 \checkmark ertical Angle: \qquad Horizontal Bearing in Degrees:
: 20 Sighting Cue: Body On/Off Effort: - On Track Line: 10 Observer: PBN Observer Side: \qquad
Actual Time and Position of Sighting
Time: _10:55_ WP\#. 21
L at: 30.571964
Long: -79.888432
Species: Tursiops truncatus \qquad
Features used in Species ID: Stubby rostrum, broad-based dorsal fin, relatively broad flukes, gray body coloration with darker gray dorsal cape, light colored caudal peduncle Representative images used for Species ID: $4283,4285,4301,4302$
Photographer: PBN
Frame Numbers: 4242 to 4305
Spacer: 4306
Calculated Distance from Track Line: 0.4 km

Final Time and Position of Sighting

Time: 11:02_ WP\#, 28__ Lat: 30.566922___ Long: -79.885394
Calculated Distance Traveled: 0.6 km

Behavior and Additional Comments

Surface travel, presence of calves could not be determined, no avoidance behavior observed.
\qquad

Tuesday, October 19, 2010 Sighting \# 2

Initial Sighting on Track

Time: 15:19 W P\#, 52_ Lat: 30.568162 Long: - 80.531332
V ertical Angle: _1_ Horizontal Bearing in Degrees: 30 _-_ Sighting Cue: Body

Observer: ___ $\bar{P} \bar{B} \bar{N}-\quad$ O
Actual Time and Position of Sighting
Time: 15:20 W P\#, 53
L at: 30.569500
Long: -80.516943
Species: Stenella frontalis Numbers (Low/High/Best): 1
Features used in Species ID: Spors observed, white-tipped beak, thin caudal peduncle
Representative images used for Species ID: $4335,4355,4359$
Photographer: PBN__Frame Numbers: 4307 to 4368
Spacer: 4369
Calculated Distance from Track Line: 1.4 km

Final Time and Position of Sighting

Time: _15:23_ W P\#: 54
Calculated Distance T raveled: 0.5 km

Behavior and Additional Comments

Surface travel, calves present, school of fish, no avoidance observed

Tuesday, October 19, 2010 Sighting \# 3
Initial Sighting on Track
Time: 15:25 W P\#, 56 L at: $30.568870 \quad$ Long: _-80.575276 V ertical A ngle: __2__ Horizontal Bearing in Degrees: _90 90 On/Off Effort: ${ }^{-10 n}$ Track Line: 10 B eaufort Sea State: 1 Observer:

PBN Observer Side: \quad Right

Actual Time and Position of Sighting

Species: _Stenella frontalis
Features used in Species ID: Alternating light and dark "banding" dorsally, white-tipped rostrum spotted
Representative images used for Species ID: $4 \overline{3} 888,4410,443 \overline{7}$
Photographer: PBN Frame Numbers: _-_ 4370 to 4443
C alculated Distance from Track Line: 0.4 km
Final Time and Position of Sighting
Time: _15:28_ WP\#, $\mathbf{5}^{8}$ Calculated Distance Traveled: $\quad 0.4 \mathrm{~km}$

Behavior and Additional Comments
Another school of fish nearby

Thursday, November 18, 2010 Sighting \# 1
Initial Sighting on Track
Time: 11:22_WP\#. 26_ Lat: 30.233410 Long: -80.386648 V ertical A ngle: __2__ Horizontal Bearing in Degrees: 75 On/Off Effort: _-_On_-_ Track Line: ___ Observer: \qquad O bserver Side:- Right

Actual Time and Position of Sighting

Time: 11:22_ W P\#, 27
Lat:
30.234708

Long: -80.380993
Species: _Stenella frontalis
Features used in Species ID: long, white-tipped rostrum, spotting pattern, alternating light and dark banding on body

Photographer: RCH_ Frame Numbers: IMG 4445-IMG 4484Spacer: IMG 4485 C alculated Distance from Track Line: 0.6 km

Final Time and Position of Sighting
Time: 11:29 WP\#. 28 Lat:
Lat: 30.228446__ L ong: _-80.385852
C alculated Distance T raveled: 0.8 km
Behavior and Additional Comments
One very large cohesive group traveling together.

Tuesday, December 21, 2010 Sighting \# 1

Initial Sighting on Track

Time: _10:46_ WP\#, _14___ Lat: 30.500638 Long: _-80.347050 V ertical A ngle: _2 _ Horizontal Bearing in Degrees: 120 On/Off Effort: _On Observer: PBN Observer Side: \qquad
Actual Time and Position of Sighting
Time: _10:48_W P\#, 15
L at: 30.508612
Long: - 80.348717
Species: Stenella frontalis Numbers (Low/High/Best): 6/10/8
Features used in Species ID: Alternating light and dark banding pattern along dorsal surface, visible spotting on some individuals, White tipped rostrum
R 'epresentative images used for Species ID: 4516, 4519,4524, 4527

Calculated Distance from Track Line: 0.9 km

Final Time and Position of Sighting

Time: _10:56_ W P\#, 16__ Lat: 30.513782___ Long: _-80.343218
Calculated Distance Traveled: 0.8 km

Behavior and Additional Comments

Milling near surface with occasional deep dives, somewhat elusive

Tuesday, December 21, 2010 Sighting \# 2
Initial Sighting on Track
Time: 11:05 WP\#, 22 Lat: 30.501468 Long: - 80.597303
\checkmark ertical Angle: 2 _ Horizontal Bearing in Degrees: $90-1$
On/Off Effort: _on

Actual Time and Position of Sighting
Time: 11:05 W P\#, 23
Lat: 30.510515
Long: -80.597130
Species: Stenella frontalis
Numbers (Low/High/Best): 3 3/3
Features used in Species ID: STTender white tipped rostrum, visible spotting on some animals Narrow caudal peduncle
Representative images used for Species ID: $4552 \overline{2}, \overline{4} 533,4575,4576,4598$
Photographer: PBN_Frame Numbers: 4549-4
Calculated Distance from Track Line: 1.0 km

Final Time and Position of Sighting

Time: _11:11_ W P\#: 24 L Lat: 30.500386___ Long: -80.594421
Calculated Distance T raveled: 1.2 km

Behavior and Additional Comments

Surface travel

Tuesday, December 21, 2010 Sighting \# 3

Initial Sighting on Track

Time: _11:27_ W P\#, _30__ Lat: 30.432705 Long: _-80.347965
V ertical Angle: $1 \ldots$ Horizontal Bearing in Degrees: $90 \quad$ Sighting Cue: Body
 Observer: \qquad Observer Side: \qquad
Actual Time and Position of Sighting
Time: _11:28_ W P\#: 31
Species: Tursiops truncatus
L at: 30.435426
Long: - 80.344608 Numbers (Low/High/Best): $10 / 14 / 12$
Features used in Species ID: Robust body, overall gray coloration, broad based dorsal, visible crease between melon and rostrum
Representative images used for Species ID: $4604,4622,4631,4637,4638$

Calculated Distance from Track Line: 0.4 km

Final Time and Position of Sighting

Time: $11: 31$ W P\#, $32 \ldots$ Lat: $30.431187 \ldots \ldots$
C alculated Distance Traveled: 0.8 km

Behavior and Additional Comments

Loose grouping with slow surface travel

Tuesday, December 21, 2010 Sighting \#4
Initial Sighting on Track
Time: $11: 32$ W P\#, 35 Lat: $30.431797 \quad$ Long: _-80.273660
\checkmark ertical A ngle: _2 Horizontal Bearing in Degrees: 110^{-}Sighting Cue: Body

Actual Time and Position of Sighting

Time: 11:33_W P\#, 36
L at: 30.436438
Long: - 80.276994
Species: Stenella frontalis Numbers (Low/High/Best): 5/8/7
F eatures used in Species ID: Visible spottingon some individuals, narrow rostrum with white tip, narrow caudal peduncle
Representative images used for Species ID: $4642, \overline{6} \overline{6} 4 \overline{3}, 4656,4 \overline{6} 5 \overline{8}$
Photographer: PBN__ Frame Numbers: 4642-4688
Spacer: 4698
Calculated Distance from Track Line: 0.6 km

Final Time and Position of Sighting

Time: _11:39_ W P\#, 37__ Lat: 30.431760__ Long: -80.283566
Calculated Distance Traveled: 0.8 km

Behavior and Additional Comments

Very spread out, mother/calf pair
\qquad

Tuesday, December 21, 2010 Sighting \# 5

Initial Sighting on Track

Time: _12:16_ W P\#, _44__ Lat: 30.365662 Long: - 80.584299 V ertical A ngle: _2___ Horizontal Bearing in Degrees: _120__ Sighting Cue: Body On/Off Effort: _On Track Line: 7 Observer: P $\bar{B} \bar{N}$ Observer Side: \qquad
Actual Time and Position of Sighting

Time: _12:17_ WP\#. 45
Species: Tursiops truncatus
hite white dorsal surface
Representative images used for Species ID: $4690,4691,4692,2493,4696$

Calculated Distance from Track Line: 0.4 km

Final Time and Position of Sighting

Time: _12:23_WP\#, 46
Lat: 30.368898
Long: - 80.579836
Calculated Distance Traveled: $\underline{0.1} \mathrm{~km}$

Behavior and Additional Comments

Somewhat elusive

Tuesday, December 21, 2010 Sighting \# 6
Initial Sighting on Track
Time: _13:12_ WP\#, 56__ Lat: $30.233282 \ldots$ Long: _-80.471853
V ertical A ngle: 3 3
On/Off Effort: -_On Track Line: 5
O bserver: ___ $\bar{P} \bar{B} \bar{N}-\quad$ O
Actual Time and Position of Sighting
Time: _13:13 WP\#, 57 Lat: 30.241160 Long: -80.471661
Species: Iursiops truncatus
Features used in Species ID: Thick rostrum with visible crease at melon, broad bas ed dorsal fin. overall gray coloration
Representative images used for Species ID: $4707,4708,4711,1715,4730$
Photographer: PBN Frame Numbers: $4705-4730-1$
Calculated Distance from Track Line: 0.9 km

Final Time and Position of Sighting

Time: _NA WP\#, NA Lat: NA L ong: NA Calculated Distance T raveled: NA

Behavior and Additional Comments

Elusive surface travel with some deep diving, possible avoidance behavior observer

Tuesday, December 21, 2010 Sighting \# 7
Initial Sighting on Track
Time: 15:43_ WP\#. 67__ Lat: 30.100680 Long: _-80. 355397 V ertical A ngle: __ 1 On/Off Effort: --_On_-_ Track Line: ____ Beaufort Sea State: ___ Observer: PBN O bserver Side: ___Right

Actual Time and Position of Sighting

Time: _15:49_ W P\#. 68___ Lat:
30.098785

Long: -80.357685
Species: Unidentified Delphinid $--\cdots-1$
Features used in Species ID: Animals were not observed long enough to make a positive identification
Representative images used for Species ID: NA

C alculated Distance from T rack Line: 0.3 km
Final Time and Position of Sighting
Time: _NA WP\#, NA__Lat: NA
Calculated Dístance Traveled:
NA
Behavior and Additional Comments
Not resighted, actual time and position are assumed

Wednesday, December 29, 2010 Sighting \# 1

Initial Sighting on Track

Time: _12:49_ W P\#, _9__ Lat: 29.963468__ Long: _-79.981404 V ertical A ngle: _2___ Horizontal Bearing in Degrees: _90___ Sighting Cue: Body On/Off Effort: _on_ Observer: \qquad
\qquad
Actual Time and Position of Sighting
Time: _12:53_ WP\#, 10
L at: 29.958804 Left_-_

Species: Unidentified Delphinid
Features used in Species ID: Animals not observed long enough for positive identification
Representative images used for Species ID: NA
Photographer: RCH__ Frame Numbers:- N-
Spacer: NA
Calculated Distance from Track Line: 0.8 km

Final Time and Position of Sighting

Time: _NA WP\#, NA _ Lat: NA
Long: NA
Calculated Distance T raveled:

Behavior and Additional Comments

Fast travel south, re-sighted once then never seen again.

Wednesday, December 29, 2010 Sighting \# 2

Initial Sighting on Track

Time: _13:03_ WP\#, 12__ Lat: 29.966228__ Long: _-79.830743
V ertical A ngle: _2_-_ Horizontal Bearing in Degrees: 100
O n/Off Effort: _on__ Track Line: 1
Observer: __- $\bar{P} \bar{B} \bar{N}--\quad$ O
Actual Time and Position of Sighting
Time: _13:06_ W P\#, _13__ Lat: 29.968734__ Long: _-79.834176
Species: Tursiops truncatus
F eatures used in Species ID: R- Robust body, overall gray coloration, thick caudal peduncle, broad based dorsal fin
Representative images used for Species ID: $517 \overline{6}, 5181,5182,5192,5194$

Calculated Distance from Track Line: 0.4 km

Final Time and Position of Sighting

Time: _13:11_ W P\#: 14 L at: 29.966952___ Long: -79.831066
Calculated Distance T raveled: 0.4 km

Behavior and Additional Comments

Medium paced travel, looks like Tursiops from the plane (white caudal peduncle, sturdy looking)
\qquad

Wednesday, December 29, 2010 Sighting \# 3

Initial Sighting on Track

Time: _13:28_W P\#, _18__ Lat: 30.031145 Long: _-80.259184 V ertical Angle: _3 _-_ Horizontal Bearing in Degrees: 90 _-_ Sighting Cue: Body On/Off Effort: _on___ Track Line: 2^{2} Observer: _-_ $\overline{\mathrm{R}} \mathrm{CH}$

Actual Time and Position of Sighting

Time: _13:30_ WP\#. 19
Species: Tursiops truncatus
L at: 30.034135
Long: - 80.260091
Numbers (Low/High/Best): $15 / 20 / 17$
Features used in Species ID: Broad based dorsal fin, short robust rostrum, overall gray coloration, robust body
Representative images used for Species ID: $5203,5204,5216,5219,5220$
Photographer: RCH \quad Frame Numbers: $5200-5229$
Calculated Distance from Track Line: 0.3 km

Final Time and Position of Sighting

Time: _13:32_ WP\#, 20 Lat: 30.033146
Calculated Distance T raveled: 0.2 km

Behavior and Additional Comments

Two groups spaced about 100 m apart.

Wednesday, December 29, 2010 Sighting \#4

Initial Sighting on Track

Time: 13:42 WP\#. 23 Lat: 30.030343 Long: -80.553343
V ertical A ngle: _3___ Horizontal Bearing in Degrees: _90___ Sighting Cue: Body
On/Off Effort: _On
Observer: _-_ $\overline{\mathrm{RC}} \mathrm{H}^{---}$Observer Side:

Actual Time and Position of Sighting

Time: _13:43_ WP\#. 24
L at: 30.032205
Long: - 80.553900
Species: Tursiops truncatus
Numbers (Low/High/Best): $10 / 15 / 12$
Features used in Species ID: S̄hort robust rostrum, overall gray coloration, heavy flippers
Representative images used for Species ID: $5231,5236,5244,5245,5257$

Calculated Distance from Track Line: 0.2 km

Final Time and Position of Sighting

Time: _13:49_ WP\#, 25__ Lat: 30.036658__ L ong: -80.550997
C alculated Distance T raveled: 0.6 km

Behavior and Additional Comments

Milling, dolphins look like Tursiops.

Thursday, December 30, 2010 Sighting \# 1

Initial Sighting on Track

Time: _8:53_W W\#, _4___ Lat: 30.566342__ Long: _-80.519935
\checkmark ertical Angle: $2, \quad$ Horizontal B earing in Degrees: 120 Sighting Cue: Body O n/Off Effort: _on___ Track Line: 10 Observer: $\overline{\mathrm{P}} \overline{\mathrm{B}} \overline{\mathrm{N}}$ Observer Side: \qquad
Actual Time and Position of Sighting
Time: _8:55_ W P\#. _5
L at: 30.562893
Long: - 80.519634
Species: Tursiops truncatus
Features used in Species ID: Short and stubby rostrum, gray with darker gray cape, robust and elongated body
Representative images used for Species ID: $5271-5273$
Photographer: PBN_Frame Numbers: $5270-5286$
Spacer: 5287
Calculated Distance from Track Line: 0.4 km

Final Time and Position of Sighting

Time: _9:01__ WP\#, _ ___ Lat: 30.564531___ Long: _-80.518119
Calculated Distance T raveled: 0.2 km

Behavior and Additional Comments

Moderate rate of travel at surface. Initial sighting of one animal, upon circling resighted four animals.

Thursday, December 30, 2010 Sighting \# 2

Initial Sighting on Track

Time: _9:08_WP\#, 12__ Lat: 30.566594__ Long: _-80.286674
V ertical Â ngle: _2_-_ Horizontal Bearing in Degrees: 130
O n/Off Effort: _On__ Track Line: 10
Observer: ___ $\bar{P} \bar{B} \bar{N}-\quad$ O
Actual Time and Position of Sighting
Time: _9:09_WP\#. 13
Species: Stenella frontalis
L at: 30.562619
Long: -80.291194
Low (Low/ighBest):5/5
Features used in Species ID: Alternating light and dark "banding" dorsally, elongated and white-tipped rostrum
Representative images used for Species ID: $529 \overline{3}, 5309-53 \overline{12}, 53 \overline{3} \overline{0}, 5 \overline{3} \overline{1}$
Photographer: PBN_Frame Numbers: ${ }^{-} \mathbf{5} 288-53 \overline{6} 6$
Calculated Distance from Track Line: 0.6 km

Final Time and Position of Sighting

Time: _9:20_ W P\#, 14__ L at: 30.570682___ Long: -80.282093
C alculated Distance Traveled: 1.3 km

Behavior and Additional Comments

Widely spaced group traveling fast causing large splashes when surfacing. Traveling as singles ān pairs. Showing possible avoidance behavior.

Thursday, December 30, 2010 Sighting \# 3

Initial Sighting on Track

Time: _9:37_W W\#, _23__Lat: 30.498851_ Long: -79.809588
V ertical Angle: _3 _ Horizontal Bearing in Degrees: 90 Sighting Cue: Splash On/Off Effort: _On Track Line: ${ }^{9}$ Observer: $\overline{\mathrm{P}} \overline{\mathrm{B}} \overline{\mathrm{N}}$ Observer Side: \qquad
Actual Time and Position of Sighting
Time: 9:38 W P\#, 24
Species: Tursiops truncatus
at: 30.502363
Long: -79.807404
Species: Tursiops truncatus \quad Numbers (Low/High/B est): $8 / 9 / 9$
Features used in Species ID: Long, robust bodies, light colored peduncle, overall gray coloration with darker gray cape, short beak
Representative images used for Species ID: $5381,5407-5412$
Photographer: PBN_ Frame Numbers: $5368-5447$
Spacer: 5448
Calculated Distance from Track Line: 0.4 km

Final Time and Position of Sighting

Time: $9: 41$ W P\#, 25 Lat: 30.508621 ___ \quad ong: -79.809509
Calculated Distance T raveled: 0.7 km

Behavior and Additional Comments

Group was hanging at the surface - tight grouping which split into two smaller groups. Easy rate of travel.

Thursday, December 30, 2010 Sighting \#4

Initial Sighting on Track

Time: 10:02 WP\#. 31 Lat: 30.500338 Long: -80.324565
V ertical Angle: _1_ Horizontal Bearing in Degrees: 90
O n/Off Effort: _on_ Track Line: ${ }^{9}$
Observer: __ $\bar{P} \bar{B} \bar{N}-\quad$ O--_
Actual Time and Position of Sighting
Time: 10:04_ WP\#, 32
L at: 30.498796
Long: - 80.321313
Species: Stenella frontalis Numbers (Low/High/Best): 3 5̄/50/4
Features used in Species ID: Ālternating light and dark pattern, spots, lighter shoūlder blaze, white-tipped rostrum
Representative images used for Species ID: $5473,5476,5480,5482,5485-5487$
Photographer: PBN__ Frame Numbers: 5449 to 5531
Calculated Distance from Track Line: 0.4 km

Final Time and Position of Sighting

Time: _10:07_ W P\#: 33 L Lat: 30.505045__ Long: -80.315992
Calculated Distance T raveled: 0.9 km

Behavior and Additional Comments

Loose grouping of animals, milling and splashing at the surface. Single group spread over a large area, including lots of juveniles.

Thursday, December 30, 2010 Sighting \# 5

Initial Sighting on Track

Time: _10:10_ WP\#, _35__ Lat: 30.499865 Long: _-80.368864 V ertical Angle: _3 Horizontal Bearing in Degrees: $90 \quad$ Sighting Cue: Splash On/Off Effort: _On Observer: \qquad Observer Side \qquad
Actual Time and Position of Sighting
Time: _10:11_ W P\#, 36
Species: Stenella frontalis
L at: 30.494795
Long: - 80.369824
Features used in Species ID: white-tipped beack, light shoulder blaze, spotted pattern
Representative images used for Species ID: $5557,5559,5560,5566,5589,5592$
Photographer: PBN_ Frame Numbers: 5583-5624
Calculated Distance from Track Line: 0.6 km

Final Time and Position of Sighting

Time: _10:14_ W P\#, 37__ Lat: 30.497729__ L ong: _-80.369207
C alculated D istance Traveled: 0.3 km

Behavior and Additional Comments

Large group exhibiting lots of activity at the water's surface.

Thursday, December 30, 2010 Sighting \# 6

Initial Sighting on Track

Time: 10:17 WP\#. 39 Lat: 30.500058 Long: -80.462316
V ertical A ngle: _2___ Horizontal Bearing in Degrees: _90___-_ Sighting Cue: Body
On/Off Effort: _on__ Track Line: ${ }^{9}$
Observer: __ $\bar{P} \bar{B} \bar{N}-1--\quad$ O

Actual Time and Position of Sighting

Time: 10:18 W P\#, 40
Lat: 30.498913
Long: - 80.451449
Species: Tursiops truncatus Numbers (Low/High/Best): $2 / 2 / 2$
Features used in Species ID: short rostrum, narrow dark gray cape, robust, elongated body

Calculated Distance from Track Line: 1.0 km

Final Time and Position of Sighting

Time: _10:23_ W P\#, $41 \quad$ Lat: 30.500564 Long: - 80.456915
Calculated Distance T raveled: 0.6 km

Behavior and Additional Comments

Pair was exhibiting fairly fast travel with short surfacings.
\qquad

Thursday, December 30, 2010 Sighting \# 7

Initial Sighting on Track

Time: _10:30_ W P\#, _43 Lat: 30.499351 Long: _80.669547 V ertical A Angle: _1_ Horizontal Bearing in Degrees: 100 On/Off Effort: _On Track Line: 9 Observer: PBN Observer Side: \qquad
Actual Time and Position of Sighting
Time: _10:31_ W P\#, 44
Species: Tursiops truncatus
L at: 30.504672
Long: - 80.668439
Peatur
Features used in Species ID: Broad flukes, robust, elongate body, short, stubby rostrum
light colored peduncle
Representative images used for Species ID: $5723,5724,5747$

Calculated Distance from Track Line: 0.6 km

Final Time and Position of Sighting

Calculated Distance T raveled: 0.2 km

Behavior and Additional Comments

Slow travel close to the water's surface

Thursday, December 30, 2010 Sighting \#8

Initial Sighting on Track

Time: 10:56_WP\#, 60__ Lat: 30.433084__ Long: _-80.224719
\checkmark ertical Angle: $2 \ldots$
On/Off Effort: _on Track Line: $\underline{8}^{8}$
Observer: __ $\bar{P} \bar{B} \bar{N}-\quad$ O---
Actual Time and Position of Sighting
Time: _10:56_ W P\#, 61__ Lat: 30.426356_ Long: _-80.227854
Species: Iursiops truncatus Numbers (Low/High/Best):
Features used in Species ID: broad flukes, short, stubby rostrum
Representative images used for Species ID: $5791,5792,5799,5800,5801$

Calculated Distance from Track Line: 0.8 km

Final Time and Position of Sighting

Time: _11:00_ W P\#: 62 Lat: 30.428318 _ Long: - -80.226192
Calculated Distance T raveled: 0.3 km

Behavior and Additional Comments

Slow travel with short surfacings

Thursday, December 30, 2010 Sighting \# 9

Initial Sighting on Track

Time: _11:00 W P\#, $64 \quad$ L at: $30.427061 \quad$ Long: -80.209683 V ertical A ngle: _2___ Horizontal B earing in Degrees: _120___ Sighting Cue: Body On/Off Effort: On Track Line: 8 \qquad B eaufort Sea State: Observer: \qquad Observer Side: \qquad
Actual Time and Position of Sighting
Time: _11:01_ WP\#, 65 \qquad L at: 30.426861
Long: -80.217173
Species: Tursiops truncatus Numbers (Low/High/Best): $13 / 13$
F eatures used in Species ID: short and stubby rostrum, gray body coloration with dark gray cape, pronounced melon
Representative images used for Species ID: $5811,5815-5817,5840$
Photographer: PBN_Frame Numbers: 5808 - 5848
Spacer: 5849
Calculated Distance from Track Line: 0.8 km

Final Time and Position of Sighting

Time: 11:03 W P\#, 66 Lat: 30.428800 Long: - 80.223245
Calculated Distance Traveled: 0.6 km

Behavior and Additional Comments

Animals active at the surface, splashing and milling. Some individuals were swimming inverted, showing their bellies.

Thursday, December 30, 2010 Sighting \# 10

Initial Sighting on Track

Time: 11:13 WP\#, 68__ Lat: $30.432284 \ldots$ Long: - 79.853695
V ertical A ngle: _2_-_ Horizontal Bearing in Degrees: 120

Observer:
PBN Observer Side: Right

Actual Time and Position of Sighting

Time: _11:14_ W P\#, 69__ Lat: 30.434864__ Long: _-79.856500
Species: Balaenoptera acutorostrata $-\cdots-\cdots-\cdots$
Features used in Species ID: small dark gray/black baleen whale, pointy rostrum, white bands on flippers
Representative images used for Species ID: $5 \overline{8} 800-5 \overline{8} \overline{8} 9$
Photographer: PBN__ Frame Numbers: ${ }^{-} 5850-589$
Spacer: 5899
Calculated Distance from Track Line: 0.4 km

Final Time and Position of Sighting

Time: _11:23_ WP\#, 70__ L at: 30.427019__ L ong: -79.857527
Calculated Distance T raveled: 0.9 km

Behavior and Additional Comments

Animals exhibiting regular surfacings - traveling slowly just below the surface. Final location is an estimation of the last known location as animals disappeared from view.

Thursday, December 30, 2010 Sighting \# 11

Initial Sighting on Track

Time: _11:29_ W P\#, _74__ Lat: $30.366132 \ldots$ Long: _-79.855762
V ertical Angle: _3 _-_ Horizontal Bearing in Degrees: $90 \quad$ Sighting Cue: Body On/Off Effort: _On___ Track Line: ${ }^{7}$ Observer: PBN Observer Side: \qquad
Actual Time and Position of Sighting
Time: _11:29_ WP\#. 175
L at: 30.372719
Long: -79.850767
Species: Tursiops truncatusNumbers (Low/High/Best): $15 / 15 / 15$
Features used in Species ID: gray with dark gray cape, short, stubby rostrum and relatively broad flukes
Representative images used for Species ID: $5915,5912,5920,5927,5930$
Photographer: PBN_Frame Numbers: $5890-5942$
Calculated Distance from Track Line: 0.9 km

Final Time and Position of Sighting

Time: $11: 32$ W P\#, 76
Calculated Distance Traveled: 0.3 km

Behavior and Additional Comments

Loose group of animals, with many traveling in pairs. Exhibiting slow travel just below the surface. Some juveniles present.

Thursday, December 30, 2010 Sighting \# 12

Initial Sighting on Track

Time: 11:45 WP\#, $81 \quad$ Lat: 30.366445 Long: -80.287253
V ertical A Angle: _2 Horizontal Bearing in Degrees: 90

Observer: ___ $\bar{P} \bar{B} \bar{N}-\quad$ O
Actual Time and Position of Sighting
Time: 11:46 WP\#, 82
L at: 30.372465
Long: - 80.280112
Species: Stenella frontalis Numbers (Low/High/Best): $\overline{6} / \overline{6} / \overline{6}$
Features used in Species ID: Spots,alternating bands of light and dark on dorsal side of body white tipped rostrum
Representative images used for Species ID: $5944,5955-5 \overline{9} \overline{5} \overline{1}, 5 \overline{5} \overline{5} \overline{9}, 5 \overline{5} \overline{7} \overline{5}$
Photographer: PBN__ Frame Numbers: $5944-601$
Calculated Distance from Track Line: 1.0 km

Final Time and Position of Sighting

Time: _11:47_ WP\#: $83 \quad$ Lat: 30.372391___ Long: -80.281947
Calculated Distance T raveled: 0.2 km

Behavior and Additional Comments

Animals milling at the surface - moving at a slow rate of travel.

Thursday, December 30, 2010 Sighting \# 13

Initial Sighting on Track

Time: $11: 49$ WP\#. 85 Lat: 30.365490 Long: - 80.314671

 Observer: PBN Observer Side: \qquad
Actual Time and Position of Sighting
Time: _11:50_ WP\#, 86
L at: 30.365033
Long: - -80.310898
Species: Stenella frontalis Numbers (Low/High/Best): $2 / 3 / 3$
F eatures used in Species ID: spots, long, white-tipped rostrum, dorsal banding pattern of light and dark
Representative images used for Species ID: $6004,6005,6013,6015$
Photographer: PBN_ Frame Numbers: 6003
Spacer: 6033
Calculated Distance from Track Line: 0.4 km

Final Time and Position of Sighting

Time: _11:52_ W P\#, $87 \quad$ Lat: 30.368983 ___ Long: _-80.311009
Calculated D istance T raveled: 0.4 km

Behavior and Additional Comments

Animals were widely spaced over a large area. Individuals would race up to the surface and then dive from sight

Thursday, December 30, 2010 Sighting \# 14

Initial Sighting on Track

Time: $14: 07$ W P\#, 104__ Lat: 30.299627 Long: _-80.469222
V ertical A Angle: _3 Horizontal Bearing in Degrees: 110
On/Off Effort: _On__ Track Line: $\underline{6}^{\ldots}$
Observer:
RJM Observer Side: .-_Left

Actual Time and Position of Sighting
Time: _14:09_ W P\#, _105_ Lat: 30.310022_ Long: _80.479380
Species: Tursiops truncatus Numbers (Low/High/Best): 3 5/ $150 / 4$
F eatures used in Species ID: gray with darker gray cape, light colored peduncle, robust, elongated body, short, stubby rostrum
Representative images used for Species ID: $6060,6077,6090,6094-6098$
Photographer: PBN_Frame Numbers: $6034-60 \overline{9} 9$
Calculated Distance from Track Line: 1.5 km

Final Time and Position of Sighting

Time: _14:12_ W P\#: 106__ Lat: 30.300260__ L ong: -80.478851
Calculated Distance T raveled: 1.1 km

Behavior and Additional Comments

Very disperse group with 3-4 subgroups, which are more condensed. Often travelling in a line of approximately 5-6 animals. Sow rate of travel exhibited with Iots of splashing at the surface

Thursday, December 30, 2010 Sighting \# 15

Initial Sighting on Track

Time: 14:14 W P\#, 108 Lat: 30.300718 Long: -80.416525 V ertical Angle: _3 _-_ Horizontal Bearing in Degrees: 90 _-_ Sighting Cue: Body On/Off Effort: _On Track Line: 6 Observer: \qquad Observer Side: \qquad
Actual Time and Position of Sighting
Time: _14:16_ W P\#: 109
L at: 30.304107
Long: - 80.425841
Species: Stenella frontalis Numbers (Low/High/Best): $10 / 11 / 10$
F eatures used in Species ID: Alternating light and dark banding, light sadle blaze, white tipped rostrum
Representative images used for Species ID: $6107,6109,6111,6113,6123$
Photographer: PBN__ Frame Numbers: 6101-6140
Calculated Distance from Track Line: 1.0 km

Final Time and Position of Sighting

C alculated D istance Traveled: 1.1 km

Behavior and Additional Comments

Animals were originally travelling together in a single line, but eventually split into a group of six and ag group of 4

Thursday, December 30, 2010 Sighting \# 16

Initial Sighting on Track

Time: 14:19 WP\#, 112 Lat: 30.299917 Long: -80.351955
V ertical A Angle: _1_ Horizontal Bearing in Degrees: 90
O n/Off Effort: _On__ Track Line: $\underline{6}$
Observer: _-_ $\overline{\mathrm{B}} \overline{\mathrm{N}}-\mathrm{O}$
Actual Time and Position of Sighting
Time: _14:19_ W P\#, _113_ Lat: 30.297971_ Long: _-80.353320
Species: Stenella frontalis Numbers (Low/High/Best): $20 / 22 \overline{2} / 2 \overline{1}$
Features used in Species ID: spotted pattern with light and dark banding, white tipped rostrum
Representative images used for Species ID: $6148,6151,6153,6155,6173,6188$
Photographer: PBN__ Frame Numbers: 6142-6190
Calculated Distance from Track Line: 0.3 km

Final Time and Position of Sighting

Time: _14:22_ W P\#: 114__ Lat: 30.300182___ Long: -80.346876
Calculated Distance T raveled: 0.7 km

Behavior and Additional Comments

Very dense pack of animals milling at water's surface. Animals were surfacing together. Possible avoidance behāvior observed.

Thursday, December 30, 2010 Sighting \# 17
Initial Sighting on Track
Time: WP\#, n/a
L at:
Long:
V ertical A ngle: _2 Horizontal Bearing in Degrees: 90
---------- Síghting Cue: Body
On/Off Effort: OFF Track Line: OFF____-__ B eaufort Sea State: \qquad Observer: \qquad Observer Side: \qquad
Actual Time and Position of Sighting
Time: 14:27 WP\#. 118
L at: 30.272449
Long: -80.284592
Species: Tursiops truncatus Numbers (Low/High/Best): 5/6/6
Features used in Species ID: Short, stubby rostrum, relatively broad flukes, gray with darker gray cape, distinct crease at base of melon
Representative images used for Species ID: $6201,6205,6206,6210,6218$
Photographer: PBN__ Frame Numbers: 6192-6248---_ Spacer: 6249
Calculated Distance from Track Line: n/a

Final Time and Position of Sighting

Time: _14:28_ W P\#, 119__ Lat: 30.270557___ Long: -80.292085
C alculated Distance Traveled: 0.8 km

Behavior and Additional Comments

Off effort sighting made while investigating another cue, so no initial sighting point was taken
\qquad

Thursday, December 30, 2010 Sighting \# 18

Initial Sighting on Track

Time: $14: 42$ W P\#, 123 Lat: $30.299429 \quad$ Long: -79.914961
V ertical A Angle: _1_-_ Horizontal Bearing in Degrees: 90
On/Off Effort: _On Beack Track Line: 6

Actual Time and Position of Sighting
Time: _14:43_ WP\#, _124__ Lat: 30.302666__ Long: _-79.920360
Species: Megaptera novaeangliae Numbers (Low/High/Best): $1 / 1 / \overline{1}$
Features used in Species ID: long, white flippers, broad, scalloped flukes, long body approx.
$10-12 \mathrm{~m}$)
Representative images used for Species ID: $6252,6256,62600,6261$

Calculated Distance from Track Line: 0.6 km

Final Time and Position of Sighting

Time: _14:55_ W P\#: 125 Lat: 30.316501 ___ Long: -79.921440
Calculated Distance T raveled: 1.5 km

Behavior and Additional Comments

Initially observed motionless at the surface. The animals then descended slightly and remained approx. 10 m bēow the surface, motionless, for the remainder of the sighting.

Thursday, December 30, 2010 Sighting \# 19

Initial Sighting on Track

Time: 15:01_W P\#, _127 Lat: 30.301027 Long: -79.847014 V ertical A ngle: _3_ Horizontal Bearing in Degrees: $90 \quad$ Sighting Cue: Body On/Off Effort: _On Track Line: 6 Observer: PBN Observer Side: \qquad
Actual Time and Position of Sighting
Time: _15:04_ W P\#: _128
Species: Balaenoptera acutorostrata
Features used in Species ID: black/dark gray sleek whale with white flipper stripes
Representative images used for Species ID: $6279-6285$
Photographer: PBN_Frame Numbers: 6272-6285
Long: -79.854173
Numbers (Low/High/Best): 2 2/2 2

Calculated Distance from Track Line: 0.8 km

Final Time and Position of Sighting

Time: 15:07_ WP\#, 129_ Lat: 30.301978___ Long: -79.852978
C alculated D istance Traveled: 0.4 km

Behavior and Additional Comments

Animals exhibited very little forward motion with few surfacings. Animals appear to have a lighter and a darker region to the body

Thursday, December 30, 2010 Sighting \# 20

Initial Sighting on Track

Time: 10:30 W P\#, 136_ Lat: 30.233521 Long: _-80.462840
V ertical A Angle: _ $3 \quad$ Horizontal Bearing in Degrees: 120 On/Off Effort: ${ }^{-1}$ On Observer: _-_ $\overline{\mathrm{B}} \overline{\mathrm{N}}-\mathrm{O}$

Actual Time and Position of Sighting
Time: _10:36_ W P\#, _137_ Lat: 30.233559_ Long: _-80.469845
Species: U-Unidentified Delphinid $\quad-\quad$ Numbers (Low/High/Best):
Features used in Species ID: n/a
\bar{R} epresentative images used for Species ID: n / a
Photographer: $\mathrm{n} / \mathrm{a} \quad$ Frame Numbers: n / a
Calculated Distance from Track Line: n/a

Final Time and Position of Sighting

Time: _n/a WP\#, n/a__ Lat: n/a
Long: n/a
Calculated Distance Traveled: n/a

Behavior and Additional Comments

Initial sighting of 4-5 animals tightly grouped were never relocated for photo identification. Position is an estimation of location.

Saturday, J anuary 15, 2011 Sighting \# 1
Initial Sighting on Track
Time: _12:24_W W\#. 8 L__ Lat: 30.499066__ Long: _-80.247405 V erticāl Āngle: _1 Horizontal Bearing in Degrees: $90-1$ O n/Off Effort: __Off Track Line: ___ Beaufort Sea State: ___ Observer: _WRS (pilot) Observer Side: _-_ Right

Actual Time and Position of Sighting

Time: 12:27 WP\#. 9
Lat:
$30.499651 \quad$ Long: _-80.242933
Species: Iursiops truncatus
Features used in Species ID: Short beak, light colored peduncle, relatively broad flukes
Representative images used for Species ID: 47566-4759
Photographer: _RCH Frame Numbers:
Calculated Distance from Track Line: N/A
Final Time and Position of Sighting
 Calculated Distance T raveled:

N/A \qquad

Behavior and Additional Comments

Spotted by pilot therefore considered an off-effort sighting. Individuals in a couple of smaller groups.

Sunday, J anuary 16, 2011 Sighting \# 1

Initial Sighting on Track

Time: _9:17_ W P\#, _10__ Lat: 29.966904__ Long: _-80.341261
\checkmark ertical Angle: $1 \quad$ Horizontal Bearing in Degrees: $90 \quad$ Sighting Cue: Body
On/Off Effort: _on___ Track Line: 1 __________
Observer:

RCH

 Observer Side: \qquadActual Time and Position of Sighting
Time: _9:20_W W\#: 11
Species: Tursiops truncatus
L at: 29.973825
Long: - 80.340072

Features used in Species ID: Overall gray coloration, robust body, short heavy rostrum with visible crease at melon
Representative images used for Species ID: $4722,4779,4785,4786,4790,4804$

Calculated Distance from Track Line: 0.8 km

Final Time and Position of Sighting

Time: $9: 24$ W P\#, 12 Lat: 29.974696___ Long: -80. 340174
Calculated Distance T raveled: 0.1 km

Behavior and Additional Comments

Two groups of ten animals, Fast travel at the surface

Sunday, J anuary 16, 2011 Sighting \# 2

Initial Sighting on Track

Time: 10:01_ WP\#, 21__ Lat: 30.030741__ Long: _-80.440041
V ertical Angle: _2 Horizontal Bearing in Degrees: 120
O n/Off Effort: - On Track Line: $\underline{2}^{2} \quad$ B eaufort Sea State: _ 3

Actual Time and Position of Sighting
Time: _10:02_ WP\#. 22
L at: 30.030912
Long: - 80.433461
Species: Stenella frontalis Numbers (Low/High/Best): $6 / 12 / 10$
Features used in Species ID: Spotting pattern visible, white tipped rostrum, dark and light banding pattern on dorsal surface
Representative images used for Species ID: $4 \overline{4} 2 \overline{2} 3, \overline{4} 82 \overline{4}, 483 \overline{3}, \overline{4} 8 \overline{4} \overline{0}, 4842,4 \overline{4} 4 \overline{4}, 4847$

C alculated Distance from Track Line: 0.6 km

Final Time and Position of Sighting

Time: _10:06_ W P\#, 23 Lat: 30.027907__ Long: -80.432039
Calculated Distance T raveled: 0.4 km

Behavior and Additional Comments

2 small groups with singletons

Monday, J anuary 31, 2011 Sighting \# 1

Initial Sighting on Track

Time: _9:54_W P\#, _8__ Lat: 30.567629__ Long: _-80.348759
\checkmark ertical A Angle: _2 On/Off Effort: _On Track Line: 10 Observer: __ $\overline{\mathrm{P}} \overline{\mathrm{B}} \overline{\mathrm{N}}-\mathrm{C-}$ O bserver Side: _-_Right

Actual Time and Position of Sighting
Time: _9:57_ W P\#, 9
Lat: 30.560639
L ong: -80.351907
Species: Tursiops truncatus
Features used in Species ID: wide fluke, white peduncle, overall gray color, darker gray cape
Representative images used for Species ID: $5077,5082,5088$
Photographer: PBN_Frame Numbers: 5076-5089
Spacer: 5090
Calculated Distance from Track Line: 0.9 km
Final Time and Position of Sighting

C alculated Distance Traveled: 0.5 km

Behavior and Additional Comments

Final position is an assumed location as they were not relocated after initial position and photographs.

Monday, J anuary 31, 2011 Sighting \# 2

Initial Sighting on Track

Time: 10:14_ W P\#, 17__ Lat: $30.567266 \ldots$ Long: _-79.908492

O n/Off Effort: _On__ Track Line: 10
O bserver: ___ $\bar{P} \bar{B} \bar{N}-\quad$ O
Actual Time and Position of Sighting
Time: 10:16 WP\#, 18 Lat: 30.568143 Long: -79.910576
Species: Grampus griseus
Features used in Species ID: dēfined mediā cleatt on bulbous forehead, "suspender-like"
coloration pattern, extensive scarring
Representative images used for Species ID: $5059,5101,5105,5110$
Photographer: PBN__Frame Numbers: 5091-5112
Spacer: 5113
Calculated Distance from Track Line: 0.2 km

Final Time and Position of Sighting

Time: _10:17_ W P\#, 19__ Lat: 30.568772__ Long: -79.913813
Calculated Distance T raveled: 0.3 km

Behavior and Additional Comments

\qquad

Monday, J anuary 31, 2011 Sighting \# 3

Initial Sighting on Track

Time: _10:36_ W P\#, _23__ Lat: $30.498895 \quad$ Long: _-80.256737

 Observer: $\overline{\mathrm{P}} \overline{\mathrm{B}} \overline{\mathrm{N}}$ Observer Side: \qquad
Actual Time and Position of Sighting
Time: _10:38_ W P\#, 24
L at: 30.498119
Long: - 80.251884
Species: Stenella frontalis Numbers (Low/High/Best): $40 / 60 / 50$
Features used in Species ID: light and dark banding pattern, visible spotting pattern, white tipped rostrum
Representative images used for Species ID: $5129,5137,5144,5152$
Photographer: PBN_Frame Numbers: $5114-5161$
Calculated Distance from Track Line: 0.6 km

Final Time and Position of Sighting

Time: _10:41_ WP\#, 25 Lat: 30.491346___ Long: -80.251859
Calculated Distance T raveled: 0.8 km

Behavior and Additional Comments

large spread out group in a very loose aggregations. Lots of surface activity exhibited.

Monday, J anuary 31, 2011 Sighting \# 4

Initial Sighting on Track

Time: $10: 43$ W P\#, $27 \quad$ Lat: 30.499218 Long: _-80.301879
\checkmark ertical A ngle: _1 Horizontal Bearing in Degrees: 90

Observer: __ $\bar{P} \bar{B} \bar{N}--\quad$ O

Actual Time and Position of Sighting

Time: _10:44_ WP\#, 28 Lat: 30.499485 Long: -80.305212
Species: Tursiops truncatus
Features used in Species ID: overall gray color, broad flukes, short, stubby rostrum
Representative images used for Species ID: $5163,5164,5165$
Photographer: PBN__Frame Numbers: 5163-5170
Spacer: 5171
Calculated Distance from Track Line: 0.3 km

Final Time and Position of Sighting

Time: _10:44_ W P\#: 29__ Lat: 30.502070__ Long: -80.305611
Calculated Distance T raveled: 0.3 km

Behavior and Additional Comments

Single animal observed with frequent diving behavior.

Monday, J anuary 31, 2011 Sighting \# 5

Initial Sighting on Track

Time: _11:10_ W P\#, $38 \quad$ Lat: $30.434257 \quad$ Long: _-80.252044 V ertical Angle: 2 Horizontal B earing in Degrees On/Off Effort On Track Line 8 Beaufort Sea State: 3 Observer: HJ F Observer Side \qquad
Actual Time and Position of Sighting
Time: _11:12_ WP\#, 39
L at: 30.431978
Long: - 80.248953
Species: Stenella frontalis Numbers (L ow/High/Best): 30/50/40
F eatures used in Species ID: light and dark banding pattern, long, white-tipped rostrum, visible spotting pattern
Representative images used for Species ID: $5180,5192,5200,5201,5214$
Photographer: PBN_Frame Numbers: $5172-520-1$
Calculated Distance from Track Line: 0.4 km

Final Time and Position of Sighting

Time: _11:13_ WP\#, 40___ Lat: 30.431989___ Long: _-80.2566418
C alculated D istance Traveled: 0.7 km

Behavior and Additional Comments

Very large group with several distinct subgroups. (Possible that this is the same group of Sighting 3, as the Longitudes are very similar). If so, the group had moved south between sightings.

Monday, J anuary 31, 2011 Sighting \#6

Initial Sighting on Track

Time: $11: 56$ W P\#, $57 \quad$ Lat: $30.364492 \quad$ Long: - 80.664567
V ertical A Angle: _1_ Horizontal Bearing in Degrees: 90

Actual Time and Position of Sighting
Time: _12:00 WP\#, 58 Lat: 30.361811 Long: -80.661452
Species: Stenella frontalis Numbers (Low/High/Best): 5
Features used in Species ID: spotting_pattern, Iong, white-tipped beak, alternating light and dark banding pattern
Representative images used for Species ID: $5228,5241,5245$
Photographer: PBN_ Frame Numbers: 5226
Spacer: 5255
Calculated Distance from Track Line: 0.4 km

Final Time and Position of Sighting

Time: _12:02_ W P\#: 59
Calculated Distance T raveled: 0.5 km

Behavior and Additional Comments

Group was difficult to relocate as the animals spent very little time at the water's surface.

Monday, J anuary 31, 2011 Sighting \# 7

Initial Sighting on Track

Time: _12:58_ WP\#, _81__ Lat: 30.234082 Long: _-80.585714 V ertical Angle: _3 _-_ Horizontal Bearing in Degrees: $90 \quad$ Sighting Cue: Body On/Off Effort: _on___ Track Line: $\underline{5}^{2}$ Observer: PBN Observer Side: \qquad
Actual Time and Position of Sighting
Time: 13:00 WP\#, 82
L at: 30.234102
Long: - 80.573657
Species: Stenella frontalis Numbers (Low/High/Best): $20 / 30 / 25$
Features used in Species ID: light and dark banding pattern, spotting pattern, long rostrum
Representative images used for Species ID: $5274,5276,5286,5288$

Calculated Distance from Track Line: 0.7 km

Final Time and Position of Sighting

Time: _13:01_ WP\#. $83 \quad$ Lat: 30.234955
C alculated Distance Traveled: 0.1 km

Behavior and Additional Comments

Two distinct subgroups of approximately eight and seventeen individuals

Monday, J anuary 31, 2011 Sighting \#8

Initial Sighting on Track

Time: 15:04_W W\#, 103 Lat: 30.166902_ Long: -80.064561
V ertical A Angle: _2 Horizontal Bearing in Degrees: 90

Actual Time and Position of Sighting
Time: _15:06_ W P\#. 104
Species: Tursiops truncatus
L at: 30.171833
Long: - 80.068726
Features used in Species ID: short, stubby rostrum, over gray coloration, broad flukes
Representative images used for Species ID: $5292 \overline{2}, 5299,5300$
Photographer: PBN__ Frame Numbers: 5290-5302
Spacer: 5303
Calculated Distance from Track Line: 0.7 km

Final Time and Position of Sighting

Time: _15:07_ W P\#: 105__ Lat: 30.170388__ Long: -80.074079
Calculated Distance T raveled: 0.5 km

Behavior and Additional Comments

Single individual who was very active at the surface.

Monday, J anuary 31, 2011 Sighting \# 9

Initial Sighting on Track

Time: _15:38_ W P\#, _120__ L at: 30.099737__ L ong: _-80.390697
V ertical A ngle: _3___ Horizontal Bearing in Degrees: _120__ Sighting Cue: Body On/Off Effort: _On___ Track Line: $\mathbf{3}^{\ldots}$ Observer: PBN Observer Side: \qquad
Actual Time and Position of Sighting
Time: _15:40_ WP\#. 121
Species: Tursiops truncatus
L at: 30.106392
_- Long:
-80.384853 Numbers (Low/High/Best): 3 3/4/4
Features used in Species ID: short, stubby rostrum, slate gray, defined crease between rostrum and melon
Representative images used for Species ID: $5317,5321,5324$
Photographer: PBN_Frame Numbers: $5306-5325$
Calculated Distance from Track Line: 0.8 km

Final Time and Position of Sighting

Time: $15: 41$ W P\#, 122 Lat: 30.105163 Long: _ 80.383823
Calculated D istance Traveled: 0.1 km

Behavior and Additional Comments

group was active at the surface and grouped very tightly together. Mom/calf pairs observed.
\qquad

Monday, J anuary 31, 2011 Sighting \# 10

Initial Sighting on Track

Time: $15: 44$ W P\#, 124__ Lat: 30.099349 Long: - 80.490222
V ertical A ngle: _1_ Horizontal Bearing in Degrees: _110-_ Sighting Cue: Body
On/Off Effort: _On Track Line: $\mathbf{3}^{3}$

Actual Time and Position of Sighting
Time: _15:47_ WP\#, 125__ Lat: 30.094753_ Long: _-80.489454
Species: Stenella frontalis $-\quad$ Numbers (Low/High/Best): 1 -
Features used in Species ID: spotting pattern, alternating light and dark bands, long, white tipped rostrum
Representative images used for Species ID: 5344,5345
Photographer: PBN__ Frame Numbers: $5327-53 \overline{6}$
Spacer: 5365
Calculated Distance from Track Line: 0.5 km

Final Time and Position of Sighting

Time: _15:48_ W P\#: 126 L at: 30.097811___ Long: -80.484765
C alculated D istance Traveled: 0.6 km

Behavior and Additional Comments

A tightly packed group traveling together.

\qquad

Monday, J anuary 31, 2011 Sighting \# 11

Initial Sighting on Track

Time: _15:52_ W P\#, _128__ Lat: 30.099168_ Long: _-80.644438
V ertical A Angle: _2_-_ Horizontal Bearing in Degrees: _90-_ Sighting Cue: Body On/Off Effort: __On__ Track Line: $\underline{3}^{2}$ Observer: P $\bar{B} \bar{N}$ Observer Side: \qquad
Actual Time and Position of Sighting
Time: _15:56_ W P\#, _129
L at: 30.105711
Long: - 80.638341
Species: Stenella frontalis Numbers (Low/High/Best): $24 / 28 / 2 \overline{6}$
F eatures used in Species ID: white tipped beak, spotting, light and dark banding, long rostrum
Representative images used for Species ID: 5368,5387
Photographer: PBN_ Frame Numbers: $5366-5398$
Spacer: 5399
Calculated Distance from Track Line: 1.0 km

Final Time and Position of Sighting

Time: _n/a_ WP\#: n/a__ Lat: n/a
Long: nla
Calculated Distance T raveled: n/a

Behavior and Additional Comments

Large group evenly spread out over several hundred meters. Mom calf pairs were observed.
\qquad

Monday, J anuary 31, 2011 Sighting \# 12

Initial Sighting on Track

Time: 16:03 W P\#, 134_ Lat: 30.031981__ Long: _-80.644486
V ertical Â ngle: _1_ Horizontal Bearing in Degrees: 90
O n/Off Effort: _on_ Beaufort Sea State: ___

Actual Time and Position of Sighting
Time: _16:04_ W P\#, 135_ Lat: 30.030698__ Long: _-80.643081
Species: Stenella frontalis
Features used in Species ID: visible spotting pattern, long, white-tipped rostrum
Representative images used for Species ID: $54030,5404,5405$
Photographer: PBN__ Frame Numbers: 5400-5416 Spacer: 5417
Calculated Distance from Track Line: 0.2 km

Final Time and Position of Sighting

Time: _16:08_ W P\#: 136__ Lat: 30.034568__ L ong: -80.637422
Calculated Distance T raveled: 0.7 km

Behavior and Additional Comments

Three individuals spread out over a large distance. Though animals were not traveling together Tots of surface activity and diving were observed.

Monday, J anuary 31, 2011 Sighting \# 13

Initial Sighting on Track

Time: 16:09 W P\#, 138 L at: 30.031754_ L ong: -80.599744
V ertical Angle: $1 \ldots$ Horizontal Bearing in Degrees: $90 \quad$ Sighting Cue: Body On/Off Effort: __On__ Track Line: 2^{2} Observer: PBN Observer Side: \qquad
Actual Time and Position of Sighting
Time: _16:11_ W P\#, _139
L at: 30.027308
Long: -80,600764
Species: Stenella frontalis Numbers (Low/High/Best): $30 / 45 / 35$
Features used in Species ID: spotting pattern,light and dark banding pattern, white tipped rostrum
Representative images used for Species ID: $5427,5432,5452,5454$
Photographer: PBN_Frame Numbers: $5418-5459$
Calculated Distance from Track Line: 0.5 km

Final Time and Position of Sighting

C alculated Distance Traveled: 0.6 km

Behavior and Additional Comments

Two distinct subgroups, one with at least 10 individuals and the second with at least 20.
\qquad

Monday, J anuary 31, 2011 Sighting \# 14

Initial Sighting on Track

Time: 16:25 W P\#, 150_ Lat: $30.032479 \quad$ Long: _-80.097111
V ertical A ngle: _2___ Horizontal Bearing in Degrees: _90___ Sighting Cue: Body
O n/Off Effort:

Actual Time and Position of Sighting
Time: _16:26_ W P\#. 151
Species: Tursiops truncatus
L at: 30.039486
Long: -80.103293
Seates use in Speies D:
Features used in Species ID: defined creas eetween melon and rostrum, short, stubby
rostrum, slate gray coloration
Representative images used for Species ID: 5471,5472
Photographer: PBN__Frame Numbers: 5
Spacer: 5496
Calculated Distance from Track Line: 1.0 km

Final Time and Position of Sighting

Time: _16:28_ W P\#, 152__ Lat: 30.043882__ Long: -80.105365
Calculated Distance T raveled: 0.5 km

Behavior and Additional Comments

At least two small subgroups observed exhibiting fast travel with lots of aerial activity. The groups spread out over the course of the sighting.

Monday, J anuary 31, 2011 Sighting \# 15

Initial Sighting on Track

Time: _16:31_ WP\#, _154__ Lat: 30.032641 _ Long: _-80.007759 V ertical A ngle: _2___ Horizontal Bearing in Degrees: _70__ Sighting Cue: Body O n/Off Effort: _on___ Track Line: ${ }^{2}$ Observer: PBN Observer Side: \qquad
Actual Time and Position of Sighting
Time: _16:32_ W P\#. _155
Species: Tursiops truncatus
L at: 30.026680
Long: - 80.011872
Features used in Species ID: overall gray coloring, short rostrum with a defined crease between the melon
Representative images used for Species ID: $5523,5524,5527$
Photographer: PBN_Frame Numbers: $5497-528$
Calculated Distance from Track Line: 0.7 km

Final Time and Position of Sighting

Calculated D istance Traveled: $\underline{0.1} \mathrm{~km}$

Behavior and Additional Comments

Sighting consisted of several widely-spaced singletons each several hundred meters apart.

Monday, J anuary 31, 2011 Sighting \# 16

Initial Sighting on Track

Time: 17:09_WP\#, 165__ Lat: 29.964650__ Long: _-80.625364
\checkmark ertical Angle: $2 \ldots-\quad$ Horizontal Bearing in Degrees: $90-\quad$ Sighting Cue: Body
On/Off Effort: _on

Actual Time and Position of Sighting
Time: _17:12_ W P\#, _166__ Lat: 29.963541__ Long: _-80.621873
Species: Tursiops truncatus Numbers (Low/High/Best): 6/8/5
F eatures used in Species ID: shorit, stubuy rostrum, grey coloration with darker grey cape
Representative images used for Species ID: 5562

Calculated Distance from Track Line: 0.4 km

Final Time and Position of Sighting

Time: _17:14_ W P\#, 167__ Lat: 29.961777__ Long: -80.618514
C alculated D istance Traveled: 0.4 km

Behavior and Additional Comments

Individuals exhibited a lot of underwater travel, but displayed lots of activity while at the surface.
\qquad

Tuesday, February 22, 2011 Sighting \# 1

Initial Sighting on Track

Time: 14:35 W P\#, 23
L at: 30.031106
Long: - 80.473133
V ertical A ngle:
2 Horizontal Bearing in Degree

S: _90 Sighting Cue: Body On/Off Effort:
On Track Line: 2 \qquad B eaufort Sea State: 2 Observer:

HJ F Observer Side: \qquad
Actual Time and Position of Sighting
Time: 14:40_ WP\#, 24
L at: 30.021563
Long: - 80.461713
Species: Stenella frontalis Numbers (Low/High/Best): $20 / 30 / 25$
Features used in Species ID: alternating light and dark banding, spotted pattern, white-tipped rostrum
R-epresentative images used for Species ID: 5605,5606
Photographer: REH__ Frame Numbers: 5598-5613
Spacer: 5612
Calculated Distance from Track Line: 1.5 km

Final Time and Position of Sighting

Time: _14:42_ WP\#, 25
L at: 30.022458
Long: - 80.462601
C alculated D istance Traveled: 0.1 km

Behavior and Additional Comments

Two distinct subgroups, each with approximately 10 individuals. One group was very tightly bunched, while the second was widely dispersed.

Tuesday, February 22, 2011 Sighting \# 2

Initial Sighting on Track

Time: 14:45 WP\#. 27 Lat: 30.032759 Long: -80.502807
V ertical A ngle: _2_-_ Horizontal Bearing in Degrees: 140
On/Off Effort: -on_ Track Line: ${ }^{2}$

Actual Time and Position of Sighting
Time: _14:51_ WP\#. 28
L at: 30.025984
L ong: -80.499021
Species: Stenella frontalis
F eatures used in Species ID: visible spotting pattern, long, white-tipped rostrum, āIternating light and dark banding
Representative images used for Species ID: $5636-5639$
Photographer: REH__ Frame Numbers: 5613-5639
Spacer: 5640
Calculated Distance from Track Line: 0.8 km

Final Time and Position of Sighting

Time: _14:55_ W P\#: 29__ Lat: 30.031445__ Long: -80.476643
C alculated Distance T raveled: 2.2 km

Behavior and Additional Comments

Final point is assumed, as the animals were not relocated for a final position. Upon original sighting, animals were porpoising with lots of surface activity- Ās there were several individuals separated by very large distances, group size may be underestimated.

Tuesday, February 22, 2011 Sighting \# 3
Initial Sighting on Track
Time: 14:59 WP\#. 32 Lat: 30.030825 Long: - 80.584125 V ertical Ā On/Off Effort: __O_ Track Line: ___ Beaufort Sea State: ___ Observer: REH Observer Side:- \quad Right

Actual Time and Position of Sighting

Time: _15:06_ W P\#, 33__ Lat: _30.031494__ Long: _-80.5688841
Species: Iursiops truncatus
Features used in Species ID: slate gray coloration, broad flukes, and large dorsal fin
Representative images used for Species ID: $5648-5650$
Photographer: _REH_Frame Numbers: $5641-5663$
Calculated Distance from Track Line: _1.5 km
Final Time and Position of Sighting
Time: _15:11_ W P\#, 34___ L at: 30.040187__ L ong: _-80.570312
C alculated Distance T raveled: 1.0 km
Behavior and Additional Comments
Animals were widely dispersed and incredibly difficult to relocate and photograph.

Saturday, February 26, 2011 Sighting \# 1

Initial Sighting on Track

Time: _14:19_ W P\#, _16__ Lat: $30.231844 \ldots$ Long: - 80.577608 \checkmark ertical A ngle: $1 \quad$ Horizontal Bearing in Degrees: 95 Sighting Cue: Body On/Off Effort: _on___ Track Line: $\underline{5}^{2}$

Actual Time and Position of Sighting
Time: _14:21_W P\#: 17
L at: 30.235706
L ong: -80.573331
Species: Stenella frontalis Numbers (Low/High/Best): 4/4/4
Features used in Species ID: Long and white tipped beak, alternating light and dark "banding" pattern dorsally
Representative images used for Species ID: 5665,5666
Photographer: REH__ Frame Numbers: 5658-5683
Spacer: 5684
Calculated Distance from Track Line: 0.6 km

Final Time and Position of Sighting

Calculated Distance Traveled: $\underline{0.2} \mathrm{~km}$

Behavior and Additional Comments

A pair and two singles. Initially slow travel which changed to fast travel after a few minutes of observation.

Saturday, February 26, 2011 Sighting \# 2

Initial Sighting on Track

Time: _14:27_WP\#, 22__ Lat: 30.235609 Long: - 80.631573
\checkmark ertical Angle: _2 Horizontal Bearing in Degrees: $100-1$
On/Off Effort: _on

Actual Time and Position of Sighting

Time: _14:29_ WP\#, 23
L at: 30.239116
Long: - 80.631891
Species: Tursiops truncatus
Features used in Species ID: B̄Tunt rostrum, broad flukes, white caudal peduncle, robust
dolphins
Representative images used for Species ID: $5693,5695,5699,5700$

Calculated Distance from Track Line: 0.4 km

Final Time and Position of Sighting

Time: _14:33_ WP\#, $24 \ldots$ L at: 30.238482 ____ Long: -80.632379
C alculated Distance T raveled: $\leq 0.1 \mathrm{~km}$

Behavior and Additional Comments

Spread out group. One mother/calf pair and four to five singles.

Saturday, February 26, 2011 Sighting \# 3

Initial Sighting on Track

Time: _14:39_ WP\#, _29___ Lat: $30.300499 \ldots$ Long: _-80.651036 \checkmark ertical A ngle: _2 _-_ Horizontal B earing in Degrees: $100 \quad$ Sighting Cue: Body On/Off Effort: _on___ Track Line: $\underline{6}^{\ldots}$ Observer: PBN Observer Side: \qquad
Actual Time and Position of Sighting
Time: _14:41_ W P\#, 30
L at: 30.304738
Long: - 80.648357
Species: Stenella frontalis Numbers (Low/High/Best): 5/6/5
Features used in Species ID: White tipped beak,_-alternating light and dark dorsal"banding pattern
Representative images used for Species ID: $5736,5737,5738$
Photographer: REH__ Frame Numbers: $5704-5539$
Calculated Distance from Track Line: 0.5 km

Final Time and Position of Sighting

Time: _14:49_ WP\#, 31__ Lat: 30.308544____ Long: _-80.648437
Calculated Distance T raveled: 0.4 km

Behavior and Additional Comments

Two pairs and one to two singles. Long dive times, slow travel at surface.

Saturday, February 26, 2011 Sighting \#4

Initial Sighting on Track

Time: _15:00_ W P\#, 38_ Lat: 30.301506__ Long: _-80.305989
\checkmark ertical Angle: _2 Horizontal Bearing in Degrees: 90 On/Off Effort: _on Track Line: $\underline{6}$ Observer: ___ $\bar{P} \bar{B} \bar{N}-\quad$ O

Actual Time and Position of Sighting
Time: _15:05_ W P\#, 39__ Lat: 30.311289__ Long: _-80.305520
Species: Tursiops truncatus Numbers (Low/High/Best): $2 / 2 / 2$
F eatures used in Species ID: Sh hort and stubby rostrum, defined crease at base of melon, overall gray coloration, relatively broad flukes
Representative images used for Species ID: $5749,5750,5751$
Photographer: REH__ Frame Numbers: $5741-5752$
Spacer: 5753
Calculated Distance from Track Line: 1.1 km

Final Time and Position of Sighting

Time: _15:10_ W P\#: 40__ L at: 30.308270__ L ong: -80.306901
Calculated Distance T raveled: 0.4 km

Behavior and Additional Comments

One mom/calf pair. Overall "skittish" behavior and long dive times - potential avoidance? Count as a take.

Saturday, February 26, 2011 Sighting \# 5

Initial Sighting on Track

Time: _15:16_ W P\#, _45 Lat: $30.301337 \quad$ Long: _-80.064286 V ertical Angle: _1_-_ Horizontal B earing in Degrees: $90 \quad$ Sighting Cue: Body O n/Off Effort: __On__ Track Line: $\underline{6}$ Observer: \qquad Observer Side: \qquad
Actual Time and Position of Sighting
Time: _15:17_ W P\#, 46
Species: Tursiops truncatus
L at: 30.301623
Long: - 80.067897
Numbers (Low/High/Best): 8 /10/9
Features used in Species ID: Broad flukes, white caudal peduncle, gray with darker gray cape, blunt rostrum
Representative images used for Species ID: $5756,5767,5770$
Photographer: REH_ Frame Numbers: $5754-5772-1$
Calculated Distance from Track Line: 0.3 km

Final Time and Position of Sighting

C alculated Distance Traveled: 0.5 km

Behavior and Additional Comments

Fairly tight group, slow travel.

Saturday, February 26, 2011 Sighting \#6

Initial Sighting on Track

Time: 15:53 WP\#, 56__ Lat: 30.365664__ Long: -80.446416
V ertical A ngle: _2 Horizontal Bearing in Degrees: 100
O n/Off Effort: _On__ Beaufort Sea State: ___

Actual Time and Position of Sighting
Time: _15:55 W P\#, $57 \quad$ Lat: $30.358155 \ldots$ Long: _-80.447163
Species: Tursiops truncatus
Lat. 30.358155
Features used in Species ID: Gray color with darker gray dorsal cape, short and stubby rostrum broad flukes
Representative images used for Species ID: $5755,5780,5781$
Photographer: REH__ Frame Numbers: 5755
Spacer: 5785
Calculated Distance from Track Line: 0.8 km

Final Time and Position of Sighting

Time: _15:57_ W P\#, 58__ Lat: 30.364953___ Long: -80.440254
C alculated Distance T raveled: 1.0 km

Behavior and Additional Comments

Tight group and a single approximately 200-300 apart from the group.

Saturday, February 26, 2011 Sighting \# 7
Initial Sighting on Track
Time: 16:14_ WP\#, 47 L at: 30.434747 Long: - 80.457390 V ertical A ngle: __2_-_ Horizontal Bearing in Degrees: _go 90 On/Off Effort: __O_ Track Line: ___ Beaufort Sea State: ___ Observer: $\overline{\mathrm{R} E \mathrm{H}}$ O bserver Side:-

Actual Time and Position of Sighting

Time: _16:16_ W P\#. 67
Lat:
30.430237

Long: - 80.458247
Species: _Stenella frontalis
F eatures used in Species ID: Alternating light and dark "banding pattern dorsally, white-tipped beak, white flank blaze terminating mid dorsal fin
Representative images used for Species ID: 5786
Photographer: _ REH Frame Numbers: - 5786 to 5814
Calculated Distance from Track Line: 0.5 km
Final Time and Position of Sighting
Time: 16:19 WP\#. 68 Lat:
at: 30.428967
L ong: _-80.456137
Calculated Distance T raveled: $\quad 0.2 \mathrm{~km}$
Behavior and Additional Comments
Fast travel, medium group cohesiveness

Sunday, February 27, 2011 Sighting \# 1

Initial Sighting on Track

Time: _13:28_ WP\#. _6__ Lat: 29.966365__ Long: -80.532676 \checkmark ertical A ngle: $1 \quad$ Horizontal Bearing in Degrees: $90 \quad$ Sighting Cue: Body On/Off Effort: __On__ Track Line: 1 Observer: \qquad Observer Side: \qquad
Actual Time and Position of Sighting
Time: _13:30_ W P\#, 7
L at: 29.967210
Long: -80.530466
Species: Tursiops truncatus Numbers (Low/High/Best): $1 / 3 / 3$
Features used in Species ID: Defined crease between rostrum and melon, overall gray coloration, short rostrum, broad flukes
Representative images used for Species ID: $5823,5829,5830$
Photographer: H J F___ Frame Numbers: 5816 -5835 Spacer: 5836
Calculated Distance from Track Line: 0.2 km

Final Time and Position of Sighting

C al culated D ístance T raveled:
0.3 km

Behavior and Additional Comments

Deep diving and elusive

Sunday, February 27, 2011 Sighting \# 2

Initial Sighting on Track

Time: $14: 17$ W P\#, 25 Lat: 30.031088 Long: _-80.479784
V ertical A ngle: _2 Horizontal Bearing in Degrees: $90 \quad$ Sighting Cue: Body On/Off Effort: _On Track Line: $\underline{2}^{2}$
Observer: ____ $\bar{H} \bar{F}$ F-_-_ Observer Side: __Right
Actual Time and Position of Sighting
Time: _14:18 W P\#, 26
L at: 30.0332130
Long: -80.4768150
Species: Tursiops truncatus

- Numbers (Low/High/Best): 5/7/6

Features used in Species ID: S̄hort robust, broad flukes,overall gray coloration, robust body
Representative images used for Species ID: $5860,5862,5863,586 \overline{5}$
Photographer: HJ F__ Frame Numbers: 5837-5871
Calculated Distance from Track Line: 0.4 km

Final Time and Position of Sighting

Time: _14:25_ W P\#: 27__ Lat: 30.024912__ Long: -80.475251
C alculated D istance Traveled: 0.9 km

Behavior and Additional Comments

Milling at surface in belly up postures, calves present, avoidance behavior observed

Sunday, February 27, 2011 Sighting \# 3

Initial Sighting on Track

Time: _14:26_ WP\#, 29___ Lat: 30.031331___ Long: _-80.523357
V ertical Angle: _1___ Horizontal B earing in Degrees: _110___ Sighting Cue: Body
 Observer: \qquad Observer Side: \qquad
Actual Time and Position of Sighting
Time: _14:27_ W P\#, 30
L at: 30.037012
Long: - 80.525749
Species: Stenella frontalis Numbers (Low/High/Best): 6/8/7
Features used in Species ID: Alternating dark and light bands on dorsal surface, Iong rostrum with white tip, visible spotting on some animals
Representative images used for Species ID: 5876,5877
Photographer: HJF__ Frame Numbers: 5
Spacer: 5884
Calculated Distance from Track Line: 0.7 km

Final Time and Position of Sighting

C alculated Distance Traveled: 0.7 km

Behavior and Additional Comments

Many animals swimming in belly up posture

Sunday, February 27, 2011 Sighting \#4

Initial Sighting on Track

Time: $14: 29$ W P\#, 29__ Lat: $30.032524 \ldots$ Long: _-80.546033
\checkmark ertical A ngle: _2 Horizontal Bearing in Degrees: $90-\quad$ Sighting Cue: Body
On/Off Effort: Of_ Track Line: $\underline{2}^{2}$
O bserver: ___ W̄R
Actual Time and Position of Sighting
Time: _14:29_W P\#, 30
L at: 30.041570
Long: - 80.547525
Species: Tursiops truncatus
Numbers (Low/High/Best): 1 1-19/17
Features used in Species ID: S̄hort rostrum, light blaze along flank
Representative images used for Species ID: $5889,5890,5893,5901-5904$

Calculated Distance from Track Line: 1.0 km

Final Time and Position of Sighting

Time: _14:33_ W P\#, 35__ Lat: 30.040575 _o_ Long: -80.549701
Calculated Distance T raveled: 0.2 km

Behavior and Additional Comments

Two groups, some deep diving observed

Sunday, February 27, 2011 Sighting \# 5

Initial Sighting on Track

Time: _14:47_ WP\#. _43_L Lat: 30.101128 Long: _-80.502530 \checkmark ertical A ngle: _1_ Horizontal Bearing in Degrees: _45 Conighting Cue: Body On/Off Effort: _on O_-_ Track Line: ${ }^{3}$ Observer:

HJ F Observer Side: __-_Right

Actual Time and Position of Sighting

Final Time and Position of Sighting

Time: 14:49_ WP\#. 45 Lat: $30.099997 \quad$ Long: - 80.501111
Calculated Distance Traveled: 0.6 km

Behavior and Additional Comments

One tight group travelling at the surface

Sunday, February 27, 2011 Sighting \#6

Initial Sighting on Track

Time: 15:21_ WP\#, $54 \quad$ L at: $30.165374 \quad$ L ong: -79.98073
V ertical Angle: _1_ Horizontal Bearing in Degrees: 90
On/Off Effort: __On__ Track Line: $4 \ldots \ldots$

Actual Time and Position of Sighting
Time: _15:23_ WP\#, 55__ L at: 30.167562_ L ong: -79.97213

Features used in Species ID: White flippers visible sub-surface
Representative images used for Species ID: $6064,6076,6077$
Photographer: HJ F__ Frame Numbers: 6038-60
Spacer: 6089
Calculated Distance from Track Line: 0.9 km

Final Time and Position of Sighting

Time: _15:25_ W P\#, 56
Calculated Distance T raveled: 0.1 km

Behavior and Additional Comments

No visible travel, animal remained only a few meters subsurface during the sighting

Sunday, February 27, 2011 Sighting \# 7

Initial Sighting on Track

Time: _15:30_ W P\#, _58__ Lat: 30.165590_ Long: _-80.039653 V ertical Angle: _3 _-_ Horizontal Bearing in Degrees: $90 \quad$ Sighting Cue: Body
 Observer:

HJ F Observer Side: Right

Actual Time and Position of Sighting
Time: _15:31_ WP\#, 59
L at: 30.174200
Long: -80.040481
Species: Tursiops truncatusNumbers (Low/High/Best): $15 / 17 / 1 \overline{6}$
Features used in Species ID: Short rostrum, overall gray coloration, robust body
Representative images used for Species ID: $6106,6107,6111,6121,6123$

Calculated Distance from Track Line: 1.0 km

Final Time and Position of Sighting

Time: 15:32 WP\#, 60 L at: 30.172477
Calculated Distance Traveled: $\underline{0.3} \mathrm{~km}$

Behavior and Additional Comments

Animals were paired off and travelling in a single group

Sunday, February 27, 2011 Sighting \#8

Initial Sighting on Track

Time: 15:36 WP\#, 62 Lat: $30.165791 \quad$ Long: _-80.169523
\checkmark ertical Angle: $3 \quad$ Horizontal Bearing in Degrees: $120-\quad$ Sighting Cue: Body On/Off Effort: ${ }^{-1}{ }^{\text {On }}$

Actual Time and Position of Sighting

Time: 15:40 W P\#, 63
L at: 30.162715
Long: - 80.157747
Species: Tursiops truncatus
Features used in Species ID: S̄hort rostrum, gray cape, white peduncle
Representative images used for Species ID: $6133,6134,6151$
Photographer: H J $\mathrm{F} \quad$ Frame Numbers: 6126 - 6158
Spacer: 6159
Calculated Distance from Track Line: 1.2 km

Final Time and Position of Sighting

Time: _15:41_ W P\#: $64 \quad$ L at: 30.161570 _ Long: - 80.160220
Calculated Distance T raveled: 0.3 km

Behavior and Additional Comments

Fast surface travel

Sunday, February 27, 2011 Sighting \# 9

Initial Sighting on Track

Time: _15:45_ W P\#, _67__ Lat: 30.165767_ Long: _-80.293803
V ertical A ngle: _3___ Horizontal B earing in Degrees: _140__ Sighting Cue: Breach On/Off Effort: _on__ Track Line: $4 \ldots \ldots$ Observer:

HJ F Observer Side: Right

Actual Time and Position of Sighting

Time: _15:49_ W P\#, 68
L at: 30.171897
Long: - 80.287122
Species: Stenella frontalis Numbers (Low/High/Best): $22 / 30 / 35$
F eatures used in Species ID: Visible spotting, visible light and dark banding on dorsal surface, long rostrum with white tip
Representative images used for Species ID: $6170,6119,6192,6204$
Photographer: HJ F_ Frame Numbers: 6160-6231
Calculated Distance from Track Line: 1.5 km

Final Time and Position of Sighting

C alculated Distance Traveled: 0.6 km

Behavior and Additional Comments

Aerobatic, fast surface travel, one large group with several outliers

Sunday, February 27, 2011 Sighting \# 10

Initial Sighting on Track

Time: 15:50 WP\#, 70__ Lat: 30.171884__ Long: -80.308536
V ertical A Angle: _2 Horizontal Bearing in Degrees: 90
 Observer: ____ $\bar{H} \bar{F}$ F-_-_ Observer Side: __Right

Actual Time and Position of Sighting

Time: _15:52_ W P\#, 71
L at: 30.172691
L ong: -80.299677
Species: Stenella frontalis Numbers (Low/High/Best): 15/19/17
F eatures used in Species ID: Visible spottingon some individuals, light and dark banding on dorsal surface
Representative images used for Species ID: $6355,6257,6259$
Photographer: HJ F__ Frame Numbers: ${ }^{-6233} \mathbf{- 6} 2 \overline{7} \overline{0}$
Spacer: 6271
Calculated Distance from Track Line: 0.9 km

Final Time and Position of Sighting

Time: _15:53_ W P\#: 72
Calculated Distance Traveled: 1.1 km

Behavior and Additional Comments

Large tight group

Sunday, February 27, 2011 Sighting \# 11

Initial Sighting on Track

Time: 16:02 W P\#, 74 L at: 30.173830_ L ong: -80.545001
V ertical Angle: _2 _-_ Horizontal Bearing in Degrees: $90 \quad$ Sighting Cue: Body
 Observer: ___-_WS

Actual Time and Position of Sighting
Time: _16:02_ W P\#, 75
L at: 30.171754
Long: -80.541038
Species: Stenella frontalis Numbers (Low/High/Best): $20 / 25 / 22$
Features used in Species ID: Visible light and dark banding on dorsal surface, spotting visible on some individuals
Representative images used for Species ID: $6336,6341,6348,6377,6381$
Photographer: HJ F Frame Numbers: $631-6348$
Calculated Distance from Track Line: 0.4 km

Final Time and Position of Sighting

Calculated Distance Traveled: 1.4 km

Behavior and Additional Comments

Two large groups

Sunday, February 27, 2011 Sighting \# 12

Initial Sighting on Track

Time: 16:34_ WP\#, 83__ Lat: $30.434122 \ldots$ Long: _-80.470670
V ertical A Angle: _2 Horizontal Bearing in Degrees: 70 On/Off Effort: _on Track Line: 8

Actual Time and Position of Sighting
Time: _16:35_ W P\#, 84___ Lat: 30.440695__ Long: _-80.475763
Species: Tursiops truncatus
Features used in Species ID: Broad flukes, overall gray coloration, light cape visible on flanks
Representative images used for Species ID: $6392,6395,6398$
Photographer: H J___ Frame Numbers: $6387-6401$
Spacer: 6402
Calculated Distance from Track Line: 0.9 km

Final Time and Position of Sighting

Time: _16:38_ W P\#: 85 Lat: 30.434330 _ Long: - 80.476361
C alculated Distance T raveled: 0.7 km

Behavior and Additional Comments

Subsurface travel w/some deep diving elusive

Sunday, February 27, 2011 Sighting \# 13
Initial Sighting on Track
Time: 16:43_W P\#, 88 Lat: 30.433209 Long: - 80.439190 V ertical A ngle: __ 3 Horizontal Bearing in Degrees: 60 _-_ Sighting Cue: Body On/Off Effort: __On Track Line: ___ B eaufort Sea State: ___ Observer:
$\overline{\mathrm{R}} \mathrm{CH}$ Observer Side:- Left

Actual Time and Position of Sighting
Time: 16:47 W P\#, 89
Lat: 30.433840
L ong: _-80.438006
Species: Iursiops truncatus
Features used in Species ID: Overall gray coloration, short stubby rostrum
\bar{R} epresentative images used for Species ID: $6470,6471,6472$
Photographer: _HJ F__ Frame Numbers: _-- $6455-6480$
Calculated Distance from Track Line: 0.1 km
Final Time and Position of Sighting
Time: _16:49_ W P\#, 90___ Lat: _30.432460___ L ong: _-80.441733
C alculated Distance T raveled: $\quad 0.4 \mathrm{~km}$
Behavior and Additional Comments
Fast subsurface travel with some deep dives

Friday, April 8, 2011 Sighting \# 1

Initial Sighting on Track

10:01_ W P\#, _5	L at: 29.965159	Long: -80.591978
\checkmark ertical A ngle: _2	Horizontal B earing in Degre	: _110-_ Sighting Cue: ${ }^{\text {2 }}$
O $\mathrm{n} / \mathrm{Off}$ Effort: --On	Track Line: 1	B eaufort Sea State: __1
Observer: \quad REH	Observer Side:	

Actual Time and Position of Sighting

Time: _10:01_ W P\#. 6
L at: 29.958717
Long: - 80.588615
Species: Stenella frontalis Numbers (Low/High/Best): $24 / 28 / 26$
Features used in Species ID: white-tipped rostrum, some animals heavily spotted, cape with blaze
Representative images used for Species ID: $6959,6865,681$
Photographer: REH Frame Numbers: 6848-6874 Spacer: 6875
Calculated Distance from Track Line: 0.8 km

Final Time and Position of Sighting

Time: _10:08_ WP\#, ___ Lat: 29_961717___ Long: _-80.591294
Calculated Distance T raveled: 0.4 km

Behavior and Additional Comments

One group of 8 plus several singletons, one group of 15

Friday, April 8, 2011 Sighting \#2

Initial Sighting on Track

Time: 10:34 WP\#, 13_ Lat: 30.012310 Long: -79.787997
V ertical A Angle: _2
On/Off Effort: _Off_-_ Track Line: N/A__ Beaufort Sea State: _ 3

Actual Time and Position of Sighting

Time: 10:36 WP\#. 14
L at: 30.007336
Long: -79.783349
Species: Tursiops truncatus
Numbers (Low/High/Best): $17 / 17 / 17$
Features used in Species ID: very dark gray bōiès with light peduncle, short rostrum with
well-defined crease at melon, robust bodies
Representative images used for Species ID: $6877 \overline{1}, 687 \overline{8}, 6879,6 \overline{8} \overline{8} 0,6881,6 \overline{8} 90$
Photographer: REH Frame Numbers: 686-6891
Calculated Distance from Track Line: 0.7 km

Final Time and Position of Sighting

Time: _10:39_ WP\#, 15__ Lat: 30.009518__ L ong: -79.781824
Calculated Distance T raveled: 0.3 km

Behavior and Additional Comments

Two groups, one of 13 one of 4

Friday, April 8, 2011 Sighting \# 3

Initial Sighting on Track

Time: _11:02_ W P\#, _19__ L at: 30.032011__ Long: _-80.484790
\checkmark ertical A ngle: _1_ Horizontal Bearing in Degrees: _95 _ Sighting Cue: Body
On/Off Effort: __On__ Track Line: ${ }^{2}$
Observer: _-_ $\bar{R} E \mathrm{H}$
Observer Side Right

Actual Time and Position of Sighting
Time: _11:03_ W P\#. 2
L at: 30.032401
Long: - 80.481369
Species: Unidentified Dèlphinid \quad Numbers (Low/High/Best): N/A
Features used in Species ID: No identification was possible animals were not reaquired
Representative images used for Species ID: N/A
Photographer: N/A _ Frame Numbers: N/A
Spacer: N/A
Calculated Distance from Track Line: N/A

Final Time and Position of Sighting

Time: _N/A _W P\#, N/A _ Lat: N/A
Calculated Distance T raveled: N/A

Behavior and Additional Comments

Animals not reaquired

Friday, April 8, 2011 Sighting \#4

Initial Sighting on Track

Time: 11:15 W P\#, 23_ Lat: 30.031650 Long: - 80.619260
V ertical A ngle: _3___ Horizontal Bearing in Degrees: _75__-_ Sighting Cue: Body
O n/Off Effort: _on_ Beaufort Sea State: ___
Observer: ___ $\overline{\mathrm{R}} \overline{\mathrm{C}} \mathrm{H}$
Actual Time and Position of Sighting
Time: _11:15 W P\#, 24
L at: 30.021469
Long: -80.618234
Species: Stenella frontalis Numbers (Low/High/Best): $2 \overline{2} / 34 / 3 \overline{0}$
Features used in Species ID: white-tipped rostrum, alternating light/dark banding pattern from
overhead, some animals heavily spotted, cape with blaze
Representative images used for Species ID:
Photographer: REH__ Frame Numbers: $6893-6920$
Spacer: 6921
Calculated Distance from Track Line: 1.1 km

Final Time and Position of Sighting

Time: _11:18_ WP\#, 25__ Lat: 30.019361___ Long: -80.618064
C alculated Distance T raveled: 0.2 km

Behavior and Additional Comments

Originally sighted as two smaller groups, one group of $30+$

Friday, April 8, 2011 Sighting \# 5

Initial Sighting on Track

Time: _11:21_ W P\#, _28___ Lat: 30.030219 Long: _-80.688079
V ertical Angle: _1___ Horizontal B earing in Degrees: $90 \ldots \ldots \ldots$
O n/Off Effort: _on_ Track Line: ${ }^{2}$
O bserver: ___ REH
Observer Side: __-_Right
Actual Time and Position of Sighting
Time: _N/A WP\#, N/A Lat: N/A

Features used in Species ID: Animals were never aquired
Representative images used for Species ID: N/A
Photographer: N/A__ Frame Numbers: N/A
Spacer: N/A
Calculated Distance from Track Line: N/A
Final Time and Position of Sighting
Time: _N/A_ WP\#. N/A__ Lat: N/A
Long: N/A
Calculated D ístance T raveled: N/A

Behavior and Additional Comments

Animals were never reaquired

Friday, April 8, 2011 Sighting \#6

Initial Sighting on Track

Time: 11:49_WP\#, 40_ Lat: 30.100240 Long: _-80.098145
\checkmark ertical A ngle: $1 \quad$ Horizontal Bearing in Degrees: 100

Actual Time and Position of Sighting
Time: _11:49_ WP\#, 41 Lat: 30.102726 Long: -80.094447
Species: Tursiops truncatus Numbers (Low/High/Best): $3 / 3 / 3$
Features used in Species ID: blunt, robust rostrum, very dark gray bodies with light pedunc broad flukes
Representative images used for Species ID: $6923,6927,6928,6929$
Photographer: REH_ Frame Numbers: $6922-6929$
Calculated Distance from Track Line: 0.5 km

Final Time and Position of Sighting

Time: _11:55_ W P\#: 42___ Lat: 30.101933___ Long: -80.104750
C alculaled Distance Traveled: 1.0 km

Behavior and Additional Comments

Calf present
\qquad

Friday, April 8, 2011 Sighting \# 7

Initial Sighting on Track

Time: _12:17_ W P\#, _48__ Lat: $30.166690 \quad$ Long: - 80.133657 V ertical A Angle: _2_-_ Horizontal Bearing in Degrees: 75 On/Off Effort: _on___ Track Line: 4 _________ Observer: $\overline{\mathrm{R}} \bar{E}^{-1}$ Observer Side: _Right

Actual Time and Position of Sighting
Time: _12:18_ W P\#, 49
Species: Grampus griseus
L at: 30.167368
Long: - 80.130928
Features used in Species ID: large, robust animals with blunt, creased melons, highly varied
in coloration from light gray to dark with some animals heavily scarred
Representative images used for Species ID: $6937,6940,694$
Photographer: REH__ Frame Numbers: 6931-6943
Spacer: 6944
Calculated Distance from Track Line: 0.3 km

Final Time and Position of Sighting

Calculated Distance Traveled: 0.7 km

Behavior and Additional Comments

\qquad

Friday, April 8, 2011 Sighting \#8

Initial Sighting on Track

Time: _12:33 WP\#, 52_ Lat: 30.166622_ Long: _-80.467169
V ertical A ngle: _2___ Horizontal Bearing in Degrees: _60___ Sighting Cue: 3

Observer: ___ REH
Actual Time and Position of Sighting
Time: _12:34 W P\#, 53
L at: 30.167375
Long: - 80.470162
Species: Stenella frontalis Numbers (Low/High/Best): $2 \overline{2} / 2 / 2$
F eatures used in Species ID: alternating light dark banding pattern from above, white-tipped rostrum, spotted bodies
Representative images used for Species ID:
Photographer: REH__ Frame Numbers: $6945-6954$
Calculated Distance from Track Line: 0.3 km

Final Time and Position of Sighting

Time: _12:42_ W P\#, 54___ Lat: 30.170494__ Long: -80.465785
Calculated Distance T raveled: 0.5 km

Behavior and Additional Comments

Foraging near school of large fish

Friday, April 8, 2011 Sighting \# 9

Initial Sighting on Track

Time: _12:50_ W P\#, 60 Lat: 30.166588 Long: _-80.664305
V ertical Angle: _1___ Horizontal B earing in Degrees: $90 \ldots \ldots$ Sighting Cue: Body
On/Off Effort: -_On Track Line: $\mathbf{4}^{\ldots}$
Observer: ___ REH Observer Side: ___Right

Actual Time and Position of Sighting
Time: _12:52_ WP\#: 61
L at: 30.169687
Long: -80.657295
Species: Stenella frontalis
Features used in Species ID: slender, white-tipped rostrum, adults heavily spotted, darker cape with light blaze
Representative images used for Species ID: 6956,6957
Photographer: REH__ Frame Numbers: 6956-6957
Spacer: 6958
Calculated Distance from Track Line: 0.8 km

Final Time and Position of Sighting

Time: _12:53_WP\#, $62 \quad$ Lat: 30.162153 ___ Long: _80.659180
C alculated D istance Traveled: 0.8 km

Behavior and Additional Comments

Four mom/calf pairs

Friday, April 8, 2011 Sighting \# 10

Initial Sighting on Track

Time: $14: 42$ W P\#, $70 \quad$ Lat: 30.232168 Long: _-80.676982
\checkmark ertical Angle: $3 \quad-\quad$ Horizontal Bearing in Degrees: $110-\quad$ Sighting Cue: Body On/Off Effort: \quad On Observer: ___ $\overline{\mathrm{R}} \overline{\mathrm{C}} \mathrm{H}^{-1---}$ Observer Side: _-_Left

Actual Time and Position of Sighting
Time: _14:43_ WP\#, _11__ Lat: 30.236528__ Long: _-80.682972
Species: Stenella frontalis Numbers (Low/High/Best): 8 8/8/8
Features used in Sépes ID: slender, white-tipped rostrum, some animals heavily spotted
Representative images used for Species ID: 6963,695
Photographer: REH__ Frame Numbers: ${ }^{-6961-696}$
Spacer: 6967
Calculated Distance from Track Line: 0.8 km

Final Time and Position of Sighting

Time: _14:52_ W P\#, 72 Lat: 30.227069 Long: - 80.676503
Calculated Distance Traveled: 1.2 km

Behavior and Additional Comments

Erratic behavior, surface travel with school of fish, calves present

Friday, April 8, 2011 Sighting \# 11

Initial Sighting on Track

Time: $15: 43$ W P\#, $90 \quad$ L at: $30.300378 \quad$ Long: -80.538102 V ertical Angle: 2 Horizontal Bearing in Degrees: 90 Sighting Cue: Body On/Off Effort: _On Track Line: $\underline{6}^{\ldots}$ Observer: \qquad Observer Side: \qquad
Actual Time and Position of Sighting
Time: _15:45 W P\#, 91
L at: 30.311985
Long: - 80.528641
Species: Stenella frontalis Numbers (Low/High/Best): 4/4/4
Features used in Species ID: heavily spotted animals, white-tipped rostrum, light/dark
banding pattern from overhea \bar{d}
Representative images used for Species ID: $6971,6972,6973$
Photographer: REH Frame Numbers: 6968-6974
Spacer: 6975
Calculated Distance from Track Line: 1.6 km

Final Time and Position of Sighting

Time: _15:50_ WP\#, 92 Lat: 30.311301 ___-_ Long: - 80.528464
C alculated Distance Traveled: 0.1 km

Behavior and Additional Comments

\qquad

Friday, April 8, 2011 Sighting \# 12

Initial Sighting on Track

Time: 16:02_W P\#, 99 Lat: 30.365316 Long: _-80.596923
V ertical Angle: _1_ Horizontal Bearing in Degrees: $90 \quad$ Sighting Cue: Body
On/Off Effort: --On_-_ Track Line: ${ }^{7}$

Actual Time and Position of Sighting
Time: _16:02_ W P\#, _100__ Lat: 30.366095_ Long: _-80.599045
Species: Tursiops truncatus Numbers (Low/High/Best): $3 / 3 / 3$
F eatures used in Species ID: gray with darker gray cape, broad flukes, short, robust rostrum
Representative images used for Species ID: $6978,6980,691,6982$
Photographer: REH__ Frame Numbers: 6976-6982
Spacer: 6983
C alculated Distance from Track Line: 0.2 km

Final Time and Position of Sighting

Time: _16:09_ W P\#: 101 Lat: 30.361849__ Long: -80.595986
Calculated Distance T raveled: 0.6 km

Behavior and Additional Comments

\qquad

Friday, April 8, 2011 Sighting \# 13

Initial Sighting on Track

Time: 16:19 W P\#, 107 L at: $30.365316 \quad$ Long: -80.596923
V ertical A ngle: _2___ Horizontal B earing in Degrees: _45__ Sighting Cue: Body
On/Off Effort: _On Track Line: 7
Observer: \qquad Observer Side: \qquad
Actual Time and Position of Sighting
Time: _16:21_ W P\#: _108
L at: 30.366095
L ong: - 80.599045
Species: Stenella frontalis Numbers (Low/High/Best): $70 / 80 / 75$
Features used in Species ID: dark cape with blaze, heavily spotted animals, slender, rostrum with white tip
Representative images used for Species ID: 6987, 6995, 6996,6997
Photographer: REH Frame Numbers: ${ }^{-6984-7000}$
Spacer: 7001
Calculated Distance from Track Line: 1.2 km

Final Time and Position of Sighting

C alculated Distance Traveled: 0.7 km

Behavior and Additional Comments

Two large groups

Friday, April 8, 2011 Sighting \# 14

Initial Sighting on Track

Time: 16:37_W W\#, 113__ Lat: 30.364915__ Long: _-79.854536
V ertical A ngle: _2___ Horizontal Bearing in Degrees: _120___ Sighting Cue: Body
O n/Off Effort: _on_ Track Line: \underline{Z}^{\ldots}
Observer: ___ REH
Actual Time and Position of Sighting
Time: _16:38_ W P\#, 114
Species: Tursiops truncatus
L at: 30.359322
Long: -79.859038
Features used in Species ID: very dark gray body with light peduncle, short, robust rostrum and well-defined crease at melon
Representative images used for Species ID: $7020,7021,7023,7024,7025$
Photographer: REH_ Frame Numbers: 7
Calculated Distance from Track Line: 0.8 km

Final Time and Position of Sighting

Time: _16:42_ W P\#, 115__ Lat: 30.359508__ Long: -79.858105
Calculated Distance T raveled: 0.1 km
Behavior and Additional Comments
\qquad

Friday, April 8, 2011 Sighting \# 15

Initial Sighting on Track

Time: _16:55_ W P\#, _119_L Lat: 30.433732 Long: _-80.057528
V ertical Angle: _2 _-_ Horizontal Bearing in Degrees: 75

Actual Time and Position of Sighting
Time: _16:57_ W P\#. 120
Species: Tursiops truncatus
L at: 30.434931
Long: -80.053184
Feats
Features used in Species ID: gray with darker cape, broad flukes, short, robust rostrum
Representative images used for Species ID: $7028,7030,7031$
Photographer: REH___ Frame Numbers: 7028 -7035
Spacer: 7036
Calculated Distance from Track Line: 0.4 km
Final Time and Position of Sighting
Time: 11:03_W W\#, 121__ Lat: 30.431357___ Long: -80.072377
Calculated D istance Traveled: 1.9 km
Behavior and Additional Comments
\qquad

Friday, April 8, 2011 Sighting \# 16

Initial Sighting on Track

Time: 17:11_WP\#, 124__ Lat: 30.433879__ Long: _-80.271079
\checkmark ertical Angle: $1 \quad$ Horizontal Bearing in Degrees: $130-1$
On/Off Effort: _on_ Beaufort Sea State: ___

Actual Time and Position of Sighting
Time: _17:12_ W P\#, _125__ Lat: 30.427251__ Long: _-80.267361
Species: Stenella frontalis Numbers (Low/High/Best): $4 \overline{0} / 40 / 4 \overline{0}$
Features used in Species ID: white-tipped, slender rostrum, heavily spotted, dark cape with lighter blaze
Representative images used for Species ID: $7037-7039,7041,7042$

Calculated Distance from Track Line: 0.8 km

Final Time and Position of Sighting

Time: _17:14_ W P\#: 126__ Lat: 30.429265__ L ong: -80.269206
Calculated Distance T raveled: 0.3 km

Behavior and Additional Comments

\qquad

Friday, April 8, 2011 Sighting \# 17

Initial Sighting on Track
Time: 17:27 W P\#, 130_ L at: 30.433070 Long: _-80.687565 V ertical Ā On/Off Effort: __On Track Line: ___ Beaufort Sea State: ___ Observer: $\overline{\mathrm{R} E \mathrm{H}}$ Observer Side:-

Actual Time and Position of Sighting

Time: _17:28_ W P\#, 131__ Lat: 30.434722 Long: _-80.684533
Species: Stenella frontalis
Features used in Species ID: heavily spotted, white-tipped, slender rostrum, dark cape with
lighter blaze
Representative images used for Species ID: $7054,7056,7057,7059,7066,7102$
Photographer: _REH__ Frame Numbers: _-_-_7047-7105 Spacer: 7106
Calculated Distance from Track Line: 0.3 km
Final Time and Position of Sighting
 C alculated Distance T raveled: 0.4 km

Behavior and Additional Comments
Some acrobatics. very active, rough playing

Saturday, April 9, 2011 Sighting \# 1

Initial Sighting on Track

Time: _10:00_ W P\#, _10_ L at: 30.499756_ L ong: -80.417988 \checkmark ertical A ngle: _2_-_ Horizontal Bearing in Degrees: $90-1$ Sighting Cue: Body O n/Off Effort: __On__ Track Line: $\underline{9}^{2} \quad$ _________ Observer: PBN Observer Side: \qquad
Actual Time and Position of Sighting
Time: _10:03_ WP\#, 11
L at: 30.494210
Long: - 80.415287
Species: Stenella frontalis
Numbers (Low/High/Best): 3 35/45/40
Features used in Species ID: Alternating light and dark dorsal "banding", long, white-tipped beak
Representative images used for Species ID: $7110,7114,7115,7116$
Photographer: RCH__ Frame Numbers: ${ }^{-1107-7166}$ Spacer: 7167
Calculated Distance from Track Line: 0.7 km

Final Time and Position of Sighting

C alculated Distance Traveled: 0.9 km

Behavior and Additional Comments

Active and somewhat spread out group, some leaping observed

Saturday, April 9, 2011 Sighting \#2

Initial Sighting on Track

Time: 10:18 WP\#, 16__ Lat: 30.499271_ Long: _-80.640493
\checkmark ertical A ngle: _1_ Horizontal Bearing in Degrees: 70

Actual Time and Position of Sighting
Time: 10:20_ WP\#, 17__ Lat: $30.487590 \quad$ Long: _-80.647595
Species: Stenella frontalis
F eatures used in Species ID: Light flank blaze terminating at mid-dorsal fin, long and white tipped rostrum
Representative images used for Species ID: $7168,7169,7184,7185$
Photographer: RCH__ Frame Numbers: 7168 -7187
Spacer: 7188
C alculated Distance from Track Line: 1.5 km

Final Time and Position of Sighting

Time: _10:22_ W P\#, 18__ Lat: 30.490311___ Long: -80.637886
C alculated Distance T raveled: 1.0 km

Behavior and Additional Comments

Some tactile interaction observed, belly to belly swimming

Saturday, April 9, 2011 Sighting \# 3

Initial Sighting on Track

Time: _10:30_ WP\#, _22___ Lat: 30.432873 _ Long: _-80. 622239
V ertical Angle: _2 _-_ Horizontal Bearing in Degrees: 80 Sighting Cue: Body
 Observer: PBN Observer Side: \qquad
Actual Time and Position of Sighting
Time: $10: 30$ W P\#, 23
L at: 30.439739
Long: - 80.629138
Species: Stenella frontalis Numbers (Low/High/Best): 9/12/11
Features used in Species ID: Long, white-tipped beak, light flank blaze ending mid-dorsal
Representative images used for Species ID: $7192,7200,7201,7202$
Photographer: RCH
Frame Numbers: 7189-7204
Spacer: 7205
Calculated Distance from Track Line: 1.0 km

Final Time and Position of Sighting

Time: _10:34_ W P\#, $24 \ldots$ L at: $30.440867 \ldots$ Long: _- 80.629433
C alculated Distance Traveled: 0.1 km

Behavior and Additional Comments

Potentially feeding, 7-8 animals in group and two stragglers.

Saturday, April 9, 2011 Sighting \#4

Initial Sighting on Track

Time: _12:20_ W P\#, 48_ Lat: 30.232844 Long: -80.576501
V ertical A Angle: _1_ Horizontal Bearing in Degrees: 90
On/Off Effort: _On__ Track Line: $\underline{6}^{\ldots}$
Observer: ___-_B $\bar{B} \bar{N}^{-}$
Actual Time and Position of Sighting
Time: _12:22_ WP\#, 49__ Lat: 30.226524__ Long: _-80.578210
Species: Stenella frontalis Numbers (Low/High/Best): $\overline{9} / 10 / 9$
F eatures used in Species ID: Obvious spotting, light flank blaze terminating mid-dorsal, long whit-tipped beak
Representative images used for Species ID: $7216,7223,7224,7234$
Photographer: RCH
Frame Numbers: 7206-7234
Spacer: 7235
Calculated Distance from Track Line: 0.7 km

Final Time and Position of Sighting

Time: _12:23_ W P\#: 50 L__ Lat: 30.227246
C alculated Distance T raveled: $\leq 0.1 \mathrm{~km}$

Behavior and Additional Comments

Fairly tight group, slow surface travel

Saturday, April 9, 2011 Sighting \# 5

Initial Sighting on Track

Time: 14:23 W P\#, $63 \quad$ Lat: $30.166006 \quad$ Long: -79.913501 V ertical Angle:
1 Horizontal Bearing in Degrees: \qquad Sighting Cue: Body On/Off Effort: On Track Line: 4 \qquad B eaufort Sea State: 2 Observer:

PBN

 Observer Side: \qquad LeftActual Time and Position of Sighting
Time: 14:28 W P\#, 64
L at: 30.162229
Long: -79.922369
Species: Tursiops truncatus Numbers (Low/High/Best): $3 / 4 / 3$
Features used in Species ID: Robust, gray dolphins with darker gray capes, blunt rostrum
Representative images used for Species ID: $7255,7261,7262$
Photographer: RCH___ Frame Numbers: 7254-7263
Spacer: 7264
Calculated Distance from Track Line: 1.0 km

Final Time and Position of Sighting

Time: _14:29_ WP\#, 65 Lat: 30.163080 ___ Long: -79.921031
C alculated D istance Traveled: 0.2 km

Behavior and Additional Comments

Fairly fast travel

Saturday, April 9, 2011 Sighting \#6

Initial Sighting on Track

Time: 14:57 WP\#, 70_ Lat: 30.100496 Long: - 80.504729
V ertical A ngle: _2___ Horizontal Bearing in Degrees: _120__ Sighting Cue: Body On/Off Effort: _On__ Track Line: $3^{3} \quad$ Beaufort Sea State: _________ Observer: _-_ $\overline{\mathrm{R}} \mathrm{CH}$

Actual Time and Position of Sighting

Time: _14:58_ W P\#, 71
L at: 30.102658
Long: -80.502276
Species: Stenella frontalis Numbers (Low/High/Best): $25 / 30 / 27$
Features used in Species ID: A- Āternating light and dark dorsal 'banding', spotted pattern, Iong and white-tipped beak
Representative images used for Species ID: $7269,7238,7295,7298,7301$
Photographer: RCH__ Frame Numbers: ${ }^{-7265-7307}$
Calculated Distance from Track Line: 0.3 km

Final Time and Position of Sighting

Time: _15:01_ W P\#, 72 L__ Lat: 30.104892__ Long: - 80.504589
Calculated Distance T raveled: 0.3 km

Behavior and Additional Comments

Fast surface travel, leaping

Saturday, April 9, 2011 Sighting \# 7
Initial Sighting on Track
Time: 15:15 W P\#, 79__ L at: 30.031534_ Long: _-80.530440 \checkmark ertical A ngle: __3_-_ Horizontal Bearing in Degrees: 70 On/Off Effort: __O_ Track Line: ___ Beaufort Sea State: ___ Observer:

RCH Observer Side: Right

Actual Time and Position of Sighting

Time: _15:16_ WP\#. 80___
Lat:
30.029456

Long: -80.529475
Species: Iursiops truncatus
Features used in Species ID: Broad flukes, robust and gray dolphins with darker gray cape, short and stubby rostrum
Representative images used for Species ID: $7327,7328,7329$

Calculated Distance from Track Line: 0.2 km
Final Time and Position of Sighting
Time: 15 WP\#. 81 Lat:
L at: _30.027944__ Long: __80.526122
Calculated Distance T raveled: $\quad 0.4 \mathrm{~km}$

Behavior and Additional Comments

Fats travel and aerial behavior. One dolphin appeared to have something in its mouth.
Probable avoidance behavior observed.

Thursday, May 19, 2011 Sighting \# 1
Initial sighting on Track

Actual Time and Position of Sighting
Time: 12:49 WP\#:_4 Lat: 29.964261 Long: -80.666475
Species:Stenella frontalis Numbers (Low/High/Best): 45/55/50

Features used in Species ID: White blaze extending to mid dorsal fin, alternating light and dark pattern,
Representative images used for Species ID: 8108
Photographer: Heather Frame numbers: 8104-8110 Spacer: 8111
Calculated distance from Trackline: $\quad 0.087$ km
Final Time and Position of Sighting
Time: NA WP\#: NA Lat:_NA Long: _ NA Calculated Distance Traveled: \qquad
Behavior and Additional Comments
Animals were doing deep dives and traveling at a fast pace in 2 groups. Not resighted for a final location

Thursday, May 19, 2011 Sighting \# 2
Initial sighting on Track
Time: 13:18 WP\#: 9 Lat: 29.970826 Long: -80.000716
Vertical Angle: 90 Horizontal Bearing in Degrees: 3 Sighting Cue: 3 On/Off Effort: On Trackline: 1 Beaufort Sea State: 4 Observer: \qquad Observer side: L

Actual Time and Position of Sighting
Time: 13:23 WP\#: 10 Lat: 29.974699 Long: -80.003449
Species:Tursiops truncatus Numbers (Low/High/Best): 4/4/4
Features used in Species ID: Solid grey body

Calculated distance from Trackline
Final Time and Position of Sighting
Time: 13:25 WP\#: 11 Lat: 29.973924 Long: -80.013388

Calculated Distance Traveled: \square
Long: -80.013388

Behavior and Additional Comments

Animals doing deep dives, regular surfacing, traveling fast

Friday, May 20, 2011 Sighting \# 1
Initial sighting on Track
Time: 8:04 WP\#: 3 Lat: 30.566761 Long: -80.664637
Vertical Angle: $\quad 2$ Horizontal Bearing in Degrees: 120 Sighting Cue: 3 On/Off Effort: On Trackline: $\quad 10$ Beaufort Sea State: 1 Observer: Heather Observer side: __ Right
Actual Time and Position of Sighting
Time: 8:09 WP\#:_5 Lat: 30.569307 Long: $\quad-80.694923$
Species:Stenella frontalis Numbers (Low/High/Best): 7/7/7
Features used in Species ID: Alternating light and dark pattern down the body, white tip on rostrum, spots
Representative images used for Species ID: \quad 8149, 8145
Photographer: Erin Frame numbers: 8127-8150 Spacer: 8151
Calculated distance from Trackline: $\quad 2.913 \mathrm{~km}$
Final Time and Position of Sighting
Time: 8:13 WP\#: $\quad 6 \quad$ Lat: $\quad 30.566331 \quad$ Long: $\quad-80.698882$
Calculated Distance Traveled: \qquad

Behavior and Additional Comments

Friday, May 20, 2011 Sighting \# 2

Initial sighting on Track
Time: 8:14 WP\#: 8 Lat: 30.565893 Long: -80.648876
Vertical Angle: 1 Horizontal Bearing in Degrees: 90 Sighting Cue: 3 On/Off Effort: On Trackline: 10 Beaufort Sea State: 1 Observer: Erin Observer side: Right
Actual Time and Position of Sighting
Time: 8:17 WP\#:_9 Lat: 30.564627 Long: -80.653456
Species:Stenella frontalis Numbers (Low/High/Best): 21/21/21
Features used in Species ID: Alternating light and dark pattern down the body, white tip on rostrum, spots
Representative images used for Species ID: \quad 8156, 8158
Photographer: Erin Frame numbers: 8152-8190 Spacer: 8191
Calculated distance from Trackline: \qquad
Final Time and Position of Sighting
Time: 8:18 WP\#: 10 Lat: 30.560714 Long: -80.646437

Calculated Distance Traveled:
0.8006 km

Long. -80.646437

Behavior and Additional Comments

At least 2 distinct subgroups, closely bunched. Leatherback sea turtle in vicinity.

$$
\text { Friday, May 20, } 2011 \text { Sighting \# } 3
$$

Initial sighting on Track
Time: 8:56 WP\#: 23 Lat: 30.503000 Long: -80.210909

Vertical Angle: $\quad 2$ Horizontal Bearing in Degrees: 100 Sighting Cue: 3 On/Off Effort: On Trackline:_9 Beaufort Sea State: $\quad 2$ Observer: Heather Observer side: Left
Actual Time and Position of Sighting
Time: 9:00 WP\#: 24 Lat: 30.499995 Long: $\quad-80.212291$
Species:Tursiops truncatus Numbers (Low/High/Best): 4/4/4

Features used in Species ID: Robust, uniform grey animals
Representative images used for Species ID: 8199, 8200
Photographer: Erin Frame numbers: 8192-8206 Spacer: 8207
Calculated distance from Trackline: $\quad 0.3594 \mathrm{~km}$
Final Time and Position of Sighting
Time: 9:05 WP\#: 25 Lat: 30.496983 Long: $\quad-80.213890$
Calculated Distance Traveled: \qquad
Behavior and Additional Comments
Tight group remained mostly at surface until we started circling then they were subsurface.

Friday, May 20, 2011 Sighting \# 4
Initial sighting on Track
Time: 9:24 WP\#: 33 Lat: 30.429793 Long: -80.553007
Vertical Angle: 2 Horizontal Bearing in Degrees: 100 Sighting Cue: 3 On/Off Effort: On Trackline: 8 Beaufort Sea State: 2 Observer: Heather Observer side: Left
Actual Time and Position of Sighting
Time: 9:28 WP\#: 34 Lat: 30.434336 Long: $\quad-80.554982$
Species:Tursiops truncatus Numbers (Low/High/Best): 4/4/4

Features used in Species ID: Robust, uniform grey

Final Time and Position of Sighting
Time: 9:31 WP\#: 35 Lat: 30.437043 Long: -80.553172

Calculated Distance Traveled: $\quad 0.3474 \mathrm{~km}$
Long: -80.553172

Behavior and Additional Comments

Lots of surface activity, spread out.

Initial sighting on Track
Time: 9:46 WP\#: 40 Lat: 30.434515 Long: -80.100540

Vertical Angle: $\quad 2$ Horizontal Bearing in Degrees: 100 Sighting Cue: 3 On/Off Effort: On Trackline: $\quad 8 \quad$ Beaufort Sea State: _ 2 Observer: Heather Observer side: Left
Actual Time and Position of Sighting
Time: 9:49 WP\#: 41 Lat: 30.439923 Long: $\quad-80.099134$
Species:Grampus griseus Numbers (Low/High/Best): 5/8/5
Features used in Species ID: Grey animals with with white scaring and blunt head, cleft in center of head
Representative images used for Species ID: 8239, 8218, 8223
Photographer: Erin Frame numbers: 8218-8242 Spacer: 8243
Calculated distance from Trackline: $\quad 0.6163 \mathrm{~km}$
Final Time and Position of Sighting
Time: 9:52 WP\#: 42 Lat: 30.443251 Long: $\quad-80.106579$
Calculated Distance Traveled: \qquad
Behavior and Additional Comments
Close group stayed just subsurface most of the time

Friday, May 20, 2011 Sighting \# 6
Initial sighting on Track
Time: 9:58 WP\#: 45 Lat: 30.434578 Long: $\quad-79.880805$
Vertical Angle: 2 Horizontal Bearing in Degrees: 90 Sighting Cue: 3 On/Off Effort: On Trackline: 8 Beaufort Sea State: 3 Observer: Heather Observer side: Left
Actual Time and Position of Sighting
Time: 10:03 WP\#: 48 Lat: 30.444134 Long: $\quad-79.822932$
Species:Tursiops truncatus Numbers (Low/High/Best): 10/30/20

Features used in Species ID: Robust, grey animals

Calculated distance from Trackline:
Final Time and Position of Sighting
Time: 10:04 WP\#: 49 Lat: 30.440195 Long: -79.817589
Calculated Distance Traveled:
0.6739 km

Behavior and Additional Comments

Several distinct groups

Initial sighting on Track
Time: 10:13 WP\#: 53 Lat: 30.360578 Long: -80.002146

Vertical Angle: $\quad 2$ Horizontal Bearing in Degrees: 45 Sighting Cue: 3 On/Off Effort: On Trackline: $\quad 7 \quad$ Beaufort Sea State: _ 3 Observer: Erin Observer side: _ Right
Actual Time and Position of Sighting
Time: 10:16 WP\#: 54 Lat: 30.365678 Long: -79.997541
Species:Globicephala macrorhynchus Numbers (Low/High/Best): 5/5/5

Features used in Species ID: Large, black, robust animals with blunt head
Representative images used for Species ID: 8284,8290
Photographer: Erin Frame numbers: 8268,8290 Spacer: 8291
Calculated distance from Trackline:
0.7189 km

Final Time and Position of Sighting
Time: 10:18 WP\#: 55 Lat: 30.370200 Long: $\quad-80.002867$ Calculated Distance Traveled: \qquad
Behavior and Additional Comments
Mom/calf pair or observed. All swimming in same direction

Friday, May 20, 2011 Sighting \# 8
Initial sighting on Track
Time: 9:58 WP\#: 62 Lat: 30.368587 Long: $\quad-80.448406$
Vertical Angle: 2 Horizontal Bearing in Degrees: 90 Sighting Cue: 2 On/Off Effort: On Trackline: 7 Beaufort Sea State: 2 Observer: Heather Observer side: Left
Actual Time and Position of Sighting
Time: 10:34 WP\#: 63 Lat: 30.364594 Long: -80.446151
Species:Stenella frontalis Numbers (Low/High/Best): 30/30/30

Features used in Species ID: Alternating light and dark pattern down body, white tip on rostrum

Behavior and Additional Comments

Calves present

Initial sighting on Track
Time: 10:48 WP\#: 71 Lat: 30.302851 Long: -80.554180
Vertical Angle: 3 Horizontal Bearing in Degrees: $\quad 90$ Sighting Cue:_ 3 On/Off Effort: On Trackline:_6 Beaufort Sea State: $\quad 2$ Observer: Heather Observer side: Left

Actual Time and Position of Sighting
Time: 10:49 WP\#: 72 Lat: 30.309490 Long: -80.560544
Species:Stenella frontalis Numbers (Low/High/Best): 7/7/7
Features used in Species ID: Alternating light and dark pattern down body, white tip on rostrum
Representative images used for Species ID: 8325, 8327
Photographer: Erin Frame numbers: 8313-8335 Spacer: 8336
Calculated distance from Trackline: $\quad 0.9582 \mathrm{~km}$
Final Time and Position of Sighting
Time: 10:51 WP\#: 73 Lat: 30.306625 Long: $\quad-80.560403$
Calculated Distance Traveled: \qquad
Behavior and Additional Comments
Traveling close together, moderate rate of travel

Friday, May 20, 2011 Sighting \# 10
Initial sighting on Track
Time: 10:55 WP\#: 77 Lat: 30.299830 Long: -80.427073
Vertical Angle: 1 Horizontal Bearing in Degrees: 90 Sighting Cue: 3 On/Off Effort: On Trackline: $\quad 6 \quad$ Beaufort Sea State: 2 Observer: Heather Observer side: Left
Actual Time and Position of Sighting
Time: 10:56 WP\#: 78 Lat: 30.302858 Long: -80.429018
Species:Stenella frontalis Numbers (Low/High/Best): 25/35/30

Features used in Species ID: Alternating light and dark pattern down body, white tip on rostrum

Representative images	for Species ID:	8349,8350		
Photographer: Erin	Frame numbers:	8337-8364	Spacer:	8365
Calculated distance fro	Trackline:	50 km		

Final Time and Position of Sighting
Time: 10:59 WP\#: 79 Lat: 30.294230 Long: $\quad-80.430994$

Calculated Distance Traveled:
$\quad 0.9780 \mathrm{~km}$

Long: -80.430994

Behavior and Additional Comments

2 large groups with 7-10 and 12-15 individuals, each group closely lumped or on top of each other.

Friday, May 20, 2011 Sighting \# 11
Initial sighting on Track
Time: 11:34 WP\#: 88 Lat: 30.228551 Long: -80.437420
Vertical Angle: $\quad 4$ Horizontal Bearing in Degrees: 110 Sighting Cue: 4 On/Off Effort: On Trackline:_5 Beaufort Sea State: 1 Observer: Heather Observer side: Left
Actual Time and Position of Sighting
Time: 11:36 WP\#: 89 Lat: 30.224460 Long: -80.424656
Species:Stenella frontalis Numbers (Low/High/Best): 25/40/32
Features used in Species ID: Alternating light and dark pattern down body, white tip on rostrum
Representative images used for Species ID: $\quad 8377,8381$
Photographer: Erin Frame numbers: 8366-8394 Spacer: 8395
Calculated distance from Trackline:
1.308 km

Final Time and Position of Sighting
Time:_ 11:37 WP\#:_90 Lat: $30.222363 \quad$ Long: $\quad-80.425224$
Calculated Distance Traveled: \qquad
Behavior and Additional Comments
2 distinct subgroups one of approximately 20 individuals and the other 8 . Separated by a good distance.

Friday, May 20, 2011 Sighting \# 12
Initial sighting on Track
Time: 13:21 WP\#: 105 Lat: 30.159044 Long: -80.430797
Vertical Angle: 2 Horizontal Bearing in Degrees: 90 Sighting Cue: 2 On/Off Effort: On Trackline: 4 Beaufort Sea State: 2 Observer: Erin Observer side: Right

Actual Time and Position of Sighting

Time: 13:22 WP\#: 106 Lat: 30.153661 Long: -80.434027

Species:Tursiops truncatus Numbers (Low/High/Best): 20/20/20
Features used in Species ID: Robust, grey animals

Behavior and Additional Comments

Animals were both North and South of trackline, several distinct groups, lots of surface activity.

Friday, May 20, 2011 Sighting \# 13
Initial sighting on Track
Time: 14:41 WP\#: 123 Lat: 29.966714 Long: -80.093090 Vertical Angle: $\quad 2$ Horizontal Bearing in Degrees: 110 Sighting Cue: 3 On/Off Effort: On Observer: \qquad
Trackline: 1 Beaufort Sea State: \qquad

Actual Time and Position of Sighting

Time: $\frac{14: 43}{\text { WP\#: } 124}$ Lat: $\frac{29.973099}{\text { Long: } \frac{-80.091205}{\text { Numbers (Low/High/Best): }}$\begin{tabular}{l}
4/4/4

}

Species:Grampus griseus
\end{tabular}

Features used in Species ID: Large grey animals with white scaring. Blunt head with cleft
Representative images used for Species ID: $\quad 8451,8461,8463,8468,8470$ Photographer: Erin Frame numbers:
$\frac{8447-8473}{0.7328 \mathrm{~km}}$

Calculated distance from Trackline: \qquad 0.7328 km

Final Time and Position of Sighting

$\begin{array}{llll}\text { Time: } \frac{14: 48}{\text { WP\#: }} \frac{126}{\text { Lat }} \frac{29.977286}{0.8591 \mathrm{~km}} \quad \text { Long: } & -80.083709 \\ \text { Calculated Distance Traveled: } & \end{array}$

Behavior and Additional Comments

Tuesday, J une 21, 2011 Sighting \# 1

Initial sighting on Track

Time: 14:52 WP\#: 20 Lat: 29.963176 Long: -80.257278

Observer: Erin Observer side: Right

Actual Time and Position of Sighting

Features used in Species ID: Uniform grey coloration, robust body, large dorsal fin
Representative images used for Species ID:

9098
0.1 km

Calculated distance from Trackline: \qquad
Final Time and Position of Sighting
Time: 15:04 WP\#: 22 Lat: 29.964821 Long: _ \quad-80.250774
Calculated Distance Traveled: 0.6 km

Behavior and Additional Comments

Animals were difficult to resight. Only visible at the surface due to diffuse glare caused by smoke layer.

Initial sighting on Track
Time: 9:00 WP\#: 10 Lat: 30.500174 Long: -80.435124
Vertical Angle: _ 2 Horizontal Bearing in Degrees: 90 Sighting Cue:_ 3 On/Off Effort: On Trackline: 10 _ Beaufort Sea State: 3 Observer: Heather Observer side: _ Right
Actual Time and Position of Sighting
Time: 9:02 WP\#:_11 Lat: 30.505652 Long: -80.426843
Species:Stenella frontalis Numbers (Low/High/Best): 8/15/13
Features used in Species ID: White blaze to mid dorsal fin, spots, alternating light and dark coloration
Representative images used for Species ID: 9098, 9112, 9127
Photographer: Heather Frame numbers: 9096-9132 Spacer: 9133
Calculated distance from Trackline:
1.00 km

Final Time and Position of Sighting
Time: 9:10 WP\#: 12 Lat: 30.498694 Long: $\quad-80.429734$ Calculated Distance Traveled: \qquad

Behavior and Additional Comments

Animals traveling at a relatively fast speed just below the surface with regular surfacing and spread out.

Wednesday, J uly 20, 2011 Sighting \# 2
Initial sighting on Track
Time: 9:56 WP\#: 23 Lat: 30.366409 Long: -80.105135
Vertical Angle: 1 Horizontal Bearing in Degrees: 90 Sighting Cue: 2 On/Off Effort: On
Observer: Erin Trackline: 7 Beaufort Sea State: $\quad 3$ Observer side: Left
Actual Time and Position of Sighting
Time: 9:57 WP\#: 24 Lat: 30.366602 Long: -80.105149
Species:Grampus griseus Numbers (Low/High/Best): 16/26/23

Features used in Species ID: Blunt heads with cleft in middle, white to grey bodies
Representative images used for Species ID: $\quad 9161,9166,9174,9197,9200,9201$
Photographer: Heather Frame numbers: \quad 9134-9217

Calculated distance from Trackline:
Final Time and Position of Sighting
Time: 10:08 WP\#: 25 Lat: 30.361352 Long: -80.107426

Calculated Distance Traveled:
$=0.6233 \mathrm{~km}$

Long. -80.107426

Behavior and Additional Comments

Mixed species sighting, Ggr and Ttr ****
Animals traveling very fast in 1 direction just below the surface. Animals divided into multiple groups, widely spaced, possibly 6 subgroups. All near a current line, some circling and breaching.

Wednesday, J uly 20, 2011 Sighting \# 3

Initial sighting on Track
Time: 10:10 WP\#: 27 Lat: 30.366453 Long: -80.166821
Vertical Angle: _ 1 Horizontal Bearing in Degrees: $\quad 90$ Sighting Cue:_ 3 On/Off Effort: On Trackline: $\quad 7 \quad$ Beaufort Sea State: _ 3 Observer: Heather Observer side: _ Right
Actual Time and Position of Sighting
Time: 10:10 WP\#: 28 Lat: 30.371936 Long: -80.164104
Species:Grampus griseus Numbers (Low/High/Best): 25/30/28
Features used in Species ID: Blunt heads with cleft in the middle, white to grey bodies
Representative images used for Species ID: \quad 9291, 9336, 9350

Photographer: Heather	Frame numbers:	$9219-9367$	Spacer:
Calculated distance from Trackline:	0368		
0.6631 km			

Final Time and Position of Sighting
Time: 10:20 WP\#: 29 Lat: 30.397805 Long: $\quad-80.191307$
Calculated Distance Traveled: \qquad
Behavior and Additional Comments
Traveling very fast with the majority in a tightly packed group with a few stragglers.

Wednesday, J uly 20, 2011 Sighting \# 4
Initial sighting on Track
Time: 10:25 WP\#: 32 Lat: 30.366501 Long: -80.321520
Vertical Angle: $\quad 1 \quad$ Horizontal Bearing in Degrees: 90 Sighting Cue: 2
On/Off Effort: On
Observer: Erin
Trackline: 7 Beaufort Sea State: 3

Actual Time and Position of Sighting
Time: $\frac{10: 27}{\text { WP\# }} \quad 33 \quad$ Lat: $\frac{30.367646}{\text { Numbers (Low/High/Best). }} \frac{-80.322849}{9 / 15 / 13}$
Species:Stenella frontalis Numbers (Low/High/Best): 9/15/13
Features used in Species ID: Alternating light and dark pattern down body with spotting

Behavior and Additional Comments

Traveling very fast sub surface and staying about 3 body lengths apart.

Wednesday, J uly 20, 2011 Sighting \# 5

Initial sighting on Track
Time: 11:32 WP\#: 47 Lat: 30.233583 Long: -80.353259
Vertical Angle: $\quad 2$ Horizontal Bearing in Degrees: 90 Sighting Cue: $\quad 2$ On/Off Effort: On Trackline:_5 Beaufort Sea State: _ 2 Observer: Heather Observer side: \quad R

Actual Time and Position of Sighting

Final Time and Position of Sighting
Time: 11:44 WP\#: 48 Lat: 30.239769 Long: $\quad-80.365223$ Calculated Distance Traveled: \qquad
Behavior and Additional Comments
No resight.

Wednesday, J uly 20, 2011 Sighting \# 6

Initial sighting on Track
Time: 13:53 WP\#: 61 Lat: 30.100442 Long: -79.847551
Vertical Angle: 1 Horizontal Bearing in Degrees: 90 Sighting Cue: 2 On/Off Effort: On Trackline: 3 Beaufort Sea State: 3 Observer: Heather Observer side: \quad R

Actual Time and Position of Sighting

Time: 13:54	WP\#: 62	Lat:	30.100653	Long:	-79.847793
Species:Tursiops			Numbers		

Species:Tursiops truncatus Numbers (Low/High/Best): 8/12/11

Features used in Species ID: Dark bodied animals with white peduncles

Calculated distance from Trackline: \qquad
Final Time and Position of Sighting
Time: 13:56 WP\#: 63 Lat: 30.111557 Long: -79.846815
Calculated Distance Traveled:
: $\quad 1.216 \mathrm{~km}$

Behavior and Additional Comments

Milling around subsurface, some doing deeper dives

Initial sighting on Track
Time: 14:14 WP\#: 66 Lat: 30.100087 Long: -80.438727

Vertical Angle: 3 Horizontal Bearing in Degrees: 120 Sighting Cue: 3 On/Off Effort: On Trackline: 3 Beaufort Sea State: 2 Observer: Erin Observer side: Left

Actual Time and Position of Sighting
Time: 14:16 WP\#: 67 Lat: 30.092634 Long: -80.431332
Species:Tursiops truncatus Numbers (Low/High/Best): 3/3/3
Features used in Species ID: Dark bodied animals with white peduncles
Representative images used for Species ID:
Photographer: \(\begin{aligned} \& Heather

\& Frame numbers:

\& Calculated distance from Trackline:\end{aligned}\)| 1.092 km | 9427,9450 |
| :--- | :--- |

Final Time and Position of Sighting
Time: 14:19 WP\#: $\quad 68$ Lat: 30.101285 Long: $\quad-80.426980$ Calculated Distance Traveled: \qquad
Behavior and Additional Comments
Slow travel just below the surface with regular surfacing.

Wednesday, J uly 20, 2011 Sighting \# 8
Initial sighting on Track
Time: 15:23 WP\#: 82 Lat: 29.965712 Long: -80.654761
Vertical Angle: $\quad 2$ Horizontal Bearing in Degrees: 90 Sighting Cue: 3 On/Off Effort: On Trackline: 1 Beaufort Sea State: 2 Observer: Erin Observer side: Left

Actual Time and Position of Sighting

Time: 15:25 WP\#: 83 Lat: 29.954577 Long: -80.651344
Species:Tursiops truncatus Numbers (Low/High/Best): 7/10/8

Features used in Species ID: Grey bodied animals with white peduncles

Behavior and Additional Comments

Traveling subsurface. Showing avoidance behavior.

Thursday, J uly 21, 2011 Sighting \# 1
Initial sighting on Track
Time: 9:57 WP\#: 14 Lat: 30.167064 Long: -80.126644

Vertical Angle: $\quad 2$ Horizontal Bearing in Degrees: 110 Sighting Cue: 3 On/Off Effort: On Trackline: $\quad 4 \quad$ Beaufort Sea State: 3 Observer: \qquad Observer side: \quad L

Actual Time and Position of Sighting
Time: 10:00 WP\#: 15 Lat: 30.160364 Long: -80.130149
Species:Tursiops truncatus Numbers (Low/High/Best): 12/16/14

Features used in Species ID: Uniform grey coloration with slight lateral blaze, robust body appearance, white dorsal surface to peduncle.
Representative images used for Species ID: $\quad 11,12,20,21$
Photogrep
Calculated distance from Trackline: 0.8 km
Calculated distance from Trackline
0.8 km

Final Time and Position of Sighting
Time: 10:02 WP\#: 16 Lat: 30.158152 Long: -80.128843 Calculated Distance Traveled: \qquad
\qquad
Behavior and Additional Comments
Traveling together mostly as a group with a few outliers - one mom / calf pair observed

Thursday, J uly 21, 2011 Sighting \# 2
Initial sighting on Track
Time: 10:42 WP\#: 20 Lat: 30.231813 Long: -79.982862
Vertical Angle: 3 Horizontal Bearing in Degrees: 100 Sighting Cue: 3 On/Off Effort: On Trackline: 5 Beaufort Sea State: 3 Observer: EWC Observer side: Right

Actual Time and Position of Sighting

Time: 10:45 WP\#: 21 Lat: 30.229362 Long: -79.981972
Species:Tursiops truncatus Numbers (Low/High/Best): 4/8/6
Features used in Species ID: Robust body appearance, uniform grey coloration

Representative images	d for Species ID:		6,67	
Photographer: EWC	Frame numbers:	40-72	Spacer:	73
Calculated distance fro	Trackline:			

Final Time and Position of Sighting

Time: 10:51 WP\#: 22 Lat: 30.237843 Long: -79986097

Calculated Distance Traveled: \qquad
Long: -79986097

Behavior and Additional Comments

A couple of small groups spread apart, two calves observed.

Initial sighting on Track
Time: 13:02 WP\#: 31 Lat: 30.365277 Long: -80.251457

Vertical Angle: 3 Horizontal Bearing in Degrees: 90 Sighting Cue: Splash On/Off Effort: On Trackline: $\quad 7 \quad$ Beaufort Sea State: 3 Observer: \qquad Observer side: \quad Right

Actual Time and Position of Sighting
Time: 13:03 WP\#: 32 Lat: 30.350203 Long: -80.247303 Species:Stenella frontalis Numbers (Low/High/Best): 30/40/35
Features used in Species ID: White tip to rostrum, area of white along animals midline, body with visible spotting especially inside white area on midline.
Representative images used for Species ID: $\quad 76,86,88,100,106,107$ \& 116
Photographer: EWC Frame numbers: 74-130 Spacer: 131
Calculated distance from Trackline:
1.7 km

Final Time and Position of Sighting
Time: 13:07 WP\#: 33 Lat: 30.354932 Long: $\quad-80.252459$
Calculated Distance Traveled: \qquad Long:

Behavior and Additional Comments
Fast travel with lots of aerial activity, closely packed animals, direction of travel changed during sighting
\qquad

Thursday, J uly 21, 2011 Sighting \# 4
Initial sighting on Track
Time: 13:10 WP\#: 35 Lat: 30.365455 Long: -80.125084
Vertical Angle: 3 Horizontal Bearing in Degrees: 90 Sighting Cue: Body On/Off Effort: On Trackline: 7 Beaufort Sea State: 3 Observer: EWC Observer side: Right

Actual Time and Position of Sighting

Features used in Species ID: Large head coming to a rounded point, large falcate dorsal fin, visible scarring on body.
Representative images used for Species ID
Photographer: EWC Frame numbers
Calculated distance from Trackline: \qquad
Final Time and Position of Sighting
Time: 13:13 WP\#: 37 Lat: 30.363711 Long: -80.131814
Calculated Distance Traveled: \qquad
140, 141, 147
$: \frac{140,1}{132-158}$

Initial sighting on Track
Time: 13:45 WP\#: 42 Lat: 30.433942 Long: -80.508678

Vertical Angle: _ 2 Horizontal Bearing in Degrees: 90 Sighting Cue: 3 On/Off Effort: On Trackline: $\quad 8 \quad$ Beaufort Sea State: 3 Observer: \qquad Observer side: \quad Right

Actual Time and Position of Sighting
Time: 13:46 WP\#: 43 Lat: 30.438755 Long: -80.505104
Species:Tursiops truncatus Numbers (Low/High/Best): 3/3/3

Features used in Species ID: Uniform grey coloration
Representative images used for Species ID: $\quad 174,175$
Photographer: EWC Frame numbers: 160-178 Spacer: 179
Calculated distance from Trackline:
Final Time and Position of Sighting
Time: 13:54 WP\#: 44 Lat: 30.443925 Long: $\quad-80.509085$ Calculated Distance Traveled: \qquad
Behavior and Additional Comments
Traveling close together - behavior and numbers made it difficult to relocate.

Thursday, J uly 21, 2011 Sighting \# 6
Initial sighting on Track
Time: 14:48 WP\#: 53 Lat: 30.567495 Long: -80.471574
Vertical Angle: $\quad 2$ Horizontal Bearing in Degrees: 90 Sighting Cue: 3 On/Off Effort: On Trackline: 10 Beaufort Sea State: 3 Observer: EWC Observer side: Right

Actual Time and Position of Sighting

Time: 14:51 WP\#: 54 Lat: 30.571109 Long: -80.463937
Species:Stenella frontalis Numbers (Low/High/Best): 20/50/35

Features used in Species ID: Light lateral blaze ending at dorsal fin, spotting pattern present, white tip to rostrum.

Representative images	sed for Species ID:	197-201		
Photographer: EWC	Frame numbers:	180-216	Spacer:	217
Calculated dist	Trackli			

Calculated distance from Trackline:
Final Time and Position of Sighting
Time: 14:54 WP\#: 55 Lat: 30.581021 Long: -80.462456 Calculated Distance Traveled: \qquad
Behavior and Additional Comments
Very disperse group made up of pairs or trios with one group of five. Lots of aerial activity.

Thursday, J uly 21, 2011 Sighting \# 7

Initial sighting on Track

Time: 14:59 WP\#: 57 Lat: 30.565379 Long: -80.601155

Observer: HJF Observer side: \quad Left

Actual Time and Position of Sighting

Time: 15:09	WP\#: 58	Lat:	30.571359	Long:	-80.584509
Species:Unidentified Delphinid Features used in Species ID:			Numbers	High/Best):	4/8/6
Representative images used for Species ID:			None taken		
Photographer	NA Fra	umb	NA	Spacer:	NA
Calculated distance from Trackline:			1.7 km		

Final Time and Position of Sighting

Time: NA WP\#: NA Lat: \qquad Long: NA
Calculated Distance Traveled:
Behavior and Additional Comments
Animals were difficult to relocate.

Initial sighting on Track

Actual Time and Position of Sighting
Time: 8:54 WP\#:_4 Lat: 30.567801 Long: -80.653477
Species:Tursiops truncatus Numbers (Low/High/Best): 13/15/15

Features used in Species ID: Robust body appearance, uniform grey color except slight lighter blaze to d fin.
Representative images used for Species ID: 4221, 4223, 4232
Photographer: Erin Frame numbers: 4188-4239 Spacer: 4240
Calculated distance from Trackline:
Final Time and Position of Sighting
Time: 9:00 WP\#: $\quad 5 \quad$ Lat: $\quad 30.570849$ Long: $\quad-80.665136$
Calculated Distance Traveled: \qquad
Behavior and Additional Comments
Three subgroups with 3 to 5 animals per group and some singles along the perimeter.
Animals displayed quick shallow surfacings that caused a moderate amount of splashing.
Leisure pace to travel. Two mom / calf pairs.

Wednesday, August 17, 2011 Sighting \# 2
Initial sighting on Track
Time: 9:02 WP\#: 8 Lat: 30.565282 Long: -80.600495
Vertical Angle: _ 1 Horizontal Bearing in Degrees: 90 Sighting Cue: Splash On/Off Effort: On Trackline: 10 Beaufort Sea State: 1 Observer: Erin Observer side: Right

Actual Time and Position of Sighting
Time: 9:04 WP\#:_9 Lat: 30.566900 Long: $\quad-80.599104$
Species:Stenella frontalis Numbers (Low/High/Best): 15/18/17

Features used in Species ID: Light dark pattern repeating down body of animal, white tip to rostrum, appearance os spots to varying degrees among animals.
Representative images used for Species ID: $\quad 4253,4265,4267,4269$
Photographer: Erin Frame numbers: 4241-4270 Spacer: 4271
Calculated distance from Trackline: \qquad
Final Time and Position of Sighting
Time: 9:06 WP\#: 10 Lat: $30.564581 \quad$ Long: -80.604737
Calculated Distance Traveled:
: 0.6 km

Behavior and Additional Comments

One large, densely packed group traveling slowly at the surface, group began more directional travel upon circling.
One younger animal in group

Initial sighting on Track

Time: 9:10	WP\#:	12	Lat: $\quad 30.570419$		-80.4	
Vertical Angle:	1	Horizontal Bearing in Degrees: Trackline: \qquad		90	Sighting Cue:	Splash
On/Off Effort:	On			Beaufort Sea State:		1
Observer:			rver side: Le			

Actual Time and Position of Sighting
Time: 9:11 WP\#: 13 Lat: 30.574196 Long: -80.472735
Species:Tursiops truncatus Numbers (Low/High/Best): 14/16/15

Features used in Species ID: Uniform grey coloration, broad dorsal fin
Representative images used for Species ID: 4287, 4303, 4305
Photographer: Erin Frame numbers: 4272-4316 Spacer: 4317
Calculated distance from Trackline:
Final Time and Position of Sighting
Time: 9:13 WP\#: 14 Lat: $30.575091 \quad$ Long: $\quad-80.482831$
Calculated Distance Traveled: \qquad
Behavior and Additional Comments
Long line of animals single file and well spaced apart. Lots of splashing at the surface caused by rapid surfacings.

Wednesday, August 17, 2011 Sighting \# 4
Initial sighting on Track
Time: 9:37 WP\#: 21 Lat: 30.500905 Long: -79.851271
Vertical Angle: $1 \quad$ Horizontal Bearing in Degrees: 90 Sighting Cue: Body On/Off Effort: On Observer: \qquad Trackline: 9 Beaufort Sea State: $\quad 2$ Observer side: _ Right

Actual Time and Position of Sighting
Time: 9:44 WP\#: 22 Lat: 30.503179 Long: -79.850363
Species:Grampus griseus Numbers (Low/High/Best): 4/4/4

Features used in Species ID: Blunt head, varying coloration of light and dark due to scarring tall thin dorsal fin.

Representative images	used for Species ID:	4334,4342		
Photographer: Erin	Frame numbers:	4318-4345	Spacer	4346

Calculated distance from Trackline: \qquad
Final Time and Position of Sighting
Time: 9:47 WP\#: 23 Lat: 30.508147 Long: -79.857124
Calculated Distance Traveled:
0.8 km

Behavior and Additional Comments

Pairs of animals reluctant to surface but still at a slow rate of travel.

Initial sighting on Track

Actual Time and Position of Sighting
Time: 10:01 WP\#: 28 Lat: 30.491920 Long: -80.271451
Species:Tursiops truncatus Numbers (Low/High/Best): 2/2/2
Features used in Species ID: Uniform grey coloration with slight blaze to behind dorsal fin robust body appearance.
Representative images used for Species ID: 4351, 4352, 4385
Photographer: Erin Frame numbers: 4347-4367 Spacer: 4368
Calculated distance from Trackline:
Final Time and Position of Sighting
Time: 10:04 WP\#: 29 Lat: 30.492711 Long: $\quad-80.277138$ Calculated Distance Traveled: \qquad Long:

Behavior and Additional Comments

Pair of animals widely spaced and splashing at the surface. A few times animals breached then formed into a closer grouping. Animals surfaced then dove deep out of sight on multiple occasions.

Wednesday, August 17, 2011 Sighting \# 6
Initial sighting on Track
Time: 10:15 WP\#: 35 Lat: 30.499811 Long: -80.687819
Vertical Angle: $\quad 2$ Horizontal Bearing in Degrees: 45 Sighting Cue: Splash On/Off Effort: On Trackline: 9 Beaufort Sea State: 2 Observer: Erin Observer side: Right

Actual Time and Position of Sighting

Time: 10:21 WP\#: 36 Lat: 30.499007 Long: -80.685826
Species:Tursiops truncatus Numbers (Low/High/Best): 1/1/1
Features used in Species ID:

Representative images	Species ID:	No Images		
Photographer: Erin	Frame numbers:	4369-4382	Spacer:	4383
Calculated distance fro	Trackline:	2 km		

Final Time and Position of Sighting

Time: 10:23 WP\#: 37 Lat: 30.505734 Long: -80.688824

Calculated Distance Traveled: \qquad
Long: -80.688824

Behavior and Additional Comments

Animal was only seen once. Waypoint 36 and 37 are assumed locations.

Initial sighting on Track
Time: 11:17 WP\#: 50 Lat: 30.368434 Long: -80.443388
Vertical Angle: _ 2 Horizontal Bearing in Degrees: 90 Sighting Cue: Body On/Off Effort: On Trackline: $\quad 7 \quad$ Beaufort Sea State: $\quad 2$ Observer: Ryan Observer side: Left

Actual Time and Position of Sighting
Time: 11:23 WP\#: 51 Lat: 30.357457 Long: -80.446147 Species:Stenella frontalis Numbers (Low/High/Best): $15 / 18 / 16$
Features used in Species ID: Alternating light and dark coloration down the animals body varying degree of spotting between animals, lighter blaze to middle of dorsal fin.
Representative images used for Species ID: 4415, 4416, 4420, 4423
Photographer: Erin Frame numbers: 4384-4426 Spacer: 4427
Calculated distance from Trackline:
1.2 km

Final Time and Position of Sighting
Time: 11:24 WP\#: 52 Lat: 30.363671 Long: -80.449793 Calculated Distance Traveled: \qquad

Behavior and Additional Comments

Group all hanging at the surface motionless "logging", began slow travel after circling and formed into a tighter group. An second group of 4 animals was seen near the original group.

Wednesday, August 17, 2011 Sighting \# 8
Initial sighting on Track
Time: 13:55 WP\#: 69 Lat: 30.166726 Long: -80.673712
Vertical Angle: $\quad 2$ Horizontal Bearing in Degrees: 90 Sighting Cue: Body On/Off Effort: On Trackline: 4 Beaufort Sea State: 2 Observer: Ryan Observer side: Left
Actual Time and Position of Sighting
Time: 13:59 WP\#: 70 Lat: 30.171744 Long: -80.678577
Species:Tursiops truncatus Numbers (Low/High/Best): 4/4/4
Features used in Species ID: Uniform grey coloration, robust body appearance, blunt rostrum.

Behavior and Additional Comments

Animals swimming belly to belly near the surface with lots of big splashes and the occasional breach.

Initial sighting on Track
Time: 14:05 WP\#: 73 Lat: 30.168796 Long: -80.536116

Vertical Angle: $\quad 2$ Horizontal Bearing in Degrees: 90 Sighting Cue: Body On/Off Effort: On Trackline:_4 Beaufort Sea State: 2 Observer: Ryan Observer side: Left

Actual Time and Position of Sighting
Time: 14:07 WP\#: 74 Lat: 30.168431 Long: -80.535960
Species:Tursiops truncatus Numbers (Low/High/Best): 9/9/9
Features used in Species ID: Uniform grey coloration, robust rostrum and body.
Representative images used for Species ID: $\quad 4481,4490,4496$
Photographer: Erin Frame numbers: 4469-4498 Spacer: 4499
Calculated distance from Trackline:
0.1 km

Final Time and Position of Sighting
Time: 14:13 WP\#: $\quad 75$ Lat: 30.172361 Long: $\quad-80.528183$
Calculated Distance Traveled: \qquad

Behavior and Additional Comments

Initially three animal observed logging / interacting at the surface, upon circling only a single animal was observed. Individuals were very active at the surface - chin slapping. A second group was seen $\simeq 6$ animal that were swimming very close to one another.

Wednesday, August 17, 2011 Sighting \# 10

Initial sighting on Track
Time: 14:28 WP\#: 77 Lat: 30.165081 Long: -80.024973
Vertical Angle: $\quad 2$ Horizontal Bearing in Degrees: 60 Sighting Cue: Splash On/Off Effort: On Observer: \qquad Trackline: 4 Beaufort Sea State: \qquad
Actual Time and Position of Sighting
Time: $\frac{14: 32}{\text { WPA: }} 78$ Lat: $\frac{30.161176}{\text { Long: }} \frac{-80.024868}{\text { Numbers (Low/High/Best). }}$

Species:Tursiops truncatus Numbers (Low/High/Best): 5/7/6
Features used in Species ID: Uniform grey coloration, robust rostrum and body.

Representative image	for Species ID:	4503, 4510		
Photographer: Erin	Frame numbers:	4500-4512	Spacer:	4513
Calculated dist		km		

Calculated distance from Trackline: \qquad
Final Time and Position of Sighting
Time: 14:34 WP\#: 49 Lat: 30.156045 Long: -80.016716
Calculated Distance Traveled:
: $\quad 1.0 \mathrm{~km}$

Behavior and Additional Comments

Group of animals were widely spaced traveling at a moderate pace - mainly single animals with a few traveling as pairs.

Wednesday, August 17, 2011 Sighting \# 11
Initial sighting on Track
Time: 15:14 WP\#: 86 Lat: 30.031953 Long: -80.683372
Vertical Angle: $\quad 2$ Horizontal Bearing in Degrees: 90 Sighting Cue: Body On/Off Effort: On Trackline:_2 Beaufort Sea State: 2 Observer: Ryan Observer side: Left

Actual Time and Position of Sighting
Time.
Species:None \quad Numbers (Low/High/Best): $1 / 1 / 1$

Features used in Species ID: See comments below

Representative images used for Species ID:		NA	
Photographer:	Erin	Frame numbers:	NA
Calculated distance from Trackline:	Spacer:		

Final Time and Position of Sighting
Time:_NA WP\#:_NA Lat:_NA Long: _ NA Calculated Distance Traveled: NA

Behavior and Additional Comments

Large animal around $20-25 \mathrm{ft}$, uniform light grey in color. Body very long from pectoral fins to caudal fin. Animal was observed at the surface taking a few rapid breaths before diving. Was not resighted once it dove from the surface.

Wednesday, August 17, 2011 Sighting \# 12

Initial sighting on Track
Time: 15:33 WP\#: 91 Lat: 30.031421 Long: -80.480616
Vertical Angle: 2 Horizontal Bearing in Degrees: 60 Sighting Cue: Body On/Off Effort: On Trackline: 2 Beaufort Sea State: 2 Observer: \qquad Observer side: _ Right

Actual Time and Position of Sighting
Time: 15:34 WP\#: 92 Lat: 30.025702 Long: -80.486462
Species:Tursiops truncatus Numbers (Low/High/Best): 2/4/4
Features used in Species ID:

Calculated distance from Trackline: \qquad
Final Time and Position of Sighting
Time: 15:44 WP\#: 93 Lat: 30.023251 Long: -80.474775 Calculated Distance Traveled:
1.1 km

Behavior and Additional Comments

Mom and calf plus two outlier.

Wednesday, August 17, 2011 Sighting \# 13

Initial sighting on Track
Time: 15:57 WP\#: 99 Lat: 30.035888 Long: -80.033268

Vertical Angle: 1 Horizontal Bearing in Degrees: 45 Sighting Cue: Splash On/Off Effort: $\frac{\text { On }}{\text { rin }} \quad$ Trackline:_2 \quad Beaufort Sea State: 3 Observer: Erin Observer side: __ Right
Actual Time and Position of Sighting
Time: 15:58 WP\#: 100 Lat: 30.029594 Long: -80.027030
Species:Tursiops truncatus Numbers (Low/High/Best): 3/4/4
Features used in Species ID: Uniform grey coloration, robust body appearance.
Representative images used for Species ID: 4538, 4539
Photographer: Erin Frame numbers: 4527-4540 Spacer: 4541
Calculated distance from Trackline:
Final Time and Position of Sighting
Time: 16:02 WP\#: 101 Lat: 30.031170 Long: -80.035958 Calculated Distance Traveled: \qquad
Behavior and Additional Comments
Robust appearance to animals, traveling just below the surface.

Wednesday, August 17, 2011 Sighting \# 14

Initial sighting on Track
Time: 16:18 WP\#: 105 Lat: 29.965994 Long: -80.008382
Vertical Angle: 1 Horizontal Bearing in Degrees: 90 Sighting Cue: Body On/Off Effort: On Trackline: 1 Beaufort Sea State: 3 Observer: Erin Observer side: Right

Actual Time and Position of Sighting

Calculated distance from Trackline:

Final Time and Position of Sighting

Time: 16:22 WP\#: 107 Lat: 29.971577 Long: $\quad-80.006337$ Calculated Distance Traveled:
0.6 km

Behavior and Additional Comments

Disperse group traveling at a moderate pace, a few young / smaller animals and at least one mom/calf.

Initial sighting on Track
Time: 9;32 WP\#: 11 Lat: 30.032333 Long: -79.937861

Vertical Angle: $\quad 1 \quad$ Horizontal Bearing in Degrees: 90 Sighting Cue: 2 On/Off Effort: On Trackline: $\quad 2 \quad$ Beaufort Sea State: 1 Observer: Erin Observer side: Left

Actual Time and Position of Sighting
Time: 9:33 WP\#: 12 Lat: 30.028955 Long: -79.930610
Species:Globicephala macrorhynchus Numbers (Low/High/Best): 11/15/13
Features used in Species ID: Large, dark bodied animals with small pectoral fins and a blunt head
Representative images used for Species ID:

Photographer: \quad Ryan	Frame numbers:	$4559,4563,4586,4589$	
Calculated distance from Trackline:	4558-4593	Spacer:	4594
.7927 km			

Final Time and Position of Sighting
Time: 9:38 WP\#: 13 Lat: $\quad 30.035747$ Long: $\quad-79.931309$
Calculated Distance Traveled: \qquad

Behavior and Additional Comments

Logging just below the surface then slow travel with regular surfacing. Several calves in group.

Thursday, August 18, 2011 Sighting \# 2

Initial sighting on Track
Time: 9:43 WP\#: 16 Lat: 30.029983 Long: -80.070750
Vertical Angle: 1 Horizontal Bearing in Degrees: 90 Sighting Cue: 3 On/Off Effort: On Observer: Ryan Trackline: 2 Beaufort Sea State: \qquad
Observer side: \qquad
Actual Time and Position of Sighting
Time: 9:44 WP\#: 17 Lat: 30.029663 Long: -80.070879
Species:Tursiops truncatus Numbers (Low/High/Best): 22/28/24
Features used in Species ID: Robust, uniform grey animals with white blaze to dorsal fin

Behavior and Additional Comments

Lots of breaching, splashing. One big group of approx. 12 and several small groups of 3-4. Fast moving with a white peduncle present.

Thursday, August 18, 2011 Sighting \# 3

Initial sighting on Track
Time: 10:00 WP\#: 23 Lat: 30.030482 Long: -80.483837

Vertical Angle: $\quad 2$ Horizontal Bearing in Degrees: 90 Sighting Cue: $\quad 2$ On/Off Effort: On Trackline:_2 Beaufort Sea State: 2 Observer: Ryan Observer side: \qquad
Actual Time and Position of Sighting
Time: 10:01 WP\#: 24 Lat: 30.033624 Long: -80.477832
Species:Stenella frontalis Numbers (Low/High/Best): 15/18/17

Features used in Species ID: Alternating light and dark pattern down body, spots down body
Representative images used for Species ID: 4685, 4650, 4654, 4671, 4672, 4674, 4681
Photographer: Ryan Frame numbers: 4637-4704 Spacer: 4705
Calculated distance from Trackline: $\quad 0.6755 \mathrm{~km}$
Final Time and Position of Sighting
Time: 10:06 WP\#: 25 Lat: 30.037816 Long: $\quad-80.482801$
Calculated Distance Traveled: \qquad
Behavior and Additional Comments
Traveling fast just under the surface, darting different directions, belly to belly swimming. Some traveling close together.

Thursday, August 18, 2011 Sighting \#

Initial sighting on Track
Time: 10:28 WP\#: 34 Lat: 30.101288 Long: -80.240282
Vertical Angle: 1 Horizontal Bearing in Degrees: 100 Sighting Cue: 2 On/Off Effort: On Trackline: 3 Beaufort Sea State: 3 Observer: Erin Observer side: Left
Actual Time and Position of Sighting

Time: | WP\#: | Lat: \quad Long: |
| :--- | :--- |
| Numbers (Low/High/Best): $\quad 2 / 2 / 2$ | |

Features used in Species ID:
Representative images used for Species ID:
Photographer: \qquad Frame numbers:
Spacer:
Calculated distance from Trackline:
Final Time and Position of Sighting
Time: \qquad WP\#:
Lat: \square Long: \qquad
Calculated Distance Traveled: \square

Behavior and Additional Comments

No resight

Initial sighting on Track
Time: 10:40 WP\#: 37 Lat: 30.104061 Long: -80.029883
Vertical Angle: $\quad 2$ Horizontal Bearing in Degrees: 100 Sighting Cue: 3 On/Off Effort: On Trackline: $\quad 3 \quad$ Beaufort Sea State: 3 Observer: Erin Observer side: L
Actual Time and Position of Sighting
Time: 10:42 WP\#: 38 Lat: 30.110885 Long: -80.022385
Species:Tursiops truncatus Numbers (Low/High/Best): 8/10/10

Features used in Species ID: Large robust, uniform grey animals

Final Time and Position of Sighting
Time: 10:46 WP\#: $\quad 39$ Lat: 30.112861 Long: $\quad-80.019678$
Calculated Distance Traveled: \qquad
Behavior and Additional Comments
Moving very fast, lots of splashing from darting on surface water.

Thursday, August 18, 2011 Sighting \# 6

Initial sighting on Track
Time: 12:12 WP\#: 59 Lat: 30.299903 Long: -80.526268
Vertical Angle: _ 2 Horizontal Bearing in Degrees: 90 Sighting Cue: 3 On/Off Effort: On Trackline: $\quad 6 \quad$ Beaufort Sea State: 2 Observer: Ryan Observer side: Right

Actual Time and Position of Sighting

Features used in Species ID: Alternating light and dark pattern down body with white tip on rostrum
Representative images used for Species ID: $\quad 4725,4748,4752$
Photographer: \quad Ryan \quad Frame numbers: $\frac{4719-4774}{0.2943 \mathrm{~km}}$ Spacer: $\quad 4775$
Calculated distance from Trackline:

Calculated distance from Trackline:
Final Time and Position of Sighting
Time: 12:23 WP\#: 61 Lat: 30.307683 Long: -80.527641
Calculated Distance Traveled:
0.6097 km

Behavior and Additional Comments

Staying in a close group just below the surface. Some swimming belly up.

Initial sighting on Track
Time: 14:10 WP\#: 69 Lat: 30.367712 Long: -80.202135
Vertical Angle: 3 Horizontal Bearing in Degrees: 100 Sighting Cue:_ 3 On/Off Effort: On Trackline: $\quad 7 \quad$ Beaufort Sea State: $\quad 2$ Observer: Erin Observer side: Left
Actual Time and Position of Sighting
Time: 14:12 WP\#: 70 Lat: 30.391684 Long: $\quad-80.202370$
Species:Stenella frontalis Numbers (Low/High/Best): 25/30/28
Features used in Species ID: Alternating light and dark pattern down body with spotting
Representative images used for Species ID: 4777, 4787, 4792, 4805, 4806
Photographer: Ryan Frame numbers: 4776-4824 Spacer: 4825
Calculated distance from Trackline: $\quad 2.6666 \mathrm{~km}$
Final Time and Position of Sighting
Time: 14:15 WP\#: $\quad 71$ Lat: $\quad 30.390068$ Long: $\quad-80.202746$
Calculated Distance Traveled: \qquad
Behavior and Additional Comments
2 groups with some breaching and making big splashes. Each group tight together, milling just below the surface.

Thursday, August 18, 2011 Sighting \#

Initial sighting on Track
Time: 14:40 WP\#: 78 Lat: 30.433684 Long: -80.333107
Vertical Angle: 1 Horizontal Bearing in Degrees: 100 Sighting Cue: 3
On/Off Effort: On
Observer: Erin
Actual Time and Position of Sighting
Time: 14:40 WP\#: 79 Lat: 30.436006 Long: $\quad-80.331779$
Species:Stenella frontalis Numbers (Low/High/Best): 9/12/10
Features used in Species ID: White tip on rostrum with spots down the body

Representative images	Species ID:	4844,4845		
Photographer: Ryan	Frame numbers:	4826-4877	Spacer:	4878
Calculated distance fro	Trackline:	79 km		

Final Time and Position of Sighting

Time: 14:44 WP\#: 80 Lat: 30.433243 Long: -80.325195

Calculated Distance Traveled:
: $\quad 0.7020 \mathrm{~km}$

Long: -80.325195

Behavior and Additional Comments

Animals were in a tight group until we flew over them and then they showed avoidance. Darting different directions.

Possible avoidance

Thursday, August 18, 2011 Sighting \#

Initial sighting on Track
Time: 15:04 WP\#: 88 Lat: 30.501254 Long: -80.489315
 Observer: Erin Observer side: Left
Actual Time and Position of Sighting
Time: 15:08 WP\#: 89 Lat: 30.500294 Long: -80.498198
Species:Tursiops truncatus Numbers (Low/High/Best): 3/3/3

Features used in Species ID: Robust, uniform grey animals
Representative images used for Species ID:

$4900,4888,4896$
0.8577 km
Spacer: $\quad 4907$

Calculated distance from Trackline:
Final Time and Position of Sighting
Time: 15:09 WP\#: 90 Lat: 30.504671 Long: -80.492133
Calculated Distance Traveled: \qquad

Behavior and Additional Comments

Was logging at the surface until we started circling then they started moving fast and doing deep dives

Possible avoidance

Thursday, August 18, 2011 Sighting \# 10

Initial sighting on Track
Time: 15:15 WP\#: 93 Lat: 30.500179 Long: -80.304384
Vertical Angle: 1 Horizontal Bearing in Degrees: 90 Sighting Cue: 2 On/Off Effort: On Trackline: $\quad 9 \quad$ Beaufort Sea State: 2 Observer: Ryan Observer side: Right

Actual Time and Position of Sighting

Time: 15:16 WP\#: 94 Lat: 30.497217 Long: -80.309981
Species:Tursiops truncatus Numbers (Low/High/Best): 15/18/16
Features used in Species ID: Robust, uniform grey animals
Representative images used for Species ID: \quad 4909, 4921, 4928, 4932, 4937
Photographer: Ryan Frame numbers: $\frac{4909-4939}{0.6293 \mathrm{~km}}$ Spacer: 4940
Calculated distance from Trackline:

Final Time and Position of Sighting

Time: 15:18 WP\#: 95 Lat: 30.497949 Long: -80.302887

Calculated Distance Traveled:
0.6845 km

Long: -80.302887

Behavior and Additional Comments

Fast darting in different directions. 2 groups, some swimming belly to belly.

Thursday, August 18, 2011 Sighting \# 11

Initial sighting on Track
Time: 15:53 WP\#: 105 Lat: 30.566016 Long: -80.502711
 Observer: Erin Observer side: Left
Actual Time and Position of Sighting
Time: 15:54 WP\#: 106 Lat: 30.562645 Long: -80.494513
Species:Tursiops truncatus Numbers (Low/High/Best): 8/8/8
Features used in Species ID: Robust, uniform grey animal
Representative images used for Species ID: 4963, 4956, 4960
Photographer: Ryan Frame numbers: 4941-4971 Spacer: 4972
Calculated distance from Trackline: $\quad 0.8698 \mathrm{~km}$
Final Time and Position of Sighting
Time: 15:58 WP\#: 107 Lat: 30.556583 Long: $\quad-80.495974$
Calculated Distance Traveled:
0.6884 km

Behavior and Additional Comments

Swimming spread out, breaching, splashing, traveling fast

Thursday, August 18, 2011 Sighting \# 12

Initial sighting on Track
Time: 16:00 WP\#: 109 Lat: 30.564456 Long: -80.542065
Vertical Angle: 3 Horizontal Bearing in Degrees: 100 Sighting Cue: 3 On/Off Effort: On Trackline: 10 Beaufort Sea State: 2 Observer: Erin Observer side: Left
Actual Time and Position of Sighting
Time: 16:02 WP\#: 110 Lat: 30.557425 Long: -80.547583
Species:Tursiops truncatus Numbers (Low/High/Best): 16/20/18
Features used in Species ID: Robust, uniform grey animals

Representative image	for Species ID:	4979, 4988		
Photographer: Ryan	Frame numbers:	4973-5003	Spacer:	5004
Calculated distance fion	Trackline:	36 km		

Final Time and Position of Sighting

Time: 16:06 WP\#: 111 Lat: 30.562219 Long: -80.532825

Calculated Distance Traveled:
1.510 km

Behavior and Additional Comments

Several groups, individuals in each group are tight but groups are spaced out. All swimming in one direction, most staying subsurface with some doing deeper dives.

Thursday, August 18, 2011 Sighting \# 13

Initial sighting on Track

Time: 16:09 WP\#: 114 Lat: 30.566778 Long: -80.595993

Observer:
Observer side: \quad Right
Actual Time and Position of Sighting
Time: 16:09 WP\#: 115 Lat: 30.567225 Long: -80.592630
Species:Stenella frontalis Numbers (Low/High/Best): 8/8/8
Features used in Species ID: Alternating light and dark pattern down body
Representative images used for Species ID: $\quad 5021,5035,5042,4043$
Photographer: Ryan Frame numbers: 5005-5049 Spacer: $\quad 5050$
Calculated distance from Trackline: $\quad 0.3258 \mathrm{~km}$
Final Time and Position of Sighting
Time: 16:12 WP\#: 116 Lat: 30.572476 Long: $\quad-80.595599$
Calculated Distance Traveled: $\quad \overline{0.6494 \mathrm{~km}}$
Behavior and Additional Comments
Animals in a tight group darting in different directions, breaching, splashing, belly to belly swimming

Initial sighting on Track
Time: 11:28 WP\#: 30 Lat: 30.298181 Long: -80.623132
 Observer: Erin Observer side: Left
Actual Time and Position of Sighting
Time: 11:28 WP\#: 31 Lat: 30.303628 Long: -80.631996 Species:Stenella frontalis Numbers (Low/High/Best): 15/19/16
Features used in Species ID: Alternating light and dark pattern down body with white tip on rostrum
Representative images used for Species ID: $\quad 5054,5057$
Photographer: Ryan Frame numbers: 5051-5067 Spacer: 5068
Calculated distance from Trackline:
1.045 km

Final Time and Position of Sighting
Time: $111: 41$ WP\#: 32 Lat: $\frac{30.303041}{0.9574}$ Long: -80.641945
Calculated Distance Traveled: \qquad

Behavior and Additional Comments

Chasing down a school of fish, darting in different directions, moving quick just below the surface. 2 subgroups, one with about 7 individuals the other with about 9 . Doing deeper dives. Possible avoidance.

Thursday, September 29, 2011 Sighting \# 2
Initial sighting on Track
Time: 13:35 WP\#: 43 Lat: 30.365835 Long: -79.975745
Vertical Angle: 1 Horizontal Bearing in Degrees: 90 Sighting Cue: 2 On/Off Effort: On Observer: Erin Trackline: 7 Beaufort Sea State: $\quad 2$ Actual Time and Position of Sighting
Time: 13:38 WP\#: 44 Lat: 30.366795 Long: $\quad-79.972312$
Species:Tursiops truncatus Numbers (Low/High/Best): 1/1/1
Features used in Species ID: White peduncle
Representative images used for Species ID: \quad 5075,5076
Photographer: Ryan Frame numbers: $\quad 5069-5079 \quad$ Spacer: $\quad 5080$

Calculated distance from Trackline:

Final Time and Position of Sighting

Time: 13:44 WP\#: 45 Lat: 30.364137 Long: $\quad-79.985106$

Calculated Distance Traveled:

Behavior and Additional Comments

Presence of a white peduncle, traveling just below the surface.

Initial sighting on Track
Time: 14:07 WP\#: 51 Lat: 30.433704 Long: -80.365225

Vertical Angle: 1 Horizontal Bearing in Degrees: 90 Sighting Cue: $\quad 2$ On/Off Effort: On Trackline: $\quad 7 \quad$ Beaufort Sea State: $\quad 2$ Observer: _ Ryan Observer side: \quad Right

Actual Time and Position of Sighting
Time: 14:08 WP\#: 52 Lat: 30.433527 Long: -80.356491
Species:Stenella frontalis Numbers (Low/High/Best): 1/1/1
Features used in Species ID: Alternating light and dark pattern down body, white tip on rostrum
Representative images used for Species ID: $\quad 5085,5087,5088$
Photographer: Ryan Frame numbers: 5081-5091 Spacer: 5092
Calculated distance from Trackline:
Final Time and Position of Sighting
Time: 14:12 WP\#: 53 Lat: 30.435878 Long: $\quad-80.357179$
Calculated Distance Traveled: \qquad
Behavior and Additional Comments
Traveling just below the surface then doing deeper dives. Jumping.

Thursday, September 29, 2011 Sighting \# 4

Initial sighting on Track
Time: 14:18 WP\#: 55 Lat: 30.432618 Long: -80.559966
Vertical Angle: 2 Horizontal Bearing in Degrees: 90 Sighting Cue: 2 On/Off Effort: On Trackline: 8 Beaufort Sea State: 2 Observer: Ryan Observer side: Right

Actual Time and Position of Sighting

Time: 14:20 WP\#: 56 Lat: 30.433188 Long: $\frac{-80.549888}{}$
Species:Stenella frontalis Numbers (Low/High/Best): 4/8/7

Features used in Species ID: Alternating light and dark pattern down body with white tip on rostrum

Calculated distance from Trackline:
Final Time and Position of Sighting
Time: 14:20 WP\#: 57 Lat: 30.432181 Long: -80.553303
Calculated Distance Traveled: \qquad

Behavior and Additional Comments

Moving quick just below the surface

Initial sighting on Track
Time: 14:34 WP\#: 63 Lat: 30.501071 Long: -80.433772

Vertical Angle: _ 2 Horizontal Bearing in Degrees: $\quad 90$ Sighting Cue:_ 3 On/Off Effort: On Trackline:_9 Beaufort Sea State: 2 Observer: \qquad Observer side: Left

Actual Time and Position of Sighting
Time: 14:35 WP\#: 64 Lat: 30.506057 Long: $\quad-80.431239$
Species:Tursiops truncatus Numbers (Low/High/Best): 7/7/7

Features used in Species ID: Robust, uniform grey bodied animal
Representative images used for Species ID: 5121, 5127-5129
Photographer: Ryan Frame numbers: 5104-5129 Spacer: 5130
Calculated distance from Trackline: $\quad 0.6052 \mathrm{~km}$
Final Time and Position of Sighting
Time: 14:37 WP\#: 65 Lat: 30.500464 Long: $\quad-80.424406$
Calculated Distance Traveled: \qquad
Behavior and Additional Comments
Lots of splashing, stayed in a tight group.

Thursday, September 29, 2011 Sighting \# 6

Initial sighting on Track
Time: 13:02 WP\#: 73 Lat: 30.566017 Long: -80.050175
Vertical Angle: 3 Horizontal Bearing in Degrees: 90 Sighting Cue: 2 On/Off Effort: On Trackline: 10 Beaufort Sea State: 3 Observer: Ryan Observer side: Right

Actual Time and Position of Sighting

Time: 15:04 WP\#: 74 Lat: 30.572807 Long: -80.038414
Species:Tursiops truncatus Numbers (Low/High/Best): 12/17/15

Features used in Species ID: Robust, uniform grey animal

Representative images	ID	5134-5135,5149		
Photographer: Ryan	Frame numbers:	5131-5155	Spacer:	5156
Calculated distance fro	Trackline:	6 km		

Final Time and Position of Sighting

Time: 15:05 WP\#: 75 Lat: 30.574808 Long: -80.043137

Calculated Distance Traveled:
0.5039 km

Long: -80.043137

Behavior and Additional Comments

Calves present, white peduncles traveling just below the surface.

Initial sighting on Track
Time: 15:07 WP\#: 77 Lat: 30.565399 Long: -80.101097

Vertical Angle: _ 2 _Horizontal Bearing in Degrees: 100 Sighting Cue: 2 On/Off Effort: On Trackline: 10 Beaufort Sea State: 3 Observer: Erin Observer side: Left
Actual Time and Position of Sighting
Time: 15:08 WP\#: 78 Lat: 30.560653 Long: -80.093260
Species:Grampus griseus Numbers (Low/High/Best): 40/48/45

Features used in Species ID: Blunt head, lots of white scaring down body, robust
Representative images used for Species ID: $\quad 5157,5178,5179$
Photographer: Ryan Frame numbers: 5157-5192 Spacer: 5193
Calculated distance from Trackline: $\quad 0.9174 \mathrm{~km}$
Final Time and Position of Sighting
Time: 15:12 WP\#: 79 Lat: $30.559231 \quad$ Long: $\quad-80.085699$
Calculated Distance Traveled: \qquad
Behavior and Additional Comments
Calves present, moving slowly just below the surface, spaced out.

Thursday, September 29, 2011 Sighting \# 8

Initial sighting on Track
Time: 15:18 WP\#: 82 Lat: 30.565556 Long: -80.302031
Vertical Angle: $\quad 2$ Horizontal Bearing in Degrees: 100 Sighting Cue: 3 On/Off Effort: On Trackline: 10 Beaufort Sea State: 2 Observer: Erin Observer side: Left
Actual Time and Position of Sighting
Time: $15: 20$ WP\#: $83 \quad$ Lat: $\frac{30.563689}{\text { Numbers (Low/High/Best): }} \frac{-80.303858}{2 / 2 / 2}$

Species:Stenella frontalis Numbers (Low/High/Best): 2/2/2
Features used in Species ID: Alternating light and dark pattern down body with white tip on rostrum
Representative images used for Species ID: \quad 5194, 5203
Photographer: Ryan Frame numbers: 5194-5204 Spacer: 5205
Calculated distance from Trackline: \qquad
Final Time and Position of Sighting
Time: 15:21 WP\#: 84 Lat: 30.550730 Long: -80.297536
Calculated Distance Traveled: \qquad

Behavior and Additional Comments

Mom calf pair

Initial sighting on Track
Time: 15:24 WP\#: 86 Lat: 30.566198 Long: -80.401362
Vertical Angle: $\quad 2$ Horizontal Bearing in Degrees: 100 Sighting Cue:_ 3 On/Off Effort: On Trackline: 10 Beaufort Sea State: $\quad 2$ Observer: Erin Observer side: Left
Actual Time and Position of Sighting
Time: 15:24 WP\#: 87 Lat: 30.569054 Long: -80.391592
Species:Stenella frontalis Numbers (Low/High/Best): 30/40/35
Features used in Species ID: Alternating light and dark pattern down body with white tip on rostrum
Representative images used for Species ID: $\quad 5206,5211,5215,5220$
Photographer: Ryan Frame numbers: 5206-5222 Spacer: 5223
Calculated distance from Trackline: $\quad 0.9878 \mathrm{~km}$
Final Time and Position of Sighting
Time: 15:27 WP\#: 88 Lat: 30.565255 Long: $\quad-80.388245$
Calculated Distance Traveled: \qquad
Behavior and Additional Comments
Lots of splashing, jumping and darting in different directions.

Thursday, September 29, 2011 Sighting \# 10

Initial sighting on Track
Time: 15:33 WP\#: 90 Lat: 30.565173 Long: -80.605801
Vertical Angle: 2 Horizontal Bearing in Degrees: 60 Sighting Cue: 3 On/Off Effort: On Trackline: 10 Beaufort Sea State: 2 Observer: Ryan Observer side: Right

Actual Time and Position of Sighting

Time: $15: 34$ WP\#: 91	
Species:Stenella frontalis	Lat: $\frac{30.566402}{\text { Numbers (Low/High/Best): }} \frac{120.602615}{18 / 15}$

Features used in Species ID: Alternating light and dark pattern down body with white tip on rostrum
Representative images used for Species ID: $\quad 5230,5254$
Photographer: Ryan Frame numbers: 5224-5257 Spacer: 5258
Calculated distance from Trackline: \qquad
Final Time and Position of Sighting
Time: 15:37 WP\#: 92 Lat: 30.566318 Long: -80.597448
Calculated Distance Traveled:
0.4948 km

Behavior and Additional Comments

Slowly moving in different directions just below the surface

Initial sighting on Track
Time: 12:39 WP\#: 5 Lat: 30.567764 Long: -79.908548

Vertical Angle: _ 3 Horizontal Bearing in Degrees: 90 Sighting Cue: Body On/Off Effort: On Trackline: 10 Beaufort Sea State: 3 Observer: Ryan Observer side: \quad Left

Actual Time and Position of Sighting
Time: 12:40 WP\#:_6 Lat: 30.572877 Long: -79.915296
Species:Tursiops truncatus Numbers (Low/High/Best): 12/20/16

Features used in Species ID: Robust body appearance, uniform grey coloration with lighter blaze to dorsal fin.
Representative images used for Species ID: 5265, 5271, 5279
Photographer: Erin Frame numbers: 5259-5285 Spacer: 5286
Calculated distance from Trackline:
Final Time and Position of Sighting
Time: 12:45 WP\#: $\quad 7 \quad$ Lat: $\quad 30.571015$ Long: $\quad-79.912275$
Calculated Distance Traveled: \qquad Long:

Behavior and Additional Comments
A couple loose groups observed splashing at the surface - animals dispersed upon circling.

Friday, September 30, 2011 Sighting \# 2
Initial sighting on Track
Time: 13:09 WP\#: 12 Lat: 30.499459 Long: -80.472107
Vertical Angle: $\quad 1 \quad$ Horizontal Bearing in Degrees: 100 Sighting Cue: Splash On/Off Effort: On
Observer: Erin Trackline: 9 Beaufort Sea State: $\quad 2$ Observer side: _ Right

Actual Time and Position of Sighting
Time: 13:10 WP\#: 13 Lat: 30.497738 Long: -80.463178
Species:Stenella frontalis Numbers (Low/High/Best): 4/4/4
Features used in Species ID: White tip to rostrum, alternating light and dark coloration to body

Behavior and Additional Comments

Traveling in loose association with one another, splashing while surfacing. Traveling at a moderate pace

Initial sighting on Track
Time: 13:19 WP\#: 16 Lat: 30.499429 Long: -80.521748
Vertical Angle: _ 1 Horizontal Bearing in Degrees: 90 Sighting Cue: Body On/Off Effort: On Trackline:_9 Beaufort Sea State: 2 Observer: Erin Observer side: Right
Actual Time and Position of Sighting
Time: 13:20 WP\#:_17 Lat: 30.499540 Long: -80.523346
Species:Tursiops truncatus Numbers (Low/High/Best): 8/12/10

Features used in Species ID: Robust body and uniform grey coloration.
Representative images used for Species ID: $\quad 5334,5342,5348,5349$
Photographer: Erin Frame numbers: 5321-5354 Spacer: 5355
Calculated distance from Trackline: $\quad 0.1 \mathrm{~km}$
Final Time and Position of Sighting
Time: 13 WP\#: $\quad 18$ Lat: $\quad 30.496537 \quad$ Long: $\quad-80.514799$
Calculated Distance Traveled: \qquad

Behavior and Additional Comments

Hanging out just below the surface not traveling at all, animals of uniform grey coloration. Animals produced large forceful breaths easily seen from the air during repeated surfacings.

Friday, September 30, 2011 Sighting \# 4
Initial sighting on Track
Time: 13:28 WP\#: 20 Lat: 30.498449 Long: -80.565668
Vertical Angle: $\quad 2$ Horizontal Bearing in Degrees: 45 Sighting Cue: Splash On/Off Effort: On Trackline: 9 Beaufort Sea State: 2 Observer: Erin Observer side: Right

Actual Time and Position of Sighting

Time: 13:30 WP\#: 21 Lat: 30.506798 Long: -80.562044
Species:Tursiops truncatus Numbers (Low/High/Best): 8/9/8
Features used in Species ID: Uniform grey coloration, robust body appearance.

Calculated distance from Trackline:

Final Time and Position of Sighting

Time: 13:33 WP\#: 22 Lat: 30.501832 Long: -80.568178

Calculated Distance Traveled: \qquad
-80.568178

Behavior and Additional Comments

Some goofing off below the surface followed by animals breaching. Lots of zig zags and cut backs seen of animals under the water. Group was spread out.

Initial sighting on Track
Time: 13:45 WP\#: 29 Lat: 30.435943 Long: -80.522660
Vertical Angle: _ 1 Horizontal Bearing in Degrees: 45 Sighting Cue: Body On/Off Effort: On Trackline: 8 Beaufort Sea State: 2 Observer: Erin Observer side: Right
Actual Time and Position of Sighting
Time: 13:46 WP\#: 30 Lat: 30.434095 Long: -80.526551 Species:Stenella frontalis Numbers (Low/High/Best): 16/18/18 Features used in Species ID: Spotting pattern clearly present, alternating light and dark body coloration.
Representative images used for Species ID: $\quad 5391,5398,5415,5422$
Photographer: Erin Frame numbers: 5385-5424 Spacer: 5425
Calculated distance from Trackline:
Final Time and Position of Sighting
Time: 13:46 WP\#: 31 Lat: 30.433953 Long: $\quad-80.515676$
Calculated Distance Traveled: \qquad
Behavior and Additional Comments
Dense group all animals almost touching one another, group almost stationary.

Friday, September 30, 2011 Sighting \# 6
Initial sighting on Track
Time: 13:51 WP\#: 35 Lat: 30.434502 Long: -80.386265
Vertical Angle: 3 Horizontal Bearing in Degrees: 90 Sighting Cue: Body On/Off Effort: On Trackline: 8 Beaufort Sea State: 2 Observer: Ryan Observer side: Left
Actual Time and Position of Sighting
Time: 13:51 WP\#: 36 Lat: 30.443182 Long: -80.393243

Species:Stenella frontalis Numbers (Low/High/Best): 9/10/10
Features used in Species ID: Light and dark alternating body coloration, spotting clearly present.

Behavior and Additional Comments

Disperse group splashing at the surface, a few smaller animals present.

Friday, September 30, 2011 Sighting \# 7

Initial sighting on Track

Time: 14:47	WP\#:	45	Lat:	30.302126		Long:	-80.5	
Vertical Angle:	2	Horizontal Bearing in Degrees:			45	Sigh	Cue:	Body
On/Off Effort:	On		ckline	6		fort S		2

Observer
Observer:
Actual Time and Position of Sighting

Time: 14:51	WP\#:	46	Lat:	30.291755	Long:	-80.503113
Species:Tursiops	catus			Number	/High/Best):	1/1/1

Features used in Species ID: Uniform grey coloration, robust body appearance.

Representative images	for Species ID:	5472-5473		
Photographer: Erin	Frame numbers:	5468-5475	Spacer:	5475
Calculated distance fro	Trackline:	km		

Final Time and Position of Sighting
Time: $14: 51$ WP\#: 47 Lat: $\quad 30.300221$ Long: \quad-80.503929
Calculated Distance Traveled: $\quad 0.95 \mathrm{~km}$

Behavior and Additional Comments

Single animal difficult to track

Initial sighting on Track

Actual Time and Position of Sighting

Final Time and Position of Sighting
Time: 9:56 WP\#: $\quad 7 \quad$ Lat: 29.954609 Long: $\quad-80.137264$
Calculated Distance Traveled: \qquad Long:

Behavior and Additional Comments
Traveling close together and being elusive, splashing at the surface. Possibly two small groups Pair and a group of ~ 12.

Monday, October 17, 2011 Sighting \# 2

Initial sighting on Track

Time: 10:44 WP\#: 20 Lat: 30.100819 Long: -80.452592
Vertical Angle: $\quad 2$ Horizontal Bearing in Degrees: 90 Sighting Cue: Body On/Off Effort: On Trackline: 3 Beaufort Sea State: 1 Observer: Ryan Observer side: Left
Actual Time and Position of Sighting
Time: 10:45 WP\#: 21 Lat: 30.097670 Long: -80.452633

Species:Stenella frontalis Numbers (Low/High/Best): 47/55/50
Features used in Species ID: Light dark alteration of color along animals body, white tip to rostrum.

Calculated distance from Trackline: \qquad
Final Time and Position of Sighting
Time: 10:50 WP\#: 22 Lat: 30.109271 Long: -80.455586
Calculated Distance Traveled: \qquad

Behavior and Additional Comments

Tight grouping of animal. First group of about 40 animals were joined by a group of ~ 7 that stayed submerged.

Monday, October 17, 2011 Sighting \# 3

Initial sighting on Track
Time: 10:54 WP\#: 25 Lat: 30.100546 Long: -80.338066
Vertical Angle:_ 2 Horizontal Bearing in Degrees: 90 Sighting Cue: Blow On/Off Effort: On Trackline:_3 Beaufort Sea State: $\quad 2$ Observer: Ryan Observer side: Left

Actual Time and Position of Sighting
Time: 11:00 WP\#: 26 Lat: 30.106111 Long: -80.3422728 Species:Unidentified Delphinid \quad Numbers (Low/High/Best): $1 / 1 / 1$
Features used in Species ID:
Representative images used for Species ID:
Photographer: \quad Erin
Frame numbers:
Calculated distance from Trackline:

Final Time and Position of Sighting
Time: WP\#: Lat \qquad Long: \qquad
Calculated Distance Traveled: \qquad

Behavior and Additional Comments

Single animal of uniform color, no resight - marked assumed location.

Monday, October 17, 2011 Sighting \# 4

Initial sighting on Track
Time: 11:37 WP\#: 33 Lat: 30.165011 Long: -80.495318
Vertical Angle: 3 Horizontal Bearing in Degrees: 90 Sighting Cue: Body On/Off Effort: On Trackline: 4 Beaufort Sea State: 1 Observer: Ryan Observer side: Left

Actual Time and Position of Sighting

Time: 11:43 WP\#: 34 Lat: $30.160961 \quad$ Long: $\frac{-80.504487}{}$
Species:Tursiops truncatus Numbers (Low/High/Best): 6/7/6

Features used in Species ID: Uniform grey coloration, robust body appearance.

Calculated distance from Trackline:

Final Time and Position of Sighting

Time: 11:43 WP\#: 35 Lat: 30.157301 Long: -80.504285

Calculated Distance Traveled:
$=0.4 \mathrm{~km}$

Long. -80.504285

Behavior and Additional Comments

Multiple single annimals sighted, one group of three closely packed. Single animals well separated from the others.

Initial sighting on Track
Time: 14:34 WP\#: 57 Lat: 30.365853 Long: -80.166733
Vertical Angle: _ 3 Horizontal Bearing in Degrees: 90 Sighting Cue: Body On/Off Effort: On Trackline: $\quad 7 \quad$ Beaufort Sea State: 1 Observer: Ryan Observer side: Left
Actual Time and Position of Sighting
Time: 14:35 WP\#: 58 Lat: 30.365875 Long: -80.164744
Species:Grampus griseus Numbers (Low/High/Best): 10/12/11
Features used in Species ID: Large dorsal fin, varied coloration due to scaring, head tapers to a point but no rostrum.
Representative images used for Species ID: $\quad 5562,5569,5571,5576$
Photographer: Erin Frame numbers: 5559-5577 Spacer: 5578
Calculated distance from Trackline: $\quad 0.2 \mathrm{~km}$
Final Time and Position of Sighting
Time: 14:38 WP\#: 59 Lat: $\quad 30.370193$ Long: $\quad-80.171961$ Calculated Distance Traveled: \qquad
Behavior and Additional Comments
Dense group varied in color, blunt heads, animals traveling within a bodies length of won another.

Monday, October 17, 2011 Sighting \# 6

Initial sighting on Track
Time: 14:14 WP\#: 61 Lat: 30.365491 Long: -80.123015
Vertical Angle: 1 Horizontal Bearing in Degrees: 60 Sighting Cue: Body On/Off Effort: On Trackline: $\quad 7 \quad$ Beaufort Sea State: $\quad 2$ Observer: Erin Observer side: Right

Actual Time and Position of Sighting

Time: 14:41 WP\#: 62 Lat: 30.362687 Long: $\quad-80.118399$
Species:Grampus griseus Numbers (Low/High/Best): 8/11/10

Features used in Species ID: Tall dorsal fin, varied coloration due to scaring, crease in center of melon.

Calculated distance from Trackline: \qquad
Final Time and Position of Sighting
Time: 14:44 WP\#: 63 Lat: 30.370457 Long: -80.123845
Calculated Distance Traveled: \qquad

Behavior and Additional Comments

Traveling just below the surface during sighting.

Monday, October 17, 2011 Sighting \# 7

Initial sighting on Track
Time: 15:02 WP\#: 67 Lat: 30.433247 Long: -80.02866
Vertical Angle:_1_ Horizontal Bearing in Degrees: 90 Sighting Cue: Body On/Off Effort: On Trackline:_8 Beaufort Sea State: 2 Observer: Erin Observer side: Right
Actual Time and Position of Sighting
Time: 15:11 WP\#: 68 Lat: 30.434682 Long: -80.024715
Species:Tursiops truncatus Numbers (Low/High/Best): 3/3/3
Features used in Species ID: Robust body, white peduncle coloration.

Final Time and Position of Sighting
Time: 15:12 WP\#: 69 Lat: 30.432772 Long: $\quad-80.041574$
Calculated Distance Traveled: \qquad

Behavior and Additional Comments

Originally only two animals seen spaced well away from one another, upon circling a third animal was observed in area of the initial pair. Animals difficult to photograph as they surfaced infrequently and traveled a long distance between each sighting.

Monday, October 17, 2011 Sighting \# 8
Initial sighting on Track
Time: 15:49 WP\#: 78 Lat: 30.499664 Long: -80.015106
Vertical Angle: $\quad 3 \quad$ Horizontal Bearing in Degrees: 90 Sighting Cue: Splash On/Off Effort: On Trackline: $\quad 9 \quad$ Beaufort Sea State: 2 Observer: Erin Observer side: Right

Actual Time and Position of Sighting

Time: 15:52 WP\#: 79 Lat: 30.497693 Long: -80.014938
Species:Grampus griseus \quad Numbers (Low/High/Best): 10/10/10

Features used in Species ID: Varied coloration, tapered head with no rostrum and crease in melon tall dorsal fin.

Calculated distance from Trackline: \qquad
Final Time and Position of Sighting
Time: 15:53 WP\#: 80 Lat: 30.498644 Long: -79.997907
Calculated Distance Traveled:
1.6 km

Behavior and Additional Comments

Evenly spaced and traveling within a bodies length of one another.

Monday, October 17, 2011 Sighting \# 9

Initial sighting on Track
Time: 16:04 WP\#: 83 Lat: 30.567532 Long: -79.856279
Vertical Angle: $\quad 3$ Horizontal Bearing in Degrees: 100 Sighting Cue: Splash On/Off Effort: On Trackline: 10 Beaufort Sea State: $\quad 2$ Observer: Erin Observer side: Right
Actual Time and Position of Sighting
Time: 16:09 WP\#: 84 Lat: 30.579420 Long: -79.850618 Species:Tursiops truncatus Numbers (Low/High/Best): 35/40/38
Features used in Species ID: Robust body appearance, uniform grey coloration.
Representative images used for Species ID: $\quad 5633,5634,5645,5646$
Photographer: Erin Frame numbers: 5625-5648 Spacer: 5649
Calculated distance from Trackline:
1.4 km

Final Time and Position of Sighting
Time: 16:10 WP\#: $\quad 85$ Lat: 30.565665 Long: $\quad-79.858706$
Calculated Distance Traveled: \qquad Long: -

Behavior and Additional Comments

Group spread over ~half a mile in groups of 3's or 5's and a single group of 10. All animals in the group showed quick surfacings and directional travel that did not change while we observed them.

Monday, October 17, 2011 Sighting \# 10

Initial sighting on Track
Time: 16:19 WP\#: 86 Lat: 30.566490 Long: $\quad-80.228430$
Vertical Angle: $\quad 2$ Horizontal Bearing in Degrees: 90 Sighting Cue: Body On/Off Effort: On Trackline: 10 Beaufort Sea State: 2 Observer: Erin Observer side: \quad Right

Actual Time and Position of Sighting

Features used in Species ID: Triangular dorsal fin, wide pectoral fins, low slope to melon, lower jaw colored white.
Representative images used for Species ID: $5659,5663,5668,5669,5670,5679,5685$
Photographer: Erin Frame numbers: 5650-5696_ Spacer: 5697
Calculated distance from Trackline: $\quad 0.1 \mathrm{~km}$

Final Time and Position of Sighting

Time: 16:25 WP\#: 88 Lat: 30.575714 Long: -80.229018

Calculated Distance Traveled:
: 1.0 km

Behavior and Additional Comments

Large group of animals broken down into smaller groups that were all almost touching one another. Entire group just hanging at the surface with little to no directional travel. Central group of 10-12 animals.

Summary of 28 July 2010

28 July 2010	Number of Sightings	Number of Individuals	Beaufort Sea State	Line number
Tursiops truncatus	1	4	0	10
Tursiops truncatus	1	4	1	9
Tursiops truncatus	1	7	1	7
Stenella frontalis	1	31	0	10
Stenella a frontalis	1	9	0	10
Steno bredanensis	1	23	1	9
Globicephala macrorhynchus	1	1	50	8
Unidentified delphinid	1	2	1	9
Caretta caretta	76	76	0 to 1	-
Unidentified sea turtle	28	28	0 to 1	-
Manta birostris	1	1	1	10
Unidentified Chondrichthyes	1	1	1	6

Survey Effort by Beaufort Sea State for 28 July 2010

Summary of 29 July 2010

29 July 2010	Number of Sightings	Number of Species Individuals	Beaufort Sea State	Line number
Tursiops truncatus	1	11	2	-
Tursiops truncatus	1	17	2	4
Tursiops truncatus	1	7	2	5
Unidentified delphinid	1	1	2	2
Caretta caretta	15	15	1 to 2	-
Unidentified sea turtle	3	3	1 to 2	-
Unidentified Chondrichthyes	1	1	2	2

Survey Effort by beaufort Sea State for 29 July 2010

Summary of 3 August 2010

3 August 2010	Number of Sightings	Number of Spdividuals	Beaufort Sea State	Line number
Tursiops truncatus	1	9	1	3
Tursiops truncatus	1	8	1	3
Tursiops truncatus	1	4	0	3
Tursiops truncatus	1	14	1	4
Stenella frontalis	1	6	0	4
Stenella frontalis	1	5	0	5
Globicephala macrorhynchus	1	23	2	6
Caretta caretta	59	59	0 to 1	-
Unidentified sea turtle	6	6	1	-

Summary of 4 August 2010

Species	Number of Sightings	Number of Individuals	Beaufort Sea State	Line number
Tursiops truncatus	1	3	2	9
Tursiops truncatus	1	2	2	9
Tursiops truncatus	1	2	1	8
Tursiops truncatus	1	3	1	8
Tursiops truncatus	1	12	3	7
Tursiops truncatus	1	5	1	5
Tursiops truncatus	1	5	1	5
Tursiops truncatus	1	7	1	4
Stenella frontalis	1	10	2	10
Stenella frontalis	1	3	1	6
Globicephala macrorhynchus	1	14	2	2
Grampus griseus	1	14	3	9
Grampus griseus	1	14	2	2
Unidentified delphinid	1	1	1	8
Caretta caretta	47	55	0 to 2	-
Unidentified sea turtle	9	11	1	-

Survey Effort by Beaufort Sea State for 4 August 2010

Summary of 5 August 2010

5 August 2010	Number of Sightings	Number of Individuals	Beaufort Sea State	Line number
Grampus griseus	1	44	2	8
Caretta caretta	1	1	3	8
Chondrichthyes	1	1	2	8

Survey Effort by Beaufort Sea State for 5 August 2010

Summary of 8 September 2010

8 September 2010	Number of Sightings	Number of Individuals	Beaufort Sea State	Line number
Tursiops truncatus	1	3	1	1
Tursiops truncatus	1	6	1	3
Grampus griseus	1	19	1	-
Grampus griseus	1	37	1	4
Globicephala macrorhynchus	1	20	1	1
Globicephala macrorhynchus	1	30	1	3
Dermochelys coriacea	1	1	1	4
Caretta caretta	7	8	1 to 2	-
Unidentified sea turtle	1	1	1	4
Chondrichthyes	1	1	1	4

Survey Effort by Beaufort Sea State for 8 September 2010

Species	Number of Sightings	Number of Individuals	Beaufort Sea State	Line number
Tursiops truncatus	1	6	1	10
Tursiops truncatus	1	6	1	8
Tursiops truncatus	1	20	1	7
Tursiops truncatus	1	6	1	7
Tursiops truncatus	1	8	0	6
Tursiops truncatus	1	9	1	6
Tursiops truncatus	1	10	1	-
Tursiops truncatus	1	25	1	3
Stenella frontalis	1	11	1	10
Stenella frontalis	1	20	1	10
Stenella frontalis	1	5	1	9
Stenella frontalis	1	19	1	9
Stenella frontalis	1	27	1	6
Stenella frontalis	1	22	1	6
Grampus griseus	1	27	1	-
Globicephala macrorhynchus	1	21	1	6
Dermochelys coriacea	3	3	0 to 1	-
Lepidochelys kempii	2	2	1	-
Caretta caretta	24	29	0 to 1	-
Unidentified sea turtle	11	14	0 to 2	-
Chondrichthyes	2	2	1	7

Survey Effort by Beaufort Sea State for 9 September 2010

Summary of 9 September 2010

Summary of 10 September 2010

10 September 2010				
Species	Number of Sightings	Number of Individuals	Beaufort Sea State	Line number
Caretta caretta	5	6	1 to 3	-
Unidentified sea turtle	1	1	1	1

Survey Effort by Beaufort Sea State for 10 September 2010

Summary of 18 October 2010

Species	Number of Sightings	Number of Individuals	Beaufort Sea State	Line number
Tursiops truncatus	1	8	2	2
Tursiops truncatus	1	8	1	3
Tursiops truncatus	1	8	1	3
Tursiops truncatus	1	4	2	4
Steno bredanensis	1	45	1	2
Stenella frontalis	1	14	2	1
Stenella frontalis	1	35	1	4
Globicephala macrorhynchus	1	11	3	4
Unidentified delphinid	1	2	1	3
Dermochelys coriacea	5	5	1 to 2	-
Caretta caretta	10	10	1 to 3	-
Unidentified sea turtle	3	3	1	-
Mola mola	1	1	3	2
Chondrichthyes	2	2	2	-

Summary of 19 October 2010

19 October 2010	Number of Sightings	Number of Individuals	Beaufort Sea State	Line number
Tursiops truncatus	1	13	3	10
Stenella frontalis	1	18	1	10
Stenella frontalis	1	27	1	10
Caretta caretta	5	5	1 to 3	-
Unidentified sea turtle	1	1	1	9
Manta birostris	1	1	1	10

Summary of 20 October 2010
No sightings recorded

Survey Effort by Beaufort Sea State for 20 October 2010

Summary of 18 November 2010

18 November 2010

Species	Number of Sightings	Number of Individuals	Beaufort Sea State	Line number
Stenella frontalis	1	58	3	5
Caretta caretta	7	7	1 to 4	-

Survey Effort by Beaufort Sea State for 18 November 2010

Summary of 21 December 2010

21 December 2010

Species	Number of Sightings	Number of Individuals	Beaufort Sea State	Line number
Tursiops truncatus	1	12	1	8
Tursiops truncatus	1	2	1	7
Tursiops truncatus	1	3	3	5
Stenella frontalis	1	8	3	9
Stenella frontalis	1	3	2	9
Stenella frontalis	1	7	1	8
Unidentified delphinid	1	1	3	3
Dermochelys coriacea	1	1	1	7
Caretta caretta	20	20	1 to 3	-
Unidentified sea turtle	5	6	1 to 2	-

Survey Effort by Beaufort Sea State for 21 December 2010

Summary of 29 December 2010

29 December 2010

Species	Number of Sightings	Number of Individuals	Beaufort Sea State	Line number
Tursiops truncatus	1	7	3	1
Tursiops truncatus	1	17	3	2
Tursiops truncatus	1	12	2	2
Unidentified delphinid	1	2	3	1
Caretta caretta	11	11	2,5	-
Unidentified sea turtle	6	6	2,5	-
Chondrichthyes	2	2	2	5

Survey Effort by Beaufort Sea State for 29 December 2010

Species	Number of Sightings	Number of Individuals	Beaufort Sea State	Line number
Balaenoptera acutorostrata	1	2	1	8
Balaenoptera acutorostrata	1	2	2	6
Megaptera novaeangliae	1	1	2	6
Tursiops truncatus	1	4	1	10
Tursiops truncatus	1	9	2	9
Tursiops truncatus	1	2	1	9
Tursiops truncatus	1	2	1	9
Tursiops truncatus	1	1	1	8
Tursiops truncatus	1	13	1	8
Tursiops truncatus	1	15	1	7
Tursiops truncatus	1	43	2	6
Tursiops truncatus	1	6	2	6
Stenella frontalis	1	5	2	10
Stenella frontalis	1	40	1	9
Stenella frontalis	1	25	1	9
Stenella frontalis	1	6	1	7
Stenella frontalis	1	3	1	7
Stenella frontalis	1	10	2	6
Stenella frontalis	1	21	2	6
Unidentified delphinid	1	5	2	6
Dermochelys coriacea	4	4	1 to 2	-
Caretta caretta	18	20	1 to 2	-
Unidentified sea turtle	13	20	1 to 2	-
Mola mola	1	1	1	8
Manta birostris	1	1	2	6
Chondrichthyes	2	45	1 to 2	-

Summary of 30 December 2010

Summary of 15 January 2011

15 January 2011

Species	Number of Sightings	Number of Individuals	Beaufort Sea State	Line number
Tursiops truncatus	1	11	3	9
Caretta caretta	7	7	2 to 3	-
Unidentified sea turtle	1	1	3	8
Chondrichthyes	1	1	3	6

Summary of 16 January 2011

16 January 2011

Species	Number of Sightings	Number of Individuals	Beaufort Sea State	Line number
Tursiops truncatus	1	20	3	1
Stenella frontalis	1	10	3	2
Caretta caretta	4	5	2 to 3	-
Unidentified sea turtle	1	1	3	4

Survey Effort by Beaufort Sea State for 16 January 2011

S1 January 2011	Number of Sightings	Number of Individuals	Beaufort Sea State	Line number
Tursiops truncatus	1	2	4	10
Tursiops truncatus	1	1	2	9
Tursiops truncatus	1	1	2	4
Tursiops truncatus	1	4	2	3
Tursiops truncatus	1	14	2	2
Tursiops truncatus	1	5	2	2
Tursiops truncatus	1	5	2	1
Stenella frontalis	1	50	2	9
Stenella frontalis	1	40	3	8
Stenella frontalis	1	6	3	7
Stenella frontalis	1	25	2	5
Stenella frontalis	1	18	2	3
Stenella frontalis	1	26	2	3
Stenella frontalis	1	3	3	2
Stenella frontalis	1	35	3	2
Grampus griseus	1	8	2	10
Dermochelys coriacea	6	6	2 to 3	-
Caretta caretta	30	39	2 to 3	-
Unidentified sea turtle	19	24	2 to 3	-
Manta birostris	1	1	2	2
Mola mola	12	12	2 to 4	-
Chondrichthyes	29	72	1 to 2	-

Summary of 31 January 2011

Summary of 22 February 2011

22 February 2011				
Species	Number of Sightings	Number of Individuals	Beaufort Sea State	Line number
Tursiops truncatus	1	3	2	2
Stenella frontalis	1	25	2	2
Stenella frontalis	1	6	2	2
Caretta caretta	9	12	2 to 5	-
Unidentified sea turtle	2	2	2	1
Chondrichthyes	1	1	4	9

Summary of 26 February 2011

26 February 2011				
Species Number of Sightings Number of IndividualsBeaufort Sea State	Line number			
Tursiops truncatus	1	6	1	5
Tursiops truncatus	1	2	1	6
Tursiops truncatus	1	9	2	6
Tursiops truncatus	1	7	2	7
Stenella frontalis	1	4	1	5
Stenella frontalis	1	5	1	6
Stenella frontalis	1	35	1	8
Dermochelys coriacea	1	1	1	8
Caretta caretta	16	16	1 to 2	-
Unidentified sea turtle	15	17	1 to 2	-
Manta birostris	1	1	1	7
Mola mola	1	1	1	6
Rhincodon typus	1	1	-	-
Chondrichthyes	2	2	1	-

Survey Effort by Beaufort Sea State for 26 February 2011

Sp February 2011	Number of Sightings	Number of Individuals	Beaufort Sea State	Line number
Balaenoptera acutorostrata	1	1	2	4
Tursiops truncatus	1	3	1	1
Tursiops truncatus	1	6	1	2
Tursiops truncatus	1	17	1	2
Tursiops truncatus	1	16	2	4
Tursiops truncatus	1	1	2	4
Tursiops truncatus	1	3	2	8
Tursiops truncatus	1	4	2	8
Stenella frontalis	1	7	1	2
Stenella frontalis	1	16	1	3
Stenella frontalis	1	25	2	4
Stenella frontalis	1	17	2	4
Stenella frontalis	1	22	2	4
Caretta caretta	32	76	1 to 3	-
Unidentified sea turtle	5	7	2 to 3	-
Manta birostris	1	3	1	4
Mola mola	2	2	2	9
Rhincodon typus	1	1	1	3
Chondrichthyes	9	17	1 to 2	-

Survey Effort by Beaufort Sea State for 27 February 2011

Summary of 27 February 2011

8 April 2011

Species	Number of Sightings	Number of Individuals	Beaufort Sea State	Line number
Tursiops truncatus	1	17	3	2
Tursiops truncatus	1	4	1	3
Tursiops truncatus	1	3	1	7
Tursiops truncatus	1	7	1	7
Tursiops truncatus	1	4	1	8
Stenella frontalis	1	26	1	1
Stenella frontalis	1	30	1	2
Stenella frontalis	1	2	1	4
Stenella frontalis	1	8	1	4
Stenella frontalis	1	8	1	5
Stenella frontalis	1	4	1	6
Stenella frontalis	1	75	1	7
Stenella frontalis	1	40	1	8
Stenella frontalis	1	25	2	8
Grampus griseus	1	8	1	4
Unidentified delphinid	1	-	8	2
Dermochelys coriacea	1	1	1	1
Caretta caretta	28	30	1	-
Unidentified sea turtle	11	13	1	-
Manta birostris	1	1	1	6
Mola mola	1	1	16	8
Chondrichthyes	15	11	1	-

Survey Effort by Beaufort Sea State for 8 April 2011

Summary of 8 April 2011

Summary of 9 April 2011

9 April 2011	Number of Sightings	Number of Individuals	Beaufort Sea State	Line number
Tursiops truncatus	1	2	3	4
Tursiops truncatus	1	3	1	2
Stenella frontalis	1	40	2	9
Stenella frontalis	1	5	2	9
Stenella frontalis	1	11	2	8
Stenella frontalis	1	9	2	5
Stenella frontalis	1	27	2	3
Caretta caretta	23	23	1 to 3	-
Unidentified sea turtle	8	13	1 to 2	-
Manta birostris	1	1	3	7
Chondrichthyes	5	5	1 to 2	-

Survey Effort by Beaufort Sea State for 9 April 2011

Summary of 19 May 2011

19 May 2011				
Species	Number of Sightings	Number of Individuals	Beaufort Sea State	Line number
Tursiops truncatus	1	4	4	1
Stenella frontalis	1	50	2	1
Caretta caretta	2	2	2 to 3	-

20 May 2011

Species	Number of Sightings	Number of Individuals	Beaufort Sea State	Line number
Tursiops truncatus	1	4	2	9
Tursiops truncatus	1	4	2	8
Tursiops truncatus	1	20	3	8
Tursiops truncatus	1	20	2	4
Stenella frontalis	1	7	1	10
Stenella frontalis	1	21	1	10
Stenella frontalis	1	30	2	7
Stenella frontalis	1	7	2	6
Stenella frontalis	1	30	2	6
Stenella frontalis	1	32	1	5
Grampus griseus	1	5	2	8
Grampus griseus	1	4	3	1
Globicephala macrorhynchus	1	5	3	7
Caretta caretta	46	89	1 to 2	-
Dermochelys coriacea	4	4	1 to 2	-
Unidentified sea turtle	4	4	1 to 2	-
Mola mola	2	2	1 to 2	-
Chondrichthyes	3	3	1 to 2	-

Survey Effort by Beaufort Sea State for 20 May 2011

Beaufort Sea State

Summary of 20 May 2011

Jacksonville Suvey Area
Aerial Survey Sightings
20 May 2011
T. truncatus

- D. coriacea
S. frontalis
G. griseus
- Unid. sea turtle
G. macrorhynchus
M. mola

Unid Chondrichthyes

Summary of 21 June 2011

21 June 2011				
Species Number of Sightings Number of Individuals Beaufort Sea State Line number				
Tursiops truncatus	1	3	2	1
Caretta caretta	9	10	2	-
Dermochelys coriacea	1	1	2	8
Unidentified sea turtle	4	4	2	-
Chondrichthyes	1	1	2	2

Summary of 22 June 2011

22 June 2011				
Species	Number of Sightings	Number of Individuals	Beaufort Sea State	Line number
Caretta caretta	2	2	3	-
Unidentified sea turtle	1	1	3	2

Survey Effort by Beaufort Sea State for 22 June 2011

Summary of 20 July 2011

20 July 2011

Species	Number of Sightings	Number of Individuals	Beaufort Sea State	Line number
Tursiops truncatus	1	23	3	7
Tursiops truncatus	1	11	3	3
Tursiops truncatus	1	3	2	3
Tursiops truncatus	1	8	2	1
Stenella frontalis	1	13	3	9
Stenella frontalis	1	13	3	7
Grampus griseus	1	23	3	7
Grampus griseus	1	28	3	7
Caretta caretta	17	36	2 to 3	-

Summary of 21 July 2011

21 July 2011

Species	Number of Sightings	Number of Individuals	Beaufort Sea State	Line number
Tursiops truncatus	1	14	3	4
Tursiops truncatus	1	6	3	5
Tursiops truncatus	1	3	3	8
Stenella frontalis	1	35	3	7
Stenella frontalis	1	35	3	10
Grampus griseus	1	20	3	7
Unidentified delphinid	1	6	3	10
Caretta caretta	12	21	2 to 3	-
Dermochelys coriacea	1	1	2	4
Unidentified sea turtle	1	3	2	2

Survey Effort by Beaufort Sea State for 21 July 2011

17 August 2011

Species	Number of Sightings	Number of Individuals	Beaufort Sea State	Line number
Tursiops truncatus	1	15	1	10
Tursiops truncatus	1	15	1	10
Tursiops truncatus	1	2	1	9
Tursiops truncatus	1	1	2	9
Tursiops truncatus	1	4	2	4
Tursiops truncatus	1	9	2	4
Tursiops truncatus	1	6	2	4
Tursiops truncatus	1	3	2	2
Tursiops truncatus	1	4	3	2
Tursiops truncatus	1	10	3	1
Stenella frontalis	1	17	1	10
Stenella frontalis	1	16	2	7
Grampus griseus	1	4	2	9
Unidentified cetacean	1	1	2	2
Caretta caretta	32	55	1 to 2	-
Dermochelys coriacea	4	4	2 to 3	-
Unidentified sea turtle	1	1	2	6
Manta birostris	1	1	2	7

Survey Effort by Beaufort Sea State for 17 August 2011

18 August 2011

Species	Number of Sightings	Number of Individuals	Beaufort Sea State	Line number
Tursiops truncatus	1	24	2	2
Tursiops truncatus	1	10	3	3
Tursiops truncatus	1	3	2	9
Tursiops truncatus	1	16	2	9
Tursiops truncatus	1	8	2	10
Tursiops truncatus	1	18	2	10
Stenella frontalis	1	17	2	2
Stenella frontalis	1	12	2	6
Stenella frontalis	1	28	2	7
Stenella frontalis	1	10	3	8
Stenella frontalis	1	8	2	10
Globicephala macrorhynchus	1	13	1	2
Unidentified delphinid	1	2	3	3
Caretta caretta	35	65	2 to 3	-
Dermochelys coriacea	4	4	2	-
Unidentified sea turtle	1	1	2	1
Mola mola	1	1	3	3

Survey Effort by Beaufort Sea State for 18 August 2011

Summary of 18 August 2011

Summary of 29 September 2011

Species	Number of Sightings	Number of Individuals	Beaufort Sea State	Line number
Tursiops truncatus	1	1	2	7
Tursiops truncatus	1	7	2	9
Tursiops truncatus	1	15	3	10
Stenella frontalis	1	16	2	6
Stenella frontalis	1	1	2	8
Stenella frontalis	1	7	2	8
Stenella frontalis	1	1	2	10
Stenella frontalis	1	35	2	10
Stenella frontalis	1	15	2	10
Grampus griseus	1	45	3	10
Caretta caretta	23	40	2 to 3	-
Manta birostris	1	1	3	5
Mola mola	1	1	2	10
Chondrichthyes		1	2	9

Summary of 30 September 2011

30 September 2011	Number of Sightings	Number of Individuals	Beaufort Sea State	Line number
Tursiops truncatus	1	16	3	10
Tursiops truncatus	1	10	2	9
Tursiops truncatus	1	8	2	9
Tursiops truncatus	1	10	2	8
Tursiops truncatus	1	1	2	6
Stenella frontalis	1	4	2	9
Stenella frontalis	1	18	2	8
Caretta caretta	16	26	2 to 3	-
Unidentified sea turtle	1	1	2	8
Chondrichthyes	1	1	3	7

Summary of 17 October 2011

Species	Number of Sightings	Number of Individuals	Beaufort Sea State	Line number
Tursiops truncatus	1	15	2	1
Tursiops truncatus	1	4	1	4
Tursiops truncatus	1	3	2	8
Tursiops truncatus	1	4	2	-
Tursiops truncatus	1	40	2	10
Stenella frontalis	1	50	1	2
Steno bredanensis	1	43	2	10
Grampus griseus	1	11	1	7
Grampus griseus	1	10	1	7
Grampus griseus	1	10	2	9
Unidentified delphinid	1	1	2	3
Caretta caretta	22	30	1 to 2	-
Dermochelys coriacea	12	12	1 to 2	-
Unidentified sea turtle	2	3	2	-
Chondrichthyes	6	6	1 to 2	-

