From Clicks to Counts: Using passive acoustic monitoring to estimate the density and abundance of Cuvier's beaked whales in the Gulf of Alaska (GoA)

Tina M. Yack^{1*}, Shannon Coates¹, Danielle Harris², Len Thomas², Thomas Norris¹, Elizabeth Ferguson¹, and Brenda K. Rone³

- 1. Bio-Waves, Inc. 364 2nd Street, Suite #3, Encinitas, CA 92024
- 2. Centre for Research into Ecological and Environmental Modelling, The Observatory, Buchanan Gardens, University of St. Andrews, St. Andrews, Fife, KY16 9LZ, United Kingdom.
- 3. National Marine Mammal Laboratory, Alaska Fisheries Science Center 7600 Sand Point Way N.E., Seattle, WA 98115-6349 & Cascadia Research Collective, 218 1/2 W 4th Ave., Olympia, WA 98501

Objectives

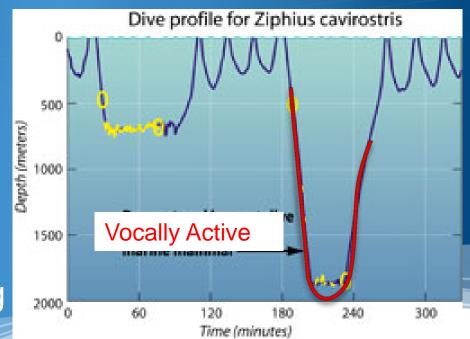
Detect and localize beaked whales and obtain *perpendicular* distances to individual animals (e.g. acoustic localization).

Compare 2 distance sampling analytical methods; (1) conventional distance sampling (cds) and (2) distance sampling using a depth distribution model (dsddm) to estimate density and abundance of Cuvier's beaked whales.

Beaked Whale Ecology

> 3 species of beaked whales occur in GoA

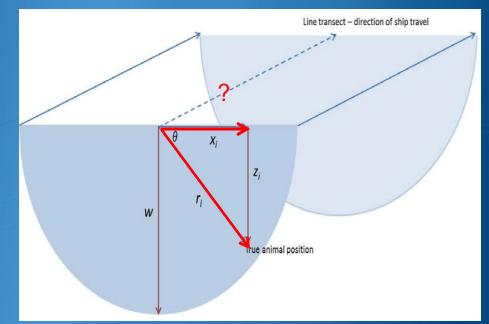
-Cuvier's beaked whale (*Ziphius cavirostris*), Baird's beaked whale (*Berardius bairdi*), Stejneger's beaked whale (*Mesoplodon stejnegeri*).


Feed on squid & benthic fish

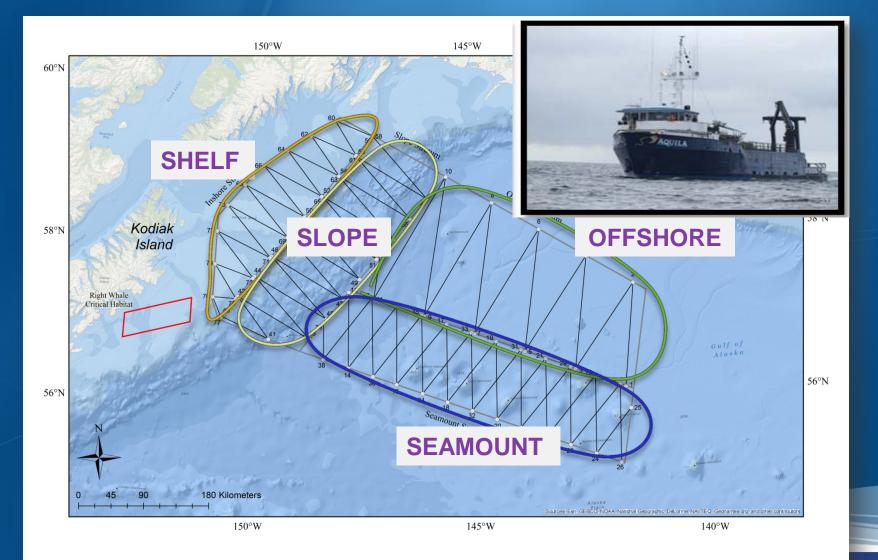
Deep-diving: Foraging dive durations > 1 hr @~2000 m

Often occur in small groups

Cryptic surface behavior


Vocally active during foraging dives

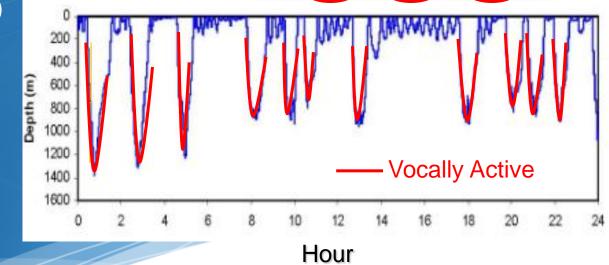
Tyack et al. 2012 http://www.whoi.edu/main/newsreleases/2006?tid=3622&cid=16726


The Problem with Deep Divers

- Unknown animal depth
 unknown horizontal distance.
- Problem for any species where dive depths are similar to the detection range.
- Ignoring the problem overestimates distances and underestimates density.

Study Area & Survey Design

Methods



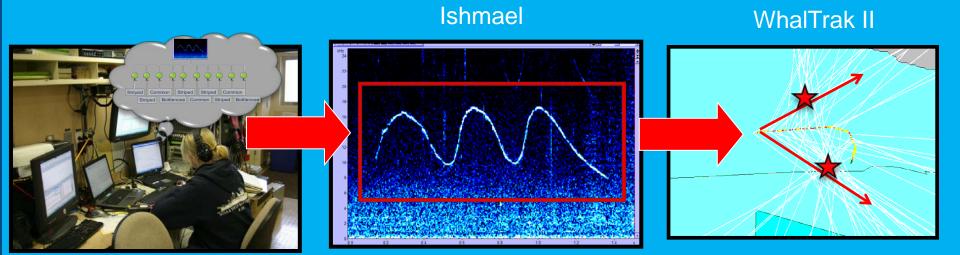
Survey Methods

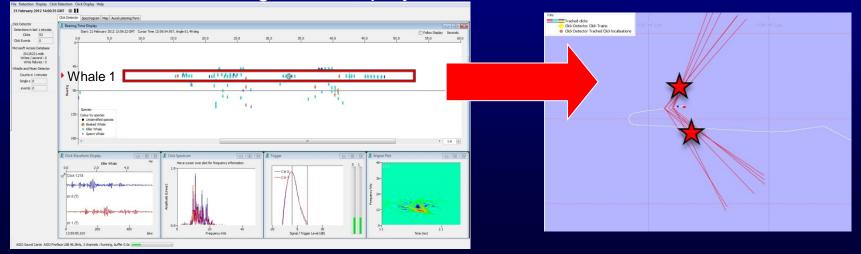
Visual Survey (Daylight)

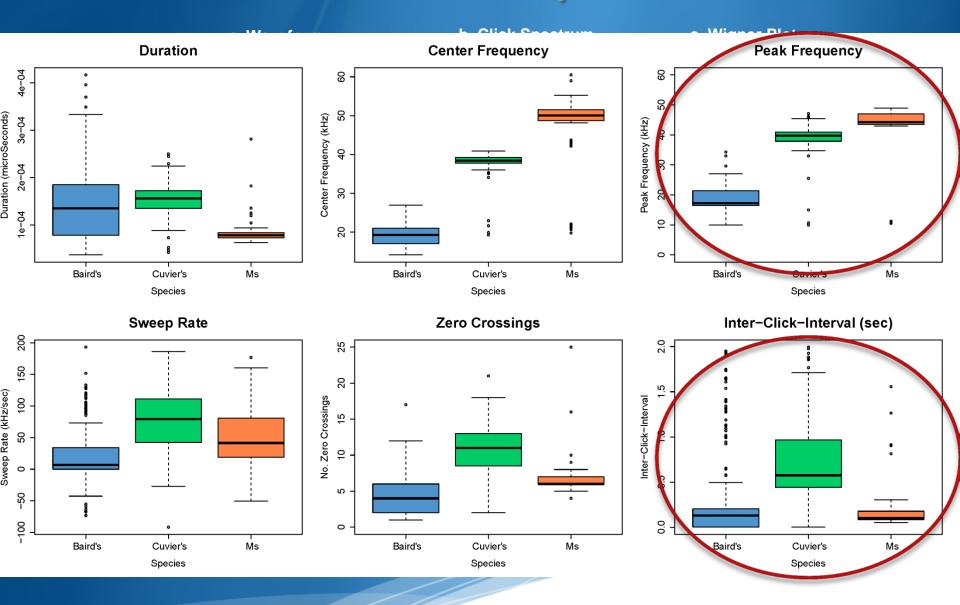
Acoustic Survey: (24 hrs)

NOAA 8

Baird, et al. 2005.

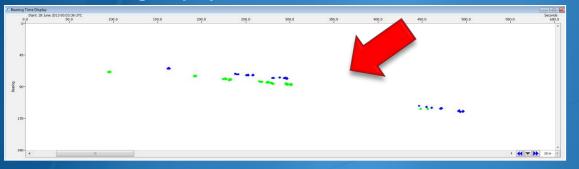

Our Home In the Acoustics Lab

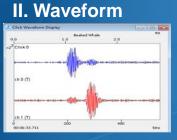

Manual Detection/Tracking

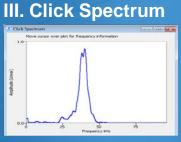

Semi-Automated Detection/Tracking

PAMGuard Bearing Time Display

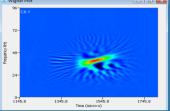
PAMGuard Map Display

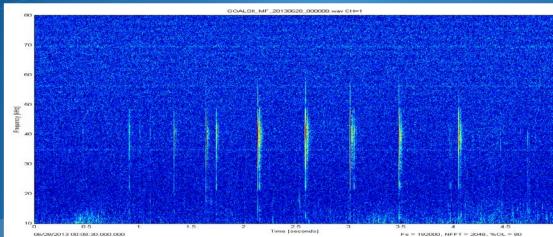



GOA Beaked Whale Species



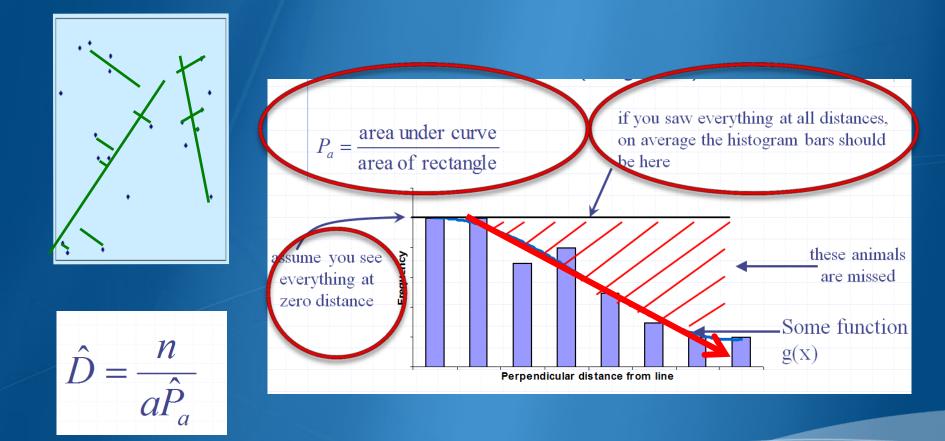
PAMGuard's 'ViewerMode'


I. Time/Bearing Display



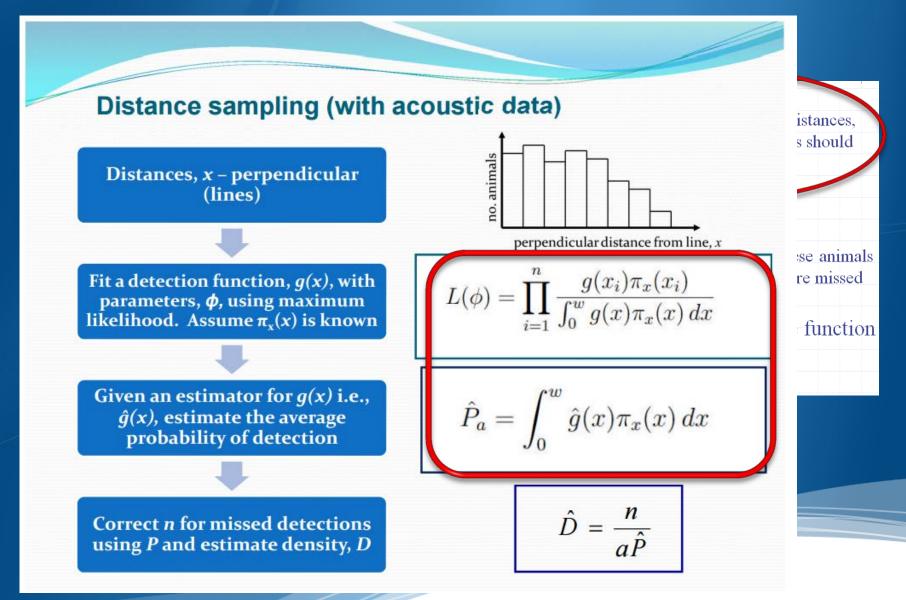
IV. Wigner Plot

V. Spectrogram



Target Motion Analysis in 'ViewerMode'

	s											
ent Selection												
	Events	Id 5; 0	9 Feb 2007 13:36:34	Ŧ	Current Ev	ent: Id 5, 09 F	eb 2007 13:3	36:34, with 29	sub detecti	ons		
				Supe	ervised (allow	s comments)						
				O Un-s	upervised							
		This sec	O Un-supervised									
			is event currently has no localisation information						-			
	Comme	nt										
			Run	Run A	Save	e Keep (Old Se	t Null	Back	Stop		
del Control							20 Mar	© 20 Mar				
Least Squares						0	2D Map	③ 3D Map				
2D simplex optimisation							W M		11/	//		
			24401-					N <i> </i>				
3D simplex optimisation							W					
MCMC localisation	Set	tings		2			N N					
					P							
			14401-					/////				
			14401-					1111				
			14401- ε				\bigwedge	1				
									١			
			ε									
			ε									
			ε									
			ε			•				>		
			E 4401-	ilable fit result		s				7.		
			E 4401-	/ / //	z4621	-1462	1	-4621		5378	15	378
del Desulte			E 4401- -5598- 4 ava	/ / //		-1462	1	-4621 m		5378	15	378
	24	Cit.	4401- -5598-1 -34621	/ / //	24621			m				
Model		Side	E 4401- -5598-1 -34621 Lat Long	-:	24621 Depth	Dist	Error	m Chi2	P	5378	15 AIC	millis
Model Least Squares	Sy	Side 0	4401- -5598-1 -34621	-: 5°43.074' E	24621			m	P			
	•	0	E 4401- -5598- -34621 Lat Long 17°30.150' N 148		24621 Depth -0.0m	Dist 8864.3m	Error 268.6m	m Chi2 0.0	P 1.000			millis 2.4ms


Javes Incorporated

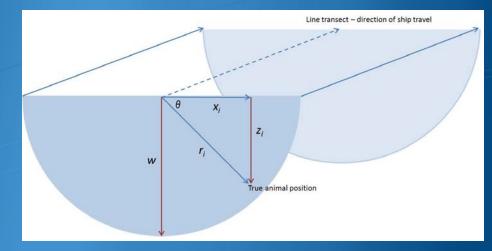
Distance Sampling

Slide images courtesy of: http://warnercnr.colostate.edu/~gwhite/fw663/DistanceSampling.ppt and Danielle Harris

Distance Sampling

Slide images courtesy of: Danielle Harris

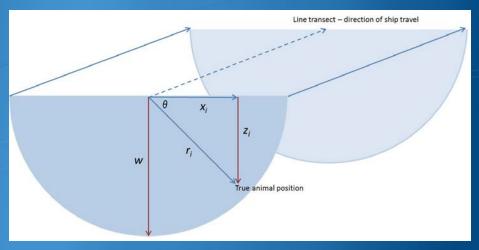
Methods


Conventional Distance Sampling
 Distance 6.2 software

 DSDDM Distance 6.2 software
 Custom R code: Developed by Danielle Harris

The Problem with Deep Divers

- Unknown depth = unknown horizontal distance.
- Problem for any species where dive depths are similar to the detection range.
- Ignoring the problem overestimates distances and underestimates density.



The Solution

Use DSDDM

- Issue can be addressed by incorporating a depth distribution into the algorithm to estimate probability of detection.
- Algorithm then works with the slant ranges to animals.
- Still expect horizontal distribution of animals from the transect line is uniform.



Methods

DSDDM Methods

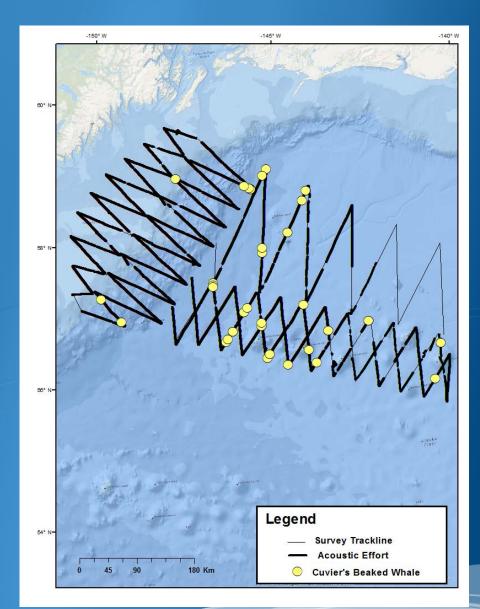
- A scaled beta distribution used to describe depth distribution of vocalizing animals
- Based on data from Tyack *et al*. (2006)
- Half normal detection function fitted.
- Model requires constant survey area depth input.

Results

Survey Results

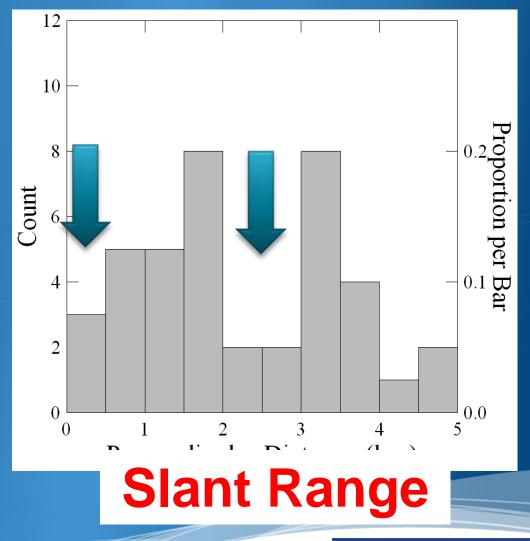
Survey Effort included:

- Acoustic Effort: 6,304 km, 426 hours
- Visual Effort: 4,155 km

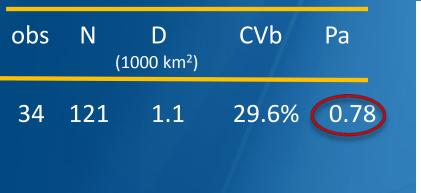

Cuvier's beaked whale encounters included:
 Acoustic Encounters: 47 (40 localized individuals)
 Visual Encounters: 1 (1 individual)

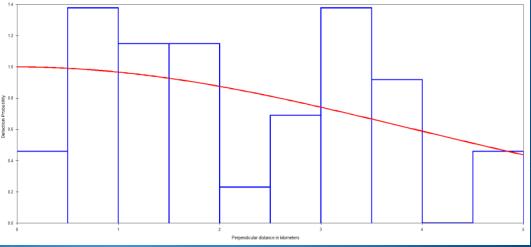
Species Encountered	No. Encounters	No. Localized Encounters	A	No. Encounters On Effort vailable for Distance Sampling
Stejneger's beaked whale	14	10		10
Baird's beaked whale	32	29		18
Cuvier's beaked whale	47	43		40*

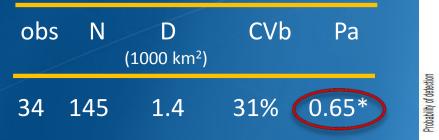
Results


- Encounter rates varied by strata
 - Seamount strata contained majority of encounters
- Samples by strata
 - Offshore = 8
 - Seamount = 26
 - Slope = 6

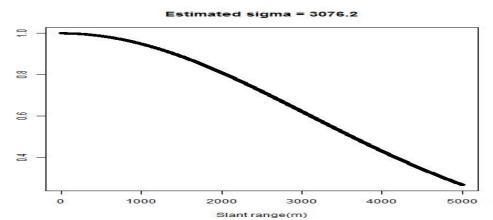
Results


Localizations = 40 total used in analysis



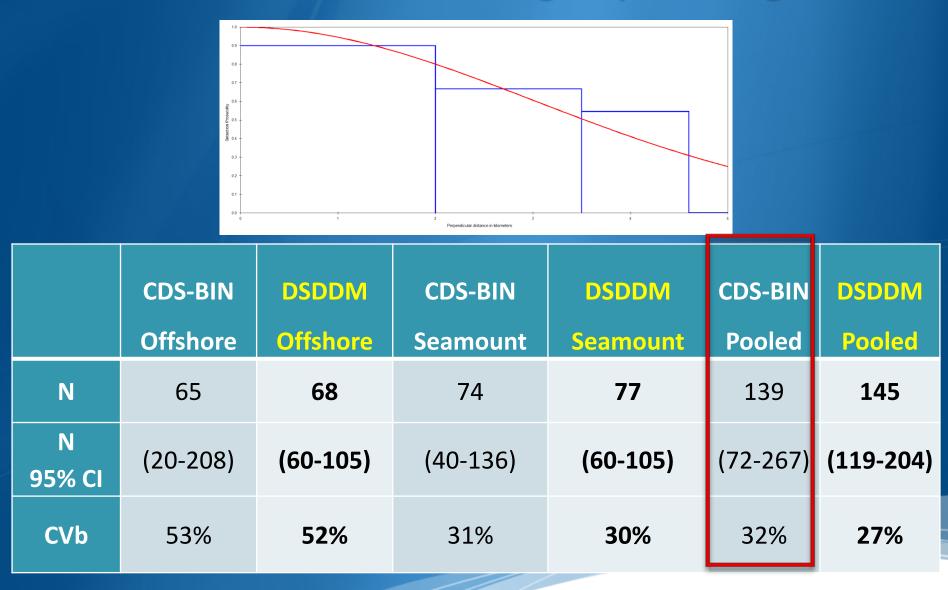

Distance Model Results - Comparison

Half Normal - No Slope Stratum



Half Normal - DSDDM

* Density/Abundance estimates shown are not corrected for $g(0) \neq 1$ (Barlow et al. 2013; Cuvier's acoustic g(0) = 0.28)



	ults – M npariso			CDS resulted in 20% 'underestimate' of abundance compared to DSDDM			
	CDS	DSDDM	CDS	DSDDM	CDS	DSDDM	
	Offshore	Offshore Seamour		Seamount	Pooled	Pooled	
Obs	8	8	26	26	34	34	
N	57	68	64	77	121	145	
N 95% CI	(7-115)	(0-130)	(30-120)	(38-150)	(57-200)	(68-265)	
CVb	48.1%	55%	33.3%	34%	29.6%	31%	

* Density/Abundance estimates shown are not corrected for $g(0) \neq 1$ (Barlow et al. 2013; Cuvier's acoustic g(0) = 0.28)

Can we account for slant range by binning data??

* Density/Abundance estimates shown are not corrected for $g(0) \neq 1$ (Barlow et al. 2013; Cuvier's acoustic g(0) = 0.28)

Discussion

Model Comparison/Selection GOALS II – Density

Binning Data can be used address slant range issue until more comprehensive and flexible DSDDM methods are readily available: Resulted in only ~4% 'underestimation' vs. ~20% when data was not binned

²

 n^2

n²

* Density/Abundance estimates shown are not corrected for $g(0) \neq 1$ (Barlow et al. 2013; Cuvier's acoustic g(0) = 0.28)

Conclusions

- Acoustic monitoring methods are a valuable resource for estimating abundance of deep-diving, continuously clicking species.
- Will provide the first line-transect acoustic density estimates for Cuvier's and the first estimates in the GoA.
- DSDDM enabled us to characterize 'underestimation bias' and will be a valuable tool to use in future effort.
- Applicable to other species
 - Baird's acoustic encounters on effort: 18
 - Stejneger's acoustic encounters on effort: 10

Future Work Needs

- Correct estimates for g(0) ≠ 1 (Barlow et al. 2013; g(0) = 0.28 for Cuvier's).
- Tagging of beaked whales in the GoA to provide ground truth of DSDDM depth distribution and proportion of time spent clicking for GoA.
- Continued development of the DSDDM methods to extend to other model types, account for variable depth and allow for multi-covariate distance sampling etc.
- Habitat modeling

Thank you!

Sponsors: We would like to acknowledge the **U.S. Navy Fleet Forces Command** and **NAVFAC-Atlantic** for sponsoring the survey and analysis effort, and **HDR**, **Inc**.(*especially Kristen Ampela*) for support and coordination of all project logistics.

Advice & Support: Douglas Gillespie and Jay Barlow

A special thank you to the tireless and dedicated efforts of the survey acousticians;, Jessica Crance, and Dawn Grebner. A special thank you to John Calambokidis and Cascadia Research Collective for survey planning, coordination, and support. We would also like to thank all of the participants of the survey; Jeff Foster, Annie Douglas, Michael Richlen, Jennifer Gatzke, Ernesto Vasquez and Bridget Watts, and the Captains and crew of the R/V Aquila.

Questions?

